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Abstract 

We are concerned with the study of stability and numerical results of discretization for alternating direct 
implicit (ADI) method to two-dimensional advection-diffusion equation. We first discrete two-dimensional 

advection-diffusion by using forward difference of time and central difference of space. Then, we have two 

matrices with the step size of time (𝑛, 𝑛 + 0.5) and (𝑛 + 0.5, 𝑛 + 1), in which this technique is the idea of 

ADI method. The stability is established by using the Von-Neumann stability technique where the stability 
characteristic of ADI method is unconditionally stable.  
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1.  Introduction 

The alternating direct implicit method has been extensively studied by many researchers for some cases 

of partial differential equations. The characteristic of unconditional stability of this method is one of some 

reasons that this numerical method is easy to get the convergent results even it needs much time to do 

discretization to partial differential equations. 

The convergence of high order alternating direct implicit to two-dimensional diffusion equation with 

fractional operator of time has been studied in Cui (2013), where the Caputo time-derivative was 

approached in 𝐿1 approximations and the second derivative of space was approached by compact finite 

difference.Douglas (1962) generalized an alternating direct implicit to handle the space variables problem 

which was a modification of the Crank-Nicolson. Moreover, the boundary of a rectangular parallelepiped 

was considerable for nonlinear parabolic and elliptic problems.The alternating direct implicit was 

addressed in multidimensional differential equations which reduced from the multidimensional problem 

into sequence of one-dimensional problem Douglas (1955, 1964).  

Li et al. (2013) introduced alternating direct implicit combined with finite element to two-dimensional 

reaction-subdiffusion equation with fractional time-derivative, where the stability and error estimate were 

studied. Peaceman and Rachford (1955) investigated the numerical results to two-dimensional heat 

equation (which is well known as two-dimensional diffusion equation) by using the standard alternating 

direct implicit. Wang and Vong (2015) studied the numerical results to fractional time-derivative 

reaction-subdiffusion equation by employing compact alternating direct implicit finite difference, which 

means that the original equation was first transformed into equivalent form and then it was discretized by 

finite difference scheme. The numerical results of fractional sub-diffusion equation employing the new 

alternating direct implicit and backward Euler method was studied in Zhang and Sun (2011). Moreover, 

Zhanget al. (2012) addressed the Crank-Nicolson compact alternating direct implicit finite difference 

scheme, where the stability and convergence were established by energy method. 
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Based on the last studies, we present the numerical results to two-dimensional advection-diffusion 

equation by using the standard alternating direct implicit with half step size of time. We are also 

interested with the stability criteria of alternating direct implicit to two-dimensional advection-diffusion 

equation by employing Von-Neumann stability. Moreover, this paper is organized as follows. Section 2, 

we study the discretization processes of alternating direct implicit to two-dimensional advection-diffusion 

equation by employing the forward difference in time and central difference in first and second derivate 

of space. We further decompose the tridiagonal matrices which can be solved implicitly by MATLAB 

software with various of Δ𝑡, Δ𝑥 = Δ𝑦, in Section 3. Finally, in Section 4, we investigate the stability of 

the discretization results by employing Von-Neumann technique and it can be concluded that the 

alternating direct implicit to two-dimensional advection-diffusion equation is unconditional stable.  

2.  Methodology  

There are some steps to study the numerical results and stability of ADI method to two-dimensional 

advection-diffusion equation with half step of time, including: 

1. Applying the finite difference of ADI method to two-dimensional advection-diffusion with half 

step size of time to establish the discretization. 

2. Grouping the same index of time for discretization results into two tri diagonal matrices. 

3. Making the simulation based on the two tri diagonal matrices obtained before by using software 

MATLAB 2010a. 

4. Based on the discretization results, we can derive the stability by employing the Von-Neumann 

stability technique. 

3.  ADI scheme to advection-diffusion  

We consider the following two-dimensional advection-diffusion equation. 

𝜕𝑈

𝜕𝑡
+

𝜕𝑈

𝜕𝑥
+

𝜕𝑈

𝜕𝑦
=

𝜕2𝑈

𝜕𝑥2
+

𝜕2𝑈

𝜕𝑦2
                                                                 (1) 

where the initial condition and boundary conditions are respectively given as follows 

𝑈(𝑥, 𝑦, 0) = 𝑒−((𝑥2+𝑦2)/100),    (𝑥, 𝑦) ∈ [−20,20]                                                                   

𝑈(−20, 𝑦, 𝑡) = 0,    𝑈(20, 𝑦, 𝑡) = 0,     𝑈(𝑥,−20, 𝑡) = 0,     𝑈(𝑥, 20, 𝑡) = 0                      

We further discrete (1) by applying the following Crank-Nicolson to establish the finite difference. 

𝑈𝑖,𝑗
𝑛+1 − 𝑈𝑖,𝑗

𝑛

𝛥𝑡
=

1

𝛥𝑥2
(
1

2
𝜕𝑥𝑥

𝑛+1 +
1

2
𝜕𝑥𝑥

𝑛 ) +
1

𝛥𝑦2
(
1

2
𝜕𝑦𝑦

𝑛+1 +
1

2
𝜕𝑦𝑦

𝑛 )

 −
1

𝛥𝑥
(
1

2
𝜕𝑥

𝑛+1 +
1

2
𝜕𝑥

𝑛) −
1

𝛥𝑦
(
1

2
𝜕𝑦

𝑛+1 +
1

2
𝜕𝑦

𝑛)

                                  (2) 

Now, we approach 𝑈𝑡 by forward difference, 𝜕𝑥𝑥, 𝜕𝑦𝑦, 𝜕𝑥, and 𝜕𝑦by central difference. Moreover, we 

assume that 𝛥𝑥 and 𝛥𝑦 are grids for the 𝑥-axis and 𝑦-axis respectively. Then, (2) becomes 

𝑈𝑖,𝑗
𝑛+1 − 𝑈𝑖,𝑗

𝑛

𝛥𝑡
=

1

2𝛥𝑥2
([𝑈𝑖+1,𝑗

𝑛+1 − 2𝑈𝑖,𝑗
𝑛+1 + 𝑈𝑖−1,𝑗

𝑛+1 ] + [𝑈𝑖+1,𝑗
𝑛 − 2𝑈𝑖,𝑗

𝑛 + 𝑈𝑖−1,𝑗
𝑛 ])

 +
1

2𝛥𝑦2
([𝑈𝑖,𝑗+1

𝑛+1 − 2𝑈𝑖,𝑗
𝑛+1 + 𝑈𝑖,𝑗−1

𝑛+1 ] + [𝑈𝑖,𝑗+1
𝑛 − 2𝑈𝑖,𝑗

𝑛 + 𝑈𝑖,𝑗−1
𝑛 ])

 −
1

2𝛥𝑥
([𝑈𝑖+1,𝑗

𝑛+1 − 𝑈𝑖−1,𝑗
𝑛+1 ] + [𝑈𝑖+1,𝑗

𝑛 − 𝑈𝑖−1,𝑗
𝑛 ])

 −
1

2𝛥𝑦
([𝑈𝑖,𝑗+1

𝑛+1 − 𝑈𝑖,𝑗−1
𝑛+1 ] + [𝑈𝑖,𝑗+1

𝑛 − 𝑈𝑖,𝑗−1
𝑛 ])

=
1

2
(𝜕𝑥

2 + 𝜕𝑦
2)(𝑈𝑖,𝑗

𝑛+1 + 𝑈𝑖,𝑗
𝑛 ) −

1

2
(𝜕𝑥 + 𝜕𝑦)(𝑈𝑖,𝑗

𝑛+1 + 𝑈𝑖,𝑗
𝑛 )

                       (3) 
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which gives 

(1 −
𝛥𝑡

2
(𝜕𝑥

2 + 𝜕𝑦
2) −

𝛥𝑡

2
(𝜕𝑥 + 𝜕𝑦))𝑈𝑖,𝑗

𝑛+1

= (1 +
𝛥𝑡

2
(𝜕𝑥

2 + 𝜕𝑦
2) +

𝛥𝑡

2
(𝜕𝑥 + 𝜕𝑦))𝑈𝑖,𝑗

𝑛            (4) 

The idea behind ADI method is to separate two finite difference, the first one is implicit finite 

difference for derivative of 𝑥 and the second one is implicit finite difference for derivative of 𝑦. Because 

of this reason, it follows from (3), we have the following two finite difference. 

𝑈
𝑖,𝑗

𝑛+
1

2 − 𝑈𝑖,𝑗
𝑛

𝛥𝑡

2

= ((𝜕𝑥
2 + 𝜕𝑥)𝑈𝑖,𝑗

𝑛+
1

2 + (𝜕𝑦
2 + 𝜕𝑦)𝑈𝑖,𝑗

𝑛 )                                    (5) 

and 

𝑈𝑖,𝑗
𝑛+1 − 𝑈

𝑖,𝑗

𝑛+
1

2

𝛥𝑡

2

= ((𝜕𝑥
2 + 𝜕𝑥)𝑈𝑖,𝑗

𝑛+
1

2 + (𝜕𝑦
2 + 𝜕𝑦)𝑈𝑖,𝑗

𝑛+1)                                 (6) 

It follows from (5) and (6), one respectively has 

(1 −
𝛥𝑡

2
(𝜕𝑥

2 + 𝜕𝑥))𝑈
𝑖,𝑗

𝑛+
1

2 = (1 +
𝛥𝑡

2
(𝜕𝑦

2 + 𝜕𝑦))𝑈𝑖,𝑗
𝑛                                   (7) 

 

and 

(1 −
𝛥𝑡

2
(𝜕𝑦

2 + 𝜕𝑦))𝑈𝑖,𝑗
𝑛+1 = (1 +

𝛥𝑡

2
(𝜕𝑥

2 + 𝜕𝑥))𝑈
𝑖,𝑗

𝑛+
1

2                               (8) 

Combining (7) and (8) gives 

(1 −
𝛥𝑡

2
(𝜕𝑥

2 + 𝜕𝑥)) (1 −
𝛥𝑡

2
(𝜕𝑦

2 + 𝜕𝑦))𝑈𝑖,𝑗
𝑛+1

= (1 +
𝛥𝑡

2
(𝜕𝑥

2 + 𝜕𝑥))(1 +
𝛥𝑡

2
(𝜕𝑦

2 + 𝜕𝑦))𝑈𝑖,𝑗
𝑛

                                        (9) 

4.  Numerical results 

It follows from (7) and (8), respectively obtained 

−(𝑠 − 1)𝑈
𝑖−1,𝑗

𝑛+
1

2 + (1 + 2𝑠)𝑈
𝑖,𝑗

𝑛+
1

2 − (𝑠 + 1)𝑈
𝑖+1,𝑗

𝑛+
1

2

= (𝑡 + 1)𝑈𝑖,𝑗−1
𝑛 + (1 − 2𝑡)𝑈𝑖,𝑗

𝑛 + (𝑡 − 1)𝑈𝑖,𝑗+1
𝑛

                                        (10) 

and 

−(𝑡 − 1)𝑈𝑖,𝑗−1
𝑛+1 + (1 + 2𝑡)𝑈𝑖,𝑗

𝑛+1 − (𝑡 + 1)𝑈𝑖,𝑗+1
𝑛+1

= (𝑠 + 1)𝑈
𝑖−1,𝑗

𝑛+
1

2 + (1 − 2𝑠)𝑈
𝑖,𝑗

𝑛+
1

2 + (𝑠 − 1)𝑈
𝑖+,𝑗

𝑛+
1

2
                                         (11) 

where 𝑠 =
𝛥𝑡

2𝛥𝑥2 +
𝛥𝑡

2𝛥𝑥
 and 𝑡 =

𝛥𝑡

2𝛥𝑦2 +
𝛥𝑡

2𝛥𝑦
. 

We further iterate (10) for 𝑖 = 1,2, . . . , 𝑁 and 𝑗 = 1,2, . . . , 𝑁 and also substitute the boundary 

conditions to (10), one has 
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[
 
 
 
 
 
 
 

1 + 2𝑠 −(𝑠 − 1) 0 ⋯ ⋯ 0
−(𝑠 + 1) 1 + 2𝑠 0 ⋯ ⋯ 0

0 −(𝑠 + 1) −(𝑠 − 1) 0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋯ ⋮
⋮ ⋮ ⋱ ⋱ ⋯ ⋮
0 0 0 1 + 2𝑠 −(𝑠 − 1) 0
0 0 0 −(𝑠 + 1) 1 + 2𝑠 −(𝑠 − 1)

0 0 0 0 −(𝑠 + 1) 1 + 2𝑠 ]
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 𝑈

1,𝑗

𝑛+
1

2

𝑈
2,𝑗

𝑛+
1

2

𝑈
3,𝑗

𝑛+
1

2

⋮
⋮

𝑈
𝑁−1,𝑗

𝑛+
1

2

𝑈
𝑁,𝑗

𝑛+
1

2
]
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
1 − 2𝑡 𝑡 − 1 0 ⋯ ⋯ 0
𝑡 + 1 1 − 2𝑡 0 ⋯ ⋯ 0

0 𝑡 + 1 𝑡 − 1 0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋯ ⋮
⋮ ⋮ ⋱ ⋱ ⋯ ⋮
0 0 0 1 − 2𝑡 𝑡 − 1 0
0 0 0 𝑡 + 1 1 − 2𝑡 𝑡 − 1
0 0 0 0 𝑡 + 1 1 − 2𝑡]

 
 
 
 
 
 
 

[
 
 
 
 
 
 
 

𝑈1,𝑗
𝑛

𝑈2,𝑗
𝑛

𝑈3,𝑗
𝑛

⋮
⋮

𝑈𝑁−1,𝑗
𝑛

𝑈𝑁,𝑗
𝑛

]
 
 
 
 
 
 
 

                  (12) 

Similarly for (11), obtained 

[
 
 
 
 
 
 
 

1 + 2𝑡 −(𝑡 − 1) 0 ⋯ ⋯ 0

−(𝑡 + 1) 1 + 2𝑡 0 ⋯ ⋯ 0
0 −(𝑡 + 1) −(𝑡 − 1) 0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋯ ⋮
⋮ ⋮ ⋱ ⋱ ⋯ ⋮
0 0 0 1 + 2𝑡 −(𝑡 − 1) 0
0 0 0 −(𝑡 + 1) 1 + 2𝑡 −(𝑡 − 1)

0 0 0 0 −(𝑡 + 1) 1 + 2𝑡 ]
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
𝑈1,𝑗

𝑛+1

𝑈2,𝑗
𝑛+1

𝑈3,𝑗
𝑛+1

⋮
⋮

𝑈𝑁−1,𝑗
𝑛+1

𝑈𝑁,𝑗
𝑛+1

]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
1 − 2𝑠 𝑠 − 1 0 ⋯ ⋯ 0
𝑠 + 1 1 − 2𝑠 0 ⋯ ⋯ 0

0 𝑠 + 1 𝑠 − 1 0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋯ ⋮
⋮ ⋮ ⋱ ⋱ ⋯ ⋮
0 0 0 1 − 2𝑠 𝑠 − 1 0
0 0 0 𝑠 + 1 1 − 2𝑠 𝑠 − 1
0 0 0 0 𝑠 + 1 1 − 2𝑠]

 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 𝑈

1,𝑗

𝑛+
1

2

𝑈
2,𝑗

𝑛+
1

2

𝑈
3,𝑗

𝑛+
1

2

⋮
⋮

𝑈
𝑁−1,𝑗

𝑛+
1

2

𝑈
𝑁,𝑗

𝑛+
1

2
]
 
 
 
 
 
 
 
 
 
 
 
                  (13) 
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Figure 1. Numerical results of 2D advection-diffusion equation with Δ𝑡 = 1, Δ𝑥 = Δ𝑦 = 1.5 

 
 

Figure 2. Numerical results of 2D advection-diffusion equation with Δ𝑡 = 1, Δ𝑥 = Δ𝑦 = 3.5 
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Figure 3. Numerical results of 2D advection-diffusion equation with Δ𝑡 = 3, Δ𝑥 = Δ𝑦 = 1.5 

 

Based on the results of numerical simulations on the two-dimensional advection-diffusion equation by 

applying the ADI numerical method, we can conclude that the ADI numerical method is unconditionally 

stable. This can be shown from Figure 1 to Figure 3 for various values of spaceΔ𝑥, Δ𝑦, and time Δ𝑡, 

assuming uniform grid-x and grid-y are the same (Δ𝑥 = Δ𝑦), the graph movement always slopes. In 

Figure 1 reaches the final value 𝑈(𝑥, 𝑦, 𝑡)  =  𝑥 10^(−16) with an iteration time of 401 until conditions 

converge, Figure 2 reaches the value 𝑈(𝑥, 𝑦, 𝑡) =  𝑥 10^(−3) with an iteration time of 401 until the 

conditions converge, and Figure 3 reaches the value of 𝑈(𝑥, 𝑦, 𝑡) =  𝑥 10^(−16) with an iteration time of 

134 until the conditions converge. 

5.  Stability of ADI scheme toadvection-diffusion 

A numerical scheme is called stable if the error is not increased for all the iteration of time. We further 

employ the following steps to check whether the ADI method to two-dimensional advection-diffusion 

equation stable or unstable. 

We first substitute 𝑈𝑖,𝑗
𝑛 = 𝜆𝑛𝑒𝑖𝛽1𝑖𝑗 to (10), one has 

−(𝑠 − 1)𝜆𝑛+
1

2𝑒𝑖𝛽1(𝑖−1)𝑗 +(1 + 2𝑠)𝜆𝑛+
1

2𝑒𝑖𝛽1𝑖𝑗 − (𝑠 + 1)𝜆𝑛+
1

2𝑒𝑖𝛽1(𝑖+1)𝑗

= (𝑡 − 1)𝜆𝑛𝑒𝑖𝛽1𝑖(𝑗−1) + (1 − 2𝑡)𝜆𝑛𝑒𝑖𝛽1𝑖𝑗 + (𝑡 + 1)𝜆𝑛𝑒𝑖𝛽1𝑖(𝑗+1)
    (14) 

Dividing both sides by 𝜆𝑛𝑒𝑖𝛽1𝑖𝑗, we have 
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−(𝑠 − 1)𝜆
1

2𝑒𝑖𝛽1𝑗 + (1 + 2𝑠)𝜆
1

2 − (𝑠 + 1)𝜆
1

2𝑒𝑖𝛽1𝑗 = (𝑡 − 1)𝑒−𝑖𝛽1𝑖 + (1 − 2𝑡) + (𝑡 + 1)𝑒𝑖𝛽1𝑖

⇔ −𝑠𝜆
1

2(𝑒−𝑖𝛽1𝑗 + 𝑒𝑖𝛽1𝑗) + 𝜆
1

2(𝑒−𝑖𝛽1𝑗 − 𝑒𝑖𝛽1𝑗) + (1 + 2𝑠)𝜆
1

2

  = 𝑡(𝑒−𝑖𝛽1𝑖 + 𝑒𝑖𝛽1𝑖) − (𝑒−𝑖𝛽1𝑖 − 𝑒𝑖𝛽1𝑖) + (1 − 2𝑡)

⇔ −𝑠𝜆
1

2(2cos𝛽1𝑗) − 𝜆
1

2(2𝑖sin𝛽1𝑗) + (1 + 2𝑠)𝜆
1

2 = 𝑡(2cos𝛽1𝑖) − (2𝑖cos𝛽1𝑖) + (1 − 2𝑡)

⇔ 𝜆
1

2(−2𝑠cos𝛽1𝑗 + 2𝑠 − 2𝑖sin𝛽1𝑗) = 2𝑡cos𝛽1𝑖 + 1 − 2𝑡 − 2𝑖cos𝛽1𝑖

⇔ 𝜆1 = (
1 − 4𝑡sin2 𝛽1𝑖

2
− 2𝑖sin𝛽1𝑗

1 + 4𝑠sin2 𝛽1𝑗

2
− 2𝑖cos𝛽1𝑖

)

2

(15) 

Similarly, we substitute 𝑈𝑖,𝑗
𝑛 = 𝜆𝑛𝑒𝑖𝛽2𝑖𝑗 to (11), one has 

−(𝑡 − 1)𝜆𝑛+1𝑒𝑖𝛽2𝑖(𝑗−1) + (1 + 2𝑡)𝜆𝑛+1𝑒𝑖𝛽2𝑖𝑗 − (𝑡 + 1)𝜆𝑛+1𝑒𝑖𝛽2𝑖(𝑗+1)

= (𝑠 − 1)𝜆𝑛+
1

2𝑒𝑖𝛽2(𝑖−1)𝑗 + (1 − 2𝑠)𝜆𝑛+
1

2𝑒𝑖𝛽2𝑖𝑗 + (𝑠 + 1)𝜆𝑛+
1

2𝑒𝑖𝛽2(𝑖+1)𝑗
                   (16) 

Then, we divide both sides by 𝜆𝑛𝑒𝑖𝛽2𝑖𝑗, 

−(𝑡 − 1)𝜆
1

2𝑒−𝑖𝛽2𝑖 + (1 + 2𝑡)𝜆
1

2 − (𝑡 + 1)𝜆
1

2𝑒𝑖𝛽2𝑖 = (𝑠 − 1)𝑒−𝑖𝛽2𝑗 + (1 − 2𝑠) + (𝑠 + 1)𝑒𝑖𝛽2𝑗

⇔ −𝑡𝜆
1

2(𝑒−𝑖𝛽2𝑖 + 𝑒𝑖𝛽2𝑖) + 𝜆
1

2(𝑒−𝑖𝛽2𝑖 − 𝑒𝑖𝛽2𝑖) + (1 + 2𝑡)𝜆
1

2

  = 𝑠(𝑒−𝑖𝛽2𝑗 + 𝑒𝑖𝛽2𝑗) − (𝑒−𝑖𝛽2𝑗 − 𝑒𝑖𝛽2𝑗) + (1 − 2𝑠)

⇔ −𝑡𝜆
1

2(2cos𝛽2𝑖) − 𝜆
1

2(2𝑖sin𝛽2𝑖) + (1 + 2𝑡)𝜆
1

2 = 𝑠(2cos𝛽2𝑗) − 2𝑖cos𝛽2𝑗 + (1 − 2𝑠)

⇔ 𝜆
1

2(−2𝑡cos𝛽2𝑖 + 1 + 2𝑡 − 2𝑖sin𝛽2𝑖) = 2𝑠cos𝛽2𝑗 − 2𝑖cos𝛽2𝑗 + 1 − 2𝑠

⇔ 𝜆2 = (
1 − 4𝑠sin2 𝛽2𝑗

2
− 2𝑖sin𝛽2𝑖

1 + 4𝑡sin2 𝛽2𝑖

2
− 2𝑖cos𝛽2𝑗

)

2

(17) 

Based on the calculations of 𝜆1, and 𝜆2, we have non-negative of 𝜆1, 𝜆2, and |(𝜆1, 𝜆2)| ≤ 1. Then, we 

can conclude that the ADI scheme for two-dimensional advection-diffusion equation is unconditionally 

stable. 

6.  Conclusion 

Based on the results and discussion, we can conclude that the ADI method with half step of time gives the 

stable numerical results for any increment of space and time. This numerical method of ADI has the 

characteristics of unconditionally stable under the results of Von-Neumann technique.  
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