PENGARUH TEMPERATUR DEPOSISI PADA PENUMBUHAN FILM TIPIS SILIKON KARBIDA DENGAN METODE HOMEMADE HOT-MESH CHEMICAL VAPOR DEPOSITION

B Astuti(1), A M Hashim(2),


(1) Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Semarang
(2) Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia

Abstract

Film tipis silikon karbida (SiC) telah ditumbuhkan di atas substrate graphene/SiO2/Si dengan metode Homemade Hot-mesh chemical vapor deposition (Hot-Mesh CVD). Pengaruh dari temperature deposisi pada struktur dan morfologi film tipis SiC telah dipelajari dengan menggunakan X-Ray diffractometer (XRD), FESEM dan EDX, dan spektroskopi Raman. Karakterisasi XRD menunjukkan bahwa film tipis SiC memiliki struktur polikristal tipe kubik dengan orientasi (111). Kualitas film tipis SiC, dan ukuran butir kristal dari morfologi film yang dihasilkan meningkat dengan peningkatan temperatur deposisi. Dari karakterisasi spektroskopi Raman, dapati terdapat dua puncak pergeseran Raman yang dominan pada daerah sekitar 780 - 800 cm-1 dan  950 – 980 cm-1 yang merupakan mode fonon SiC-TO dan SiC-LO. Puncak pergeseran Raman tersebut bergeser ke bilangan gelombang yang lebih pendek dengan peningkatan temperature deposisi.

Silicon carbide (SiC) thin film grown on graphene/SiO2/Si substrate using homemade hot mesh chemical vapor deposition (Hot-Mesh SVD) method has been done. Effect of  deposition temperature on structure and morphology of the thin film was studied by using X-ray diffractometer (XRD), FESEM and EDX, and Raman spectroscopy. XRD characteristics shows that SiC thin film has cubic polycrystalline structure with (111) orientation. Quality of the SiC thin film, and crystallite grain size from the film morphology was resulted increases with the increase of the deposition temperature. Based on the characterization of Raman spectroscopy, shows that two peak Raman shift in the range of 780 - 800 cm-1 and  950 – 980 cm-1 was attributed to SiC-TO and SiC-LO phonon mode.  The Raman shift peak was shifted toward the lower wavenumber with the increase of deposition temperature.


Keywords

SiC thin film, Hot-Mesh CVD, Deposition temperature

Full Text:

PDF

References

Astuti B, Tanikawa M, Rahman SFA, Yasui K, Hashim AM. 2012. Graphene as a buffer layer for silicon carbide-on-insulator structures. Materials 5: 2270-2279.

Bai Y, Cole GD, Bulsara MT, Fitzgeralda EA. 2012. Fabrication of GaAs-on-insulator via low temperature wafer bonding and sacrificial etching of Ge by XeF2. J. Electrochem. Soc 159: H183-H190.

Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN. 2008. Superior thermal conductivity of single-layer graphene. Nano Lett 8: 902-907.

Balandin AA. 2011. Thermal properties of graphene and nanostructured carbon materials. Nature Mater 10: 569-581.

Bolotin KI, Sikes KJ, Jiang Z, Klima M, Funderberg G, Hone J, Kim P, Stormer HL. 2008. Ultra high electron mobolity in suspended graphene. Solid State Commun 146: 351-355.

Burda C, Chen X, Narayanan R, El-Sayed MA. 2005. Chenistry and properties of nanocrystals of different shapes. Chem. Rev 105: 2127-2150.

Chassagne T, Ferro G, Wang H, Stoemenos Y, Peyre H, Contreras S, Camassel J, Monteil Y, Ghyselen B. 2002. Improved SiCOI structures elaborated by heteroepitaxy of 3C-SiC on SOI. Mater. Sci. Forum 389-393: 343-346.

Cheng Q, Xu S, Long J, Ostrikov KK. 2007. Low temperature PECVD of nanodevice grade nc-3C-SiC. Chemical Vapor Deposition 13: 461-566.

Chen S, Wu Q, Mishra C, Kang J, Zhung H, Cho K, Cai W, Balandin AA, Ruoff RS. 2012. Thermal conductivity of isotopically modified graphene. Nature Mater 11: 203-207.

Chen T, Kohler F, Heidt A, Huang Y, Finger F, Carius R. 2011. Microstructure and electronics properties of microcrystalline silicon carbide thin films prepared by hot wire CVD. Thin Solid Films 519: 4511-4515.

Choi WM, Shin KS, Lee HS, Choi D, Kim K, Shin HJ, Yoon SM, Choi JY, Kim SW. 2011. Selective growth of ZnO nanorods on SiO2/Si substrate using a graphene buffer layer. Nano Res 4: 440-447.

Dai H, Javey A, Pop E, Mann D, Lu Y. 2006. Electrical transport properties and field effect transistor of carbon nanotubes. Nano: Brief Report and Reviews, 1: 1-4.

Feng K. Chen Z. Ma J. Zan X. Pu H. Lu G. 2003. Epitaxial growth of cubic silicon carbide on silicon by sublimation method. Optical Mater 23: 93-96.

Hashim AM, Anisuzzaman M, Muta S, Sadoh T, Miyao M. 2012. Epitaxial template structure utilizing Ge-on-insulator stripe arrays with nanospacing for advanced heterogeneous integration on Si platform. Jpn. J. Appl. Phys 51: 06FF0401-06FF0405.

Itabashi S, Nishi H, Tsuchizawa T, Watanabe T, Shinojima H, Park S, Yamada K, Ishikawa Y, Wada K. 2010. Integration of optical devices based on Si, Ge, and SiOx. Proceeding of IEEE International Conferences on Group IV Photonics (GFP), pp. 48-50.

Kubo N, Kawace T, Asahina S, Kanayama N, Tsuda H, Moritani A, Kitahara K. 2004. Epitaxial growth of 3C-SiC on Si(111) using hexamethyldisilane and tetraethylsilane. Jpn. J.Appl. Phys 43: 7654-7660.

Lebedev AA. 2006. Heterojunction and superlattices based on silicon carbide. Semicon. Sci. Technol 21: R17-R34.

Lee HS, Li M, Sun K, Ryu, Palacios T. 2013. Hybrid wafer bonding and heterogeneous integration of GaN HEMTs and Si(100) MOSFETs. ECS Trans 50: 1055-1061.

Lehovec K. 1979. GaAs enhancement mode FET-tunnel diode ultra-fast low power inverter and memory cell. IEEE J. A Solid State Circuits SC-14: 797-800.

Liu Y, Gopalakrishan K, Griffin PB, Ma K, Deal MD, Plummer JD. 2004. MOSFETs and high speed photodetectors on Ge-on-insulator substrates fabricated using rapid melt growth. Proceeding of IEEE International Electron Devices Meeting, San Fransisco, USA, pp. 1001-1004.

Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stomer HL, Zeitler U, Maan JC, Boebinger GS, Kim P, Geim AK. 2007. Room temperature quantum hall effect in graphene. Science 315, 1379.

Pillarisetty R. 2011. Academic and industry research progress in germanium nanodevices. Nature 479: 324-328.

Razykov TM, Ferekides CS, Morel D, Stefanako E, Ullal HS, Upadhyaya HM. 2011. Solar photovolatic electricity: current status and future respects. Sol. Energy, 85: 1580-1608.

Tabata A, Komura Y, Hoshide Y, Narita T, Kondo A. 2008. Properties of nanocrystalline cubic silicon sarbide thin films prepared by hot-wire chemical vapor deposition using SiH4/CH4/H2 at various substrate temperatures. Jpn. J. Appl. Phys 47(1): 561-565.

Tsukamoto T. & Ogino T. 2010. Graphene-on-insulator fabricated on atomically controlled solid surfaces. J. Phys. D: Appl. Phys 43(37): 374014.

Yasui K, Miura H, Takata M, Akahana T. 2008. SiCOI structure fabricated by catalytic chemical vapor deposition. Thin Solid Films. 516: 644-647.

Young DJ. 2004. High temperature single-crystal 3C-SiC capacitive pressure sensor. IEEE Sensors Journal, 4: 464-470.

Wang J, & Lee S. 2011. Ge-photodetector for Si-based optoelectronic integration. Sensors 11: 696-718.

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.