Pengenalan Ekspresi Mikro Wajah Berdasarkan Point Feature Tracking Menggunakan Fase Apex Pada Database Ekspresi Mikro

Keywords: micro-expression recognition, ekspresi mikro, KLT, fase ekspresi, apex frame, DRMF

Abstract

Ekspresi mikro merupakan ekspresi wajah yang terjadi secara tidak disengaja untuk menyembunyikan perasaan sebenarnya (emotional leakage). Penelitian sebelumnya menggunakan seluruh area wajah dan seluruh frame pada dataset video, hal ini menghasilkan waktu komputasi tergolong lama dan terjadinya redundancy data. Kontribusi utama penelitian ini menerapkan analisa pengenalan ekspresi mikro menggunakan perbandingan frame apex dengan pilihan manual (handcrafted) dan secara acak (random sampling) dan menerapkan pelacakan titik fitur pada area alis mata dan sudut bibir.  Discriminative Response Map Fitting (DRMF) sebagai metode yang membentuk titik fitur dan selanjutnya dilakukan pelacakan titik-titik fitur wajah dengan Kanade-Lucas-Tomasi (KLT). Hasil pelacakan titik-titik fitur tersebut menghasilkan data motion features sebagai data ekstraksi fitur dan dilakukan analisa perbandingan metode klasifikasi menggunakan Support Vector Machine (SVM) dan MLP-Backpropagation menggunakan dataset CASME II. Hasil eksperimen penelitian ini menunjukkan hasil yang signifikan dengan akurasi sebesar 81,3% pada MLP-Backpropagation dan waktu komputasi rata-rata 1,45 detik pada setiap video. Hal ini menunjukkan bahwa informasi pada fase apex memberikan informasi yang penting untuk pengenalan ekspresi mikro pada wajah.

References

Asmara, R. A., Choirina, P., Rahmad, C., Setiawan, A., Rahutomo, F., Yusron, R. D. R., & Rosiani, U. D. (2019). Study of DRMF and ASM facial landmark point for micro expression recognition using KLT tracking point feature. Journal of Physics: Conference Series, 1402, 077039–077039. https://doi.org/10.1088/1742-6596/1402/7/077039

Asthana, A., Zafeiriou, S., Cheng, S., & Pantic, M. (2013). Robust discriminative response map fitting with constrained local models. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3444–3451.

Ben, X., Ren, Y., Zhang, J., Wang, S.-J., Kpalma, K., Meng, W., & Liu, Y.-J. (2021). Video-based Facial Micro-Expression Analysis: A Survey of Datasets, Features and Algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1–1. https://doi.org/10.1109/TPAMI.2021.3067464

Choirina, P., & Rosiani, U. D. (2020). Detection and Tracking of Face Location in the Pre-processing Stage of Recognition of Micro Expressions Using the Kanade-Lucas-Tomasi (KLT) Method. Jurnal Informatika Polinema, 7(1), 73–78. https://doi.org/10.33795/jip.v7i1.467

Ekman, P. (2009). Lie catching and microexpressions. The Philosophy of Deception, 1(2), 5.

Ekman, P., & Friesen, W. V. (1971). Constants across cultures in the face and emotion. Journal of Personality and Social Psychology, 17(2), 124–129. https://doi.org/10.1037/h0030377

Hashmi, M. F., Ashish, B. K. K., Sharma, V., Keskar, A. G., Bokde, N. D., Yoon, J. H., & Geem, Z. W. (2021). LARNet: Real-Time Detection of Facial Micro Expression Using Lossless Attention Residual Network. Sensors, 21(4), 1098. https://doi.org/10.3390/s21041098

He, J., Peng, L., Sun, B., Yu, L., & Guo, M. (2021). Dual Multi-Task Network with Bridge-Temporal-Attention for Student Emotion Recognition via Classroom Video. 2021 International Joint Conference on Neural Networks (IJCNN), 1–8. https://doi.org/10.1109/IJCNN52387.2021.9533471

Jianbo Shi & Tomasi. (1994). Good features to track. 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 593–600. https://doi.org/10.1109/CVPR.1994.323794

Jordan, S., Brimbal, L., Wallace, D. B., Kassin, S. M., Hartwig, M., & Street, C. N. (2019). A test of the micro-expressions training tool: Does it improve lie detection? Journal of Investigative Psychology and Offender Profiling, 16(3), 222–235.

Liong, S.-T., See, J., Wong, K., & Phan, R. C.-W. (2018). Less is more: Micro-expression recognition from video using apex frame. Signal Processing: Image Communication, 62, 82–92. https://doi.org/10.1016/j.image.2017.11.006

Lu, H., Kpalma, K., & Ronsin, J. (2018). Motion descriptors for micro-expression recognition. Signal Processing: Image Communication, 67, 108–117.

O’Sullivan, M., Frank, M. G., Hurley, C. M., & Tiwana, J. (2009). Police lie detection accuracy: The effect of lie scenario. Law and Human Behavior, 33(6), 530.

Ringeval, F., Valstar, M., Marchi, E., Lalanne, D., & Cowie, R. (2015). The AV+ EC 2015 multimodal affect recognition challenge: Bridging across audio, video, and physiological data categories and subject descriptors. Proc. ACM Multimedia Workshops.

Rosiani, U. D., Ririd, A. R. T. H., Choirina, P., Sooai, A. G., Sumpeno, S., & Purnomo, M. H. (2018). Micro Expression: Comparison of Speed and Marking Accuracy in Facial Component Detection. 2018 International Conference on Computer Engineering, Network and Intelligent Multimedia (CENIM), 221–226. https://doi.org/10.1109/CENIM.2018.8711313

Tran, T.-K., Vo, Q.-N., & Zhao, G. (2021). DynGeoNet: Fusion Network for Micro-expression Spotting. Proceedings of the 2021 International Conference on Multimodal Interaction, 745–749.

Yan, W.-J., Wang, S.-J., Chen, Y.-H., Zhao, G., & Fu, X. (2014). Quantifying micro-expressions with constraint local model and local binary pattern. European Conference on Computer Vision, 296–305.

Yao, Y., Huang, D., Yang, X., Wang, Y., & Chen, L. (2018). Texture and Geometry Scattering Representation-Based Facial Expression Recognition in 2D+3D Videos. ACM Transactions on Multimedia Computing, Communications, and Applications, 14(1s), 18:1-18:23. https://doi.org/10.1145/3131345

Yongyong, D., Xinhua, H., Zongling, W., & others. (2020). Image stabilization algorithm based on KLT motion tracking. 2020 International Conference on Computer Vision, Image and Deep Learning (CVIDL), 44–47.

Zhang, S., Feng, B., Chen, Z., & Huang, X. (2017). Micro-Expression Recognition by Aggregating Local Spatio-Temporal Patterns. In L. Amsaleg, G. Þ. Guðmundsson, C. Gurrin, B. Þ. Jónsson, & S. Satoh (Eds.), MultiMedia Modeling (pp. 638–648). Springer International Publishing. https://doi.org/10.1007/978-3-319-51811-4_52

Zhu, X., Ben, X., Liu, S., Yan, R., & Meng, W. (2018). Coupled source domain targetized with updating tag vectors for micro-expression recognition. Multimedia Tools and Applications, 77(3), 3105–3124. https://doi.org/10.1007/s11042-017-4943-z

Published
2022-06-30
How to Cite
Choirina, P., Rosiani, U., & Fitriani, I. (2022). Pengenalan Ekspresi Mikro Wajah Berdasarkan Point Feature Tracking Menggunakan Fase Apex Pada Database Ekspresi Mikro. Edu Komputika Journal, 9(1), 28 - 36. https://doi.org/10.15294/edukomputika.v9i1.56600