PENGARUH PENAMBAHAN TRIPOLYFOSFAT PADA KITOSAN BEADS UNTUK ADSORPSI METHYL ORANGE
(1) Jurusan Kimia, FMIPA Universitas Brawijaya, Indonesia
(2) Jurusan Kimia, FMIPA Universitas Brawijaya, Indonesia
(3) Jurusan Kimia, FMIPA Universitas Brawijaya, Indonesia
(4) Jurusan Kimia, FMIPA Universitas Brawijaya, Indonesia
Abstract
Modifikasi kitosan dilakukan dalam rangka meningkatkan daya adsorpsi kitosan. Penambahan tripolyfosfat (TPP) dapat mempengaruhi kinerja kitosan untuk mengadsorpsi methyl orange. Penambahan cross-linker epiklorohidrin (ECH) bertujuan untuk meningkatkan stabilitas kimianya dalam kondisi asam serta membentuk pori kitosan beads lebih besar. Penelitian ini bertujuan untuk mengetahui konsentrasi dan lama perendaman TPP optimum pada adsorpsi methyl orange oleh kitosan. Konsentrasi TPP (1%, 5%, 10% dan 15% b/v) dan lama perendaman dalam TPP (1, 3, 6, 12, dan 24 jam) divariasi untuk mendapatkan jumlah methyl orange teradsorpsi optimum. Evaluasi kondisi optimum dilakukan dengan mengadsorpsi methyl orange dengan metode batch. Kondisi optimum diperoleh pada adsorpsi kitosan dengan konsentrasi TPP 10% dan lama perendaman selama 12 jam dengan jumlah methyl orange yang teradsorpsi mencapai 12,5 ± 0,744 mg/g. TPP berpengaruh pada pembentukan pori dan kekakuan kitosan beads. Karakterisasi SEM menunjukkan bahwa pori kitosan beads tergolong makropori dan pori partikulat. Spektra FTIR menunjukkan bahwa TPP telah mampu melindungi gugus NH2 dari kitosan tetapi masih tertinggal di dalam kitosan beads. Mekanisme adsorpsi lebih bersifat fisik karena spektra FTIR kitosan beads setelah adsorpsi tidak jauh berbeda dengan kitosan beads sebelum adsorpsi yang ditandai oleh serapan pada 2362 cm-1 yang menunjukkan terdapatnya methyl orange di dalam kitosan beads.
Chitosan modifications performed in order to increase the adsorption capacity of chitosan. Addition tripolyfosfat (TPP) can affect the chitosan performance to adsorb methyl orange. The addition of cross-linker epichlorohydrin (ECH) aims to improve chemical stability in acidic conditions and to form larger pores of chitosan beads. This study aims to determine the concentration and immersion time TPP optimum in adsorption of methyl orange by chitosan. TPP concentrations (1%, 5%, 10% and 15% w / v) and immersion time in TPP (1, 3, 6, 12, and 24 hours) were varied to obtain the optimum amount of adsorbed methyl orange. Evaluation of the optimum condition is done by adsorption of methyl orange by the batch method. The optimum conditions obtained in the adsorption of chitosan with TPP concentration of 10% and a immersion time for 12 hours with the amount of adsorbed methyl orange reached 12.5 ± 0.744 mg/g. TPP effect on pore formation and stiffness chitosan beads. SEM characterization showed that the porous of chitosan beads classified as macropore and particulate pore. FTIR spectra showed that the TPP has been able to protect the NH2 group of chitosan but still lagging behind in the chitosan beads. Adsorption mechanism is more physical interaction because of the FTIR spectra of chitosan beads after adsorption is not much different from the chitosan beads before adsorption by absorption at 2362 cm-1 which indicate the presence of methyl orange in the chitosan beads.
Keywords
Full Text:
PDFReferences
Anggraeny, Baiq OD, Sabarudin A, & Rumhayati B. 2014. Pembuatan kitosan makropori menggunakan garam dapur dan aplikasinya terhadap adsorpsi methyl orange. Kimia Student Journal 1(1): 1-7.
Bhatnaga A & Sillanpää M. 2009. Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater – A short review. Adv Colloid Interfac 152: 26–38.
Chen AH & Huang YY. 2010. Adsorption of remazol black 5 from aqueous solution by the template crosslinked-chitosans. J Hazard Mater 177: 668–675.
Chiou MS & Li HY. 2003. Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked chitosan beads. Chemosphere 50: 1095–1105.
Crini G. 2006. Non-conventional low-cost adsorbents for dye removal: a review. Bioresource Technol 97: 1061–1085.
Crini G & Badot PM. 2006. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog Polym Sci 33: 399–447.
Gong R, Ding Y, Li M, Yang C, Liu H & Sun Y. 2005. Utilization of powdered peanut hull as biosorben for removal of anionics dyes from aqueous solution. J Dyes Pigment 64: 187.
Gonҫalves VL, Laranjeira MCM, Fávere VT, & Pedrosa RC. 2005. Effect of crosslinking agents on chitosan microspheres in controlled release of diclofenac sodium. Polimeros 15: 6–12.
Mardila VT, Sabarudin A, & Rumhayati B. 2014. Pembuatan kitosan makropori menggunakan epichlorohydrin sebagai cross-linker dan aplikasinya terhadap adsorpsi methyl orange. Kimia Student Journal 1(2): 182-188.
Mi FL, Shyu SS, Chen CT, & Lai JY. 2002. Adsorption of indomethacin onto chemically modified chitosan beads. Polymer 43: 757-765.
Ngah WS, Wan CSE & Mayanar R. 2002. Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads. React Funct Polym 50: 181–190.
Ngah, Wan WS, & Fatinathan S. 2010. Adsorption characterization of Pb(II) and Cu(II) ions onto chitosan-tripolyphosphate beads: kinetic, equilibrium and thermodynamic studies. J Environ Manage 91: 958–969.
Obei L, Bée A, Talbot D, Jaafar SB, Dupuis V, Abramson S, Cabuil V, & Welschbillig M. 2013. chitosan/maghemite composite: a magsorbent for the adsorption of MO. J Colloid Interfac 410: 52–58.
Wu FC, Tseng RL, & Juang RS. 2000. Comparative adsorption of metal and dye on flakeand bead-types of chitosans prepared from fishery wastes. J Hazard Mater 73: 63–75.
Wu FC, Tseng RL, & Juang RS. 2010. A review and experimental verification of using chitosan and its derivatives as adsorbents for selected heavy metals. J Environ Manage 91: 798–806.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.