Data-Driven E-commerce Techniques and Challenges in the Era of the Fourth Industrial Revolution

Joma H. Norian, Abdelazez M. Jama, Mohammed H. Eltaieb, Ali A. Adam


The E-commerce industry has a significant role in the national and international economy. E-commerce is vital in the implementation of the fourth industrial revolution, where information and communication technologies are tools in creating digital channels of trade. Understanding e-commerce is essential for it is development. The objective of this paper is to explore the popular techniques and data sources of e-commerce in addition to the current challenges that face e-commerce in the last five years. We used a literature review as a method for this research.  According to the literature, sales records are the most popular data source used in the research community for e-commerce analytics, then followed by big data and social media. Besides, detecting and predicting customer behavior is the most used technique in e-commerce research followed by personalized recommendations. Also, we reported the main three challenges that face researchers in the field of e-commerce currently: First, e-commerce Security and privacy is a major concern for consumers and industries. Second, understanding the collected data from e-commerce systems and how to create business value from it efficiently. Third, providing personalized offers with the most appropriate items, still a difficult task.


E-commerce; sales records; personalized recommendation; Industrial Revolution 4.0

Full Text:



M. Niranjanamurthy, N. Kavyashree, and S. J. D. Chahar, “Analysis of E-Commerce and M-Commerce : Advantages , Limitations and Security issues,” Int. J. Adv. Res. Comput. Commun. Eng., vol. 2, no. 6, pp. 2360–2370, 2013.

A. Alsaad and A. Taamneh, “The effect of international pressures on the cross-national diffusion of business-to-business e-commerce,” Technol. Soc., vol. 59, no. June, p.

, 2019, doi: 10.1016/j.techsoc.2019.101158.

S. Dahbi and C. Benmoussa, “What Hinder SMEs from Adopting E-commerce? A Multiple Case Analysis,” Procedia Comput. Sci., vol. 158, pp. 811–818, 2019, doi: 10.1016/j.procs.2019.09.118.

L. Yang, Y. Li, J. Wang, and R. S. Sherratt, “Sentiment Analysis for E-Commerce Product Reviews in Chinese Based on Sentiment Lexicon and Deep Learning,” IEEE Access, vol. 8, pp. 23522–23530, 2020, doi: 10.1109/ACCESS.2020.2969854.

B. Che, P. Zhao, J. Fang, L. Zhao, V. S. Sheng, and Z. Cui, “Inter-Basket and Intra-Basket Adaptive Attention Network for Next Basket Recommendation,” IEEE Access, vol. 7, pp. 80644–80650, 2019, doi: 10.1109/ACCESS.2019.2922985.

S. Ćuzović and B. Labović, “E-Commerce in the Light of the Fourth Industrial Revolution,” Нови Економист, vol. 13, no. 25, pp. 30–36, 2020, doi: 10.7251/noe1925030c.

M. C. Enache, “E-commerce Trends,” Ann. Dunarea Jos Univ. Fascicle I Econ. Appl. Informatics, vol. 24, no. 2, pp. 67–71, 2018, doi: 10.26397/eai158404098.

D. R. S. et al. . Dr. Ramandeep Saini et al., “E-Commerce in India, Opportunities and Challenges,” Int. J. Mech. Prod. Eng. Res. Dev., vol. 10, no. 3, pp. 10333–10338, 2020, doi: 10.24247/ijmperdjun2020989.

T. Yeow Chong Larry, “Recent Technological Trends and Security Challenges in Trust-Building in E-Commerce,” Int. J. Bus. Manag., vol. 14, no. 12, p. 226, 2019, doi: 10.5539/ijbm.v14n12p226.

V. F. dos Santos, L. R. Sabino, G. M. Morais, and C. A. Goncalves, “E-Commerce: A Short History Follow-up on Possible Trends,” Int. J. Bus. Adm., vol. 8, no. 7, p. 130, 2017, doi: 10.5430/ijba.v8n7p130.

P. Balaraman and S. Chandrasekar, “E-Commerce Trends and Future Analytics Tools,” Indian J. Sci. Technol., vol. 9, no. 32, pp. 1–9, 2016, doi: 10.17485/ijst/2016/v9i32/98653.

E. Y. Masoud, “The Effect of Perceived Risk on Online Shopping in Jordan,” vol. 5, no. 6, pp. 76–88, 2013.

X. Guo, Y. J. Lujan Jaramillo, J. Bloemhof-Ruwaard, and G. D. H. Claassen, “On integrating crowdsourced delivery in last-mile logistics: A simulation study to quantify its feasibility,” J. Clean. Prod., vol. 241, no. 2019, p. 118365, 2019, doi: 10.1016/j.jclepro.2019.118365.

M. Alauddin, T. C. Yee, and I. T. Kim Teck, “Airline digital click stream event processing for enriching the airline business,” 3C Tecnol. innovación Apl. a la pyme, no. November, pp. 287–305, 2019, doi: 10.17993/3ctecno.2019.specialissue3.287-305.

Z. Wang, W. Luan, Y. Du, and L. Qi, “Composition and application of extended colored logic petri nets to E-Commerce systems,” IEEE Access, vol. 8, pp. 36386–36397, 2020, doi: 10.1109/ACCESS.2020.2974883.

M. Desmond et al., “A social analytics platform for smarter commerce solutions,” IBM J. Res. Dev., vol. 58, no. 5–6, pp. 1–14, 2014, doi: 10.1147/JRD.2014.2346262.

D. Chen, D. Zhang, F. Tao, and A. Liu, “Analysis of customer reviews for product service system design based on cloud computing,” Procedia CIRP, vol. 83, pp. 522–527, 2019, doi: 10.1016/j.procir.2019.03.116.

S. Hernandez, P. Alvarez, J. Fabra, and J. Ezpeleta, “Analysis of Users’ Behavior in Structured e-Commerce Websites,” IEEE Access, vol. 5, pp. 11941–11958, 2017, doi: 10.1109/ACCESS.2017.2707600.

N. Hu, G. Tian, L. Liu, B. Liang, and Y. Gao, “Do links matter? An investigation of the impact of consumer feedback, recommendation networks, and price bundling on sales,” IEEE Trans. Eng. Manag., vol. 59, no. 2, pp. 189–200, 2012, doi: 10.1109/TEM.2010.2064318.

C. lo Storto, “Evaluating ecommerce websites cognitive efficiency: An integrative framework based on data envelopment analysis,” Appl. Ergon., vol. 44, no. 6, pp. 1004–1014, 2013, doi: 10.1016/j.apergo.2013.03.031.

J. Feigl and M. Bogdan, “Neural networks for personalized item rankings,” Neurocomputing, vol. 342, pp. 60–65, 2019, doi: 10.1016/j.neucom.2018.10.083.

C. C. Liang, W. Y. Liang, and T. L. Tseng, “Evaluation of intelligent agents in consumer-to-business e-Commerce,” Comput. Stand. Interfaces, vol. 65, no. November 2018, pp. 122–131, 2019, doi: 10.1016/j.csi.2019.03.002.

N. A. Bt Mohd and Z. F. Zaaba, “A review of usability and security evaluation model of E-commerce website,” Procedia Comput. Sci., vol. 161, pp. 1199–1205, 2019, doi: 10.1016/j.procs.2019.11.233.

H. bumm Kim, T. (Terry) Kim, and S. W. Shin, “Modeling roles of subjective norms and eTrust in customers’ acceptance of airline B2C eCommerce websites,” Tour. Manag., vol. 30, no. 2, pp. 266–277, 2009, doi: 10.1016/j.tourman.2008.07.001.

Y. Wang, D. Wang, and W. H. Ip, “Optimal design of link structure for E-supermarket website,” IEEE Trans. Syst. Man, Cybern. Part ASystems Humans, vol. 36, no. 2, pp. 338–355, 2006, doi: 10.1109/TSMCA.2005.851336.

X. Chen, Y. Fang, M. Yang, F. Nie, Z. Zhao, and J. Z. Huang, “PurTreeClust: A clustering algorithm for customer segmentation from massive customer transaction data,” IEEE Trans. Knowl. Data Eng., vol. 30, no. 3, pp. 559–572, 2018, doi: 10.1109/TKDE.2017.2763620.

L. Bustio-Martínez, A. Muñoz-Briseño, R. Cumplido, R. Hernández-León, and C. Feregrino-Uribe, “A novel multi-core algorithm for frequent itemsets mining in data streams,” Pattern Recognit. Lett., vol. 125, pp. 241–248, 2019, doi: 10.1016/j.patrec.2019.05.003.

C. P. Holland, S. C. Thornton, and P. Naudé, “B2B analytics in the airline market: Harnessing the power of consumer big data,” Ind. Mark. Manag., vol. 86, no. November, pp. 52–64, 2020, doi: 10.1016/j.indmarman.2019.11.002.

C. J. Carmona, S. Ramírez-Gallego, F. Torres, E. Bernal, M. J. Del Jesus, and S. García, “Web usage mining to improve the design of an e-commerce website:,” Expert Syst. Appl., vol. 39, no. 12, pp. 11243–11249, 2012, doi: 10.1016/j.eswa.2012.03.046.

L. Huang, Z. Dou, Y. Hu, and R. Huang, “Online Sales Prediction: An Analysis with Dependency SCOR-Topic Sentiment Model,” IEEE Access, vol. 7, pp. 79791–79797, 2019, doi: 10.1109/ACCESS.2019.2919734.

Z. Zhao, J. Wang, H. Sun, Y. Liu, Z. Fan, and F. Xuan, “What Factors Influence Online Product Sales? Online Reviews, Review System Curation, Online Promotional Marketing and Seller Guarantees Analysis,” IEEE Access, vol. 8, pp. 3920–3931, 2020, doi: 10.1109/ACCESS.2019.2963047.

W. Li, J. Yin, and H. Chen, “Supervised topic modeling using hierarchical dirichlet process-based inverse regression: Experiments on e-commerce applications,” IEEE Trans. Knowl. Data Eng., vol. 30, no. 6, pp. 1192–1205, 2018, doi: 10.1109/TKDE.2017.2786727.

D. Schellong, J. Kemper, and M. Brettel, “Association for Information Systems AIS Electronic Library (AISeL) CLICKSTREAM DATA AS A SOURCE TO UNCOVER CON-SUMER SHOPPING TYPES IN A LARGE-SCALE ONLINE SETTING Recommended Citation,” 2016.

D. K. Padidem and C. Nalini, “Process mining approach to discover shopping behavior process model in ecommerce web sites using click stream data,” Int. J. Civ. Eng. Technol., vol. 8, no. 1, pp. 948–955, 2017.

P. A. Hurtado, C. Dorneles, and E. Frazzon, “Big Data application for E-commerce’s Logistics: A research assessment and conceptual model,” IFAC-PapersOnLine, vol. 52, no. 13, pp. 838–843, 2019, doi: 10.1016/j.ifacol.2019.11.234.

T. Boone, R. Ganeshan, A. Jain, and N. R. Sanders, “Forecasting sales in the supply chain: Consumer analytics in the big data era,” Int. J. Forecast., vol. 35, no. 1, pp. 170–180, 2019, doi: 10.1016/j.ijforecast.2018.09.003.

L. Qi et al., “Structural Balance Theory-Based E-Commerce Recommendation over Big Rating Data,” IEEE Trans. Big Data, vol. 4, no. 3, pp. 301–312, 2016, doi: 10.1109/tbdata.2016.2602849.

S. Suguna, “HadoopMapReduce,” pp. 1–6.

P. J. Wu and K. C. Lin, “Unstructured big data analytics for retrieving e-commerce logistics knowledge,” Telemat. Informatics, vol. 35, no. 1, pp. 237–244, 2018, doi: 10.1016/j.tele.2017.11.004.

Á. Valarezo, T. Pérez-Amaral, T. Garín-Muñoz, I. Herguera García, and R. López, “Drivers and barriers to cross-border e-commerce: Evidence from Spanish individual behavior,” Telecomm. Policy, vol. 42, no. 6, pp. 464–473, 2018, doi: 10.1016/j.telpol.2018.03.006.

S. S. Alsheikh, K. Shaalan, and F. Meziane, “Exploring the Effects of Consumers’ Trust: A Predictive Model for Satisfying Buyers’ Expectations Based on Sellers’ Behavior in the Marketplace,” IEEE Access, vol. 7, pp. 73357–73372, 2019, doi: 10.1109/ACCESS.2019.2917999.

R. Shi, H. Chen, and S. P. Sethi, “A generalized count model on customers’ purchases in O2O market,” Int. J. Prod. Econ., vol. 215, pp. 121–130, 2019, doi: 10.1016/j.ijpe.2017.11.009.

Y. (Nancy) Dai, G. Viken, E. Joo, and G. Bente, “Risk assessment in e-commerce: How sellers’ photos, reputation scores, and the stake of a transaction influence buyers’ purchase behavior and information processing,” Comput. Human Behav., vol. 84, pp. 342–351, 2018, doi: 10.1016/j.chb.2018.02.038.

R. Guidotti, G. Rossetti, L. Pappalardo, F. Giannotti, and D. Pedreschi, “Personalized Market Basket Prediction with Temporal Annotated Recurring Sequences,” IEEE Trans. Knowl. Data Eng., vol. 31, no. 11, pp. 2151–2163, 2019, doi: 10.1109/TKDE.2018.2872587.

T. Bai, W. X. Zhao, Y. He, J. Y. Nie, and J. R. Wen, “Characterizing and Predicting Early Reviewers for Effective Product Marketing on E-Commerce Websites,” IEEE Trans. Knowl. Data Eng., vol. 30, no. 12, pp. 2271–2284, 2018, doi: 10.1109/TKDE.2018.2821671.

V. Setyani, Y. Q. Zhu, A. N. Hidayanto, P. I. Sandhyaduhita, and B. Hsiao, “Exploring the psychological mechanisms from personalized advertisements to urge to buy impulsively on social media,” Int. J. Inf. Manage., vol. 48, no. January, pp. 96–107, 2019, doi: 10.1016/j.ijinfomgt.2019.01.007.

C. wen Shen, Min Chen, and C. chen Wang, “Analyzing the trend of O2O commerce by bilingual text mining on social media,” Comput. Human Behav., vol. 101, pp. 474–483, 2019, doi: 10.1016/j.chb.2018.09.031.

M. B. Myneni and R. Dandamudi, “Harvesting railway passenger opinions on multi themes by using social graph clustering,” J. Rail Transp. Plan. Manag., vol. 13, no. August, p. 100151, 2020, doi: 10.1016/j.jrtpm.2019.100151.

B. S. D. and D. Gore, “Research Article Open Access Sentiment Analysis On Twitter Data Using Support Vector Machine,” Int. J. Comput. Sci. Trends Technol. –, vol. 4, no. 3, pp. 831–837, 2016.

A. Alamsyah and F. Saviera, “A Comparison of Indonesia’s E-Commerce Sentiment Analysis for Marketing Intelligence Effort (case study of Bukalapak, Tokopedia and Elevenia),” 8 th Int. Conf. Sustain. Collab. Bus. , Technol. Inf. Innov., 2017.

E. T. Javid, M. Nazari, and M. R. Ghaeli, “Social media and e-commerce: A scientometrics analysis,” Int. J. Data Netw. Sci., vol. 3, no. 3, pp. 269–290, 2019, doi: 10.5267/j.ijdns.2019.2.001.

B. Ramkumar and B. Ellie Jin, “Examining pre-purchase intention and post-purchase consequences of international online outshopping (IOO): The moderating effect of E-tailer’s country image,” J. Retail. Consum. Serv., vol. 49, no. March, pp. 186–197, 2019, doi: 10.1016/j.jretconser.2019.03.021.

K. N. Vavliakis, G. Katsikopoulos, and A. L. Symeonidis, “E-commerce Personalization with elasticsearch,” Procedia Comput. Sci., vol. 151, no. 2018, pp. 1128–1133, 2019, doi: 10.1016/j.procs.2019.04.160.

J. Lv, B. Song, J. Guo, X. Du, and M. Guizani, “Interest-Related Item Similarity Model Based on Multimodal Data for Top-N Recommendation,” IEEE Access, vol. 7, no. c, pp. 12809–12821, 2019, doi: 10.1109/ACCESS.2019.2893355.

T. Schreiner, A. Rese, and D. Baier, “Multichannel personalization: Identifying consumer preferences for product recommendations in advertisements across different media channels,” J. Retail. Consum. Serv., vol. 48, no. February, pp. 87–99, 2019, doi: 10.1016/j.jretconser.2019.02.010.

P. Ji, H. Y. Zhang, and J. Q. Wang, “A Fuzzy Decision Support Model with Sentiment Analysis for Items Comparison in e-Commerce: The Case Study of,” IEEE Trans. Syst. Man, Cybern. Syst., vol. 49, no. 10, pp. 1993–2004, 2019, doi: 10.1109/TSMC.2018.2875163.

Hendra, E. S. Rini, P. Ginting, and B. K. F. Sembiring, “Impact of eCommerce service quality, recovery service quality, and satisfaction in Indonesia,” Proc. - 2017 Int. Conf. Sustain. Inf. Eng. Technol. SIET 2017, vol. 2018–Janua, pp. 35–40, 2018, doi: 10.1109/SIET.2017.8304105.

D. Carmel, E. Haramaty, A. Lazerson, L. Lewin-Eytan, and Y. Maarek, “Why do people buy seemingly irrelevant items in voice product search? On the relation between product relevance and customer satisfaction in ecommerce,” WSDM 2020 - Proc. 13th Int. Conf. Web Search Data Min., pp. 79–87, 2020, doi: 10.1145/3336191.3371780.

D. Schellong, J. Kemper, and M. Brettel, “Generating consumer insights from big data clickstream information and the link with transaction-related shopping behavior,” Proc. 25th Eur. Conf. Inf. Syst. ECIS 2017, vol. 2017, 2017.

P. K. Singh, A. Sachdeva, D. Mahajan, N. Pande, and A. Sharma, “An approach towards feature specific opinion mining and sentimental analysis across e-commerce websites,” Proc. 5th Int. Conf. Conflu. 2014 Next Gener. Inf. Technol. Summit, no. Statement 3, pp. 329–335, 2014, doi: 10.1109/CONFLUENCE.2014.6949312.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.