Selection of Soybean (Glycine max) Germplasm Against Biotrophic Fungi Disease Based on Anatomical Resistance

Siti Samiyarsih(1), Ade Yuanita Putri Pratiwi(2), Juni Safitri Muljowati(3), Nur Fitrianto(4),


(1) Faculty of Biology, Universitas Jenderal Soedirman
(2) Faculty of Biology, Universitas Jenderal Soedirman
(3) Faculty of Biology, Universitas Jenderal Soedirman
(4) Faculty of Biology, Universitas Jenderal Soedirman

Abstract

The obstacle to increasing the soybean production is an infection of rust disease caused by the biotrophic fungus, Phakopsora pachyrhizi. The research objectives were to determine the anatomical resistance and the level of resistance of soybean cultivars against rust disease. The embedding method for observed leaf structural anatomy. The disease severity based on the method of International Working Group on the Soybean Rust (IWGSR) rating system.  The experiment was arranged as a Completely Randomized Design (CRD) with Factorial Pattern and five times repetition. The first factor was soybean cultivars, namely Gepak Kuning, Slamet, Tanggamus, and Wilis. The second factor was P. pachyrhizi inoculation with 0 uredospores/mL (uninoculated) and 104 uredospores/mL (inoculated). The results showed that the soybean cultivars that have thicker cuticle and epidermis, high trichomes and low stomatal density, and low of stomatal conductance have better anatomical resistance to leaf rust disease. Wilis and Slamet cultivars are resistant cultivars, indicated by disease intensity of 20% and 24.6%, respectively. While the Tanggamus is moderately resistant cultivar and Gepak Kuning is a susceptible cultivar, indicated by disease intensity of 56.5% and 85.3%, respectively. The novelty of selection soybean germplasm against biotrophic fungal disease are important and effectiveness in order to increase the crop productivity. These three soybean cultivars potentially serve as genetic sources to develop high yielding soybean cultivars and resistant to rust disease.

Keywords

Anatomy; Biotrophic Fungi; Resistance; Selection; Soybean

Full Text:

PDF

References

Araujo, M. M., & Vello, N. A. (2010). Characterization of soybean genotypes for Asian soybean rust reaction. Crop Breeding and Applied Biotechnology, 10(3), 197-203.

Baswarsiati. (2004). Penilaian Stomata dan Bulu Daun Sebagai Penciri Ketahanan Beberapa Klon Tanaman Anggur Terhadap Plasmopora viticola. Journal of leaf anatomy, 5(1), 29–35.

Biruliova, E., Prosiannykova, I., & Fedotova, A. (2013). The rust fungus Uromyces geranii (DC.) Lev. localization and impact on anatomy of the host plant Geranium sanguineum L. Modern Phytomorphology, 4, 109-113.

Direktorat Akabi (Direktorat Budidaya Aneka Kacang dan Umbi Direktoral Jenderal Tanaman Pangan). (2013). Soybean Production. Direktorat Budidaya Aneka Kacang dan Umbi.

Djauhari, S. (2008). Sifat anatomi daun kedelai (Glycine max (Merr.)) mempengaruhi intensitas penyakit karat daun (Phakopsora pachyrhizi H. Syd). Agrivita, 30, 388–392.

Faizah, R., Sujiprihati, S., Syukur, M., & Hidayat, S. H. (2012). Ketahanan biokimia tanaman cabai terhadap Begomovirus penyebab penyakit daun keriting kuning. Jurnal Fitopatologi Indonesia, 8(5), 138-144.

Giordani, E., Padula, G., & Radice, S. (2013). Compared Anatomy of Young Leaves of Prunus persica (L.) Batsch with Different Degrees of Susceptibility to Taphrina deformans (Berk.) Tul. Journal of Phytophatology, 161(1), 190–196.

Grimmer, M.K., Foulkes, M.J., Praveley, N.D. (2012). Foliar pathogenesis and plant water relations a revies. J. Exp. Bot, 63(12), 4321-4331.

Impullitti, A.E., & Malvick, D.K. (2014). Anatomical Response and Infection of Soybean during Latent and Pathogenic Infection by Type A and B of Phialophora gregata. Plos One, 9(5), 1-11.

Juwarno & Samiyarsih, S. (2017). Anatomical and Molecular Responses of Soy Bean (Glycine max (L.) Merr.) due to Salinity Stresses. Molekul, 12(1), 45-52.

Kelly, H.Y., Dufault, N.S., Walker, D.R., Isard, S.A., Schneider, R.W., Giesler, L.J., & Hartman, G.L. (2015). From select agent to an established pathogen: the response to Phakopsora pachyrhizi (soybean rust) in North America. Phytopathology, 105(7), 905-916.

Lawson, T., & Blatt, M.R. (2014). Stomatal Size, Speed, and Responsiveness Impact on Photosynthesis and Water Use Efficiency. Plant Physiology, 164, 1556–1570.

Maman, Rochmatino & Muljowati, J.S. (2014). Hubungan Intensitas Penyakit Karat Dengan Produktivitas Tanaman Kedelai (Glycine max (L.) Merr.) Pada Beberapa Varietas Berbeda. Scripta Biologica, 1(2), 173-177.

Miles, M.R.,bBonde, Nester,S.E. Berner, D.K., Frederick, R.D., & Hartman, G.L. (2011). Characterizing resistance to Phakopsora pachyrhizi in soybean. Plant Dis, 95, 577-581.

Murithi, H.M., Beed, F., Tukamuhabwa, P., Thomma, B.P.H.J., & Joosten, M.H.A.J. (2016). Soybean production in eastern and southern Africa and threat of yield loss due to soybean rust caused by Phakopsora pachyrhizi. Plant pathology, 65(2), 176-188.

Nazar, A., Mustikawati, D. R., & Yani, A. (2008). Teknologi Budidaya Kedelai. Lampung: Balai Besar Pengkajian dan Pengembangan Teknologi Pertanian.

Pantilu, L.L., Mantrir, F.R., Ai, N.S., & Pandiangan, D. (2012). Respon Morfologi dan Anatomi Kacang Kedelai (Glycine max L.) Terhadap Intensitas Cahaya yang Berbeda. Jurnal Bioslogos, 2(2), 79–87.

Pham, T.A., Hill, C.B., Miles, M.R., Nguyen, B.T., Vu, T.T., Vuong, T.D., Van, T.T., Nguyen, H.T., & Hartman, G.L. (2010). Evaluation of soybean for resistance to soybean rust in Vietnam. Field Crop Res, 117, 131-138.

Poerwoko, M.S., Susiliwati, E.B.T., & Pahlevi, M.R. (2018). Disease Severity and Infection Rate of Soybean Leaf Rust Disease on Several Genotypes. Bioscience Research, 15(1), 262-269.

Pradana, A. W., Samiyarsih, S., & Muljowati, J. S. (2017). Korelasi karakter anatomi daun ubi jalar (Ipomoea batatas L.) kultivar tahan dan tidak tahan terhadap intensitas penyakit kudis daun. Scripta Biologica, 4(1), 21-29.

Qi, M., Grayczyk, J.P., Seitz, J.M., Lee, Y., Link, T.I., Choi, D., & Whitham, S.A. (2018). Suppression or activation of immune responses by predicted secreted proteins of the soybean rust pathogen Phakopsora pachyrhizi. Molecular plant-microbe interactions, 31(1), 163-174.

Rai, B., Jha, M., Roy, S., & Ojha, K.L. (2000). Studies on Leaf Anatomical Structures in Relation to Turcicum Leaf Blight Disease of Maize. Journal of Applied Biology, 10(2), 166-168.

Samiyarsih, S., Fitrianto, N., Azizah, E., Herawati, W., & Rochmatino. (2020). Anatomical profile and genetic variability of sweet potato (Ipomoea batatas) cultivars in Banyumas, Central Java, based on RAPD markers. Biodiversitas, 21(4), 1755-1766.

Samiyarsih, S., Juwarno, J., & Muljowati, J.S. (2018). The Structural Resistance’s Anatomy of Sweet Potato Leaves to Fungal Pathogen Sphaceloma batatas. Biosaintifika: Journal of Biology & Biology Education, 10(1), 131-137.

Sass, J. E. (1951). Botanical Microtechnique. Lowa: The Lowa State College Press.

Shanmugasundaram, S., Yan, M. R., & Wang, T. C. (2004). Breeding for soybean rust resistance in Taiwan. In World Soybean Research Conference, 7th. Brazilian Agricultural Research Corporation, National Soybean Research Center.

Sulistyo, A. & Sumartini. (2016). Evaluation of soybean genotypes for resistance to rust disease (Phakopsora pachyrhizi). Biodiversitas, 17(1), 124-128.

Sumartini & Sulistyo, A. (2016). Ketahanan Sepuluh Genotipe Kedelai terhadap Penyakit Karat. Jurnal Fitopatologi Indonesia, 12(2), 39-49.

Sumartini. (2010). Penyakit Karat Pada Kedelai dan Cara Pengendaliannya yang Ramah Lingkungan. Jurnal Litbang Pertanian, 29(3), 107-112.

Suriani, Djaenuddin, N., & Talanca, A.H. (2018). Correlation of stomata density to rust severity on some accessions of maize germplasm. J. HPT Tropika, 18(2), 95-104.

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.