Sintesis dan Karakterisasi Material Nanokomposit CNT/MnO2 Untuk Aplikasi Material Superkapasitor

A. Subagio(1), Priyono -(2), Pardoyo -(3), R. Yudianti(4),


(1) Jl. Prof. Sudarto, SH., Tembalang Semarang
(2) Jurusan Fisika, Fakultas Sains dan Matematika – Universitas Dipoengoro
(3) Jurusan Kimia, Fakultas Sains dan Matematika – Universitas Diponegoro
(4) Pusat Penelitian Fisika – Lembaga Ilmu Pengetahuan Indonesia

Abstract

Telah dilakukan fabrikasi material nanokomposit CNT/MnO2 sebagai material elektroda superkapasitor dengan reaksi redox antara CNT dan KMnO4. Variasi komposisi dari kedua bahan tersebut dilakukan untuk mengetahui sifat struktur, morfologi dan kelistrikannya dengan perbandingan massa CNT/MnO2 sebesar 0, 25, 50 dan 75%. Pola struktur kristal dan morfologi dari material serbuk nanokomposit CNT/MnO2 dikarakterisasi dengan X-ray diffraction (XRD), scanning electron microscope (SEM) dan transmission electron microscope (TEM), sedangkan pola ikatannya dikarakterisasi dengan FTIR. Serbuk nanokomposit CNT/MnO2 ini selanjutnya dibuat pellet berbentuk silinder berukuran diameter 1 cm dan ketebalan 2 mm dengan variasi penambahan pengikat polyvinylidene difluoride (PVDF) sebesar 10, 20 dan 30% dari campuran CNT/MnO2. Pellet dari material CNT/MnO2 ini selanjutnya dipanaskan pada temperatur 70 oC selama 1 jam. Hasil pengukuran resistansinya menunjukkan bahwa material CNT/MnO2 dengan perbandingan massa CNT/MnO2 sebesar 75% dan penambahan pengikat PVDF sebesar 20% menunjukkan nilai resistansi yang paling rendah. Selanjutnya prototip superkapasitor CNT/MnO2 dengan menggunakan PVDF sebesar 20% diukur dengan metode electrochemical impedance spectroscopy menghasilkan nilai kapasitansi spesifik sebesar 7,86 F/gr.

 

Nanocomposite materials CNT/MnO2 have been fabricated as candidate of supercapacitor electrode material with a redox reaction between CNT and KMnO4. Variations in the composition of the two materials were carried out to determine the structure, morphology and electrical properties of CNT/MnO2 with mass ratio of 0, 25, 50 and 75 %. Pattern of the crystal structure and morphology of the CNT/MnO2 nanocomposite powder were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM), while the bond pattern was characterized by FTIR. CNT/MnO2 nanocomposite powder was managed to make cylindrical pellets with diameter of 1 cm and thickness of 2 mm with variations addition of binder polyvinylidene difluoride (PVDF) of 10, 20 and 30%. Pellets of the material were then heated at a temperature of 70 oC for 1 hour. Resistance measurement results showed that the ratio of the mass of material CNT/MnO2 by 75% and additions by 20% PVDF binder showed the lowest resistance value. Furthermore, CNT/MnO2 supercapacitor prototype using PVDF of 20% measured with electrochemical impedance spectroscopy method showed specific capacitance of 7.86 F/gr.

Keywords

supercapacitors; nanocomposite; CNT/MnO2; resistance, electrochemical impedance spectroscopy

Full Text:

PDF

References

Boukhalfa, S., Evanoff, K., Yushin, G. 2012. Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes. Energy and Environmental Science 5, 6872.

Burke, A. 2000. Ultracapacitors: why, how, and where is the technology. Journal of Power Sources 91, 37-50.

Conway. 1999. Electrochemical Supercapacitors-Scientific Fundamentals and Technological Applications. Kluewer, New York.

Emmenegger, Ch., Mauron, Ph., Sudan, P., Wenger, P., Hermann, V., Gallay, R., Zuttel, A. 2003. Investigation of Electrochemical Double-layer (ECDL) Capacitors Electrodes Based on Carbon Nanotubes and Activated Carbon Materials. J. Power Sources 124, 321-329.

Lee, S.W., Kim, J., Chen, S., Hammond, P.T, Horn, Y.S. 2010. Carbon nanotube /manganese oxide ultrathin film electrodes for electrochemical capacitors. ACS Nano 4, 3889.

Lu, W., Hartman, R. 2011. Nanocomposite electrodes for high-performance supercapacitors. Journal of Physical Chemistry Letters 43, 655.

Miller, J.R., Burke, A.F. 2008. Electrochemical capacitors: Challenges and opportunities for real-world applications. Electrochem. Soc. Interf. 17 (1), 53–57.

Miller, J.R., Simon, P. 2008. Electrochemical capacitors for energy management. Science, 321 (5889), 651–652.

Min-min, Z., Deng-jun, Al., Kai-yu, Liu. 2011. Template synthesis of MnO2/CNT nanocomposite anf its application in rechargeable lithium batteries. Trans. Nonferrous Met. Soc. China 21, 2010-2014.

Pandolfo, A.G., Hollenkamp, A.F. 2006. J Power Sources 157, 11-27.

Richard, A.N., Ronald, O.K. 1996. Infrared Spectra of Inorganic Compounds: (3800-4500 cm-1), Academic Press.

Zhang, J., Zang, J., Huang, J., Wang, Y., Xin, G. 2014. Synthesis of an architectural electrode based on manganeseoxide and carbon nanotubesfor flexible supercapacitors. Materials Letters 126, 24–27

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License