KONDUKTIVITAS DAN TRANSMITANSI FILM TIPIS zinc oxide YANG DIDEPOSISIKAN PADA TEMPERATUR RUANG

  • kiki wahyuningsih Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Semarang
  • Putut Marwoto Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Semarang
  • - Sulhadi Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Semarang
Keywords: zinc oxide, plasma power, transmittance, conductivity

Abstract

zinc oxide thin films have been successfully deposited at room temperature with a plasma power 20 W, 30 W, and 40 W using dc magnetron sputtering method. The crystal structure of films were characterized using XRD (X-ray diffraction). Optical transmittance characterized by UV-vis spectrometer and electrical conductivity determined by analysis of results from I-V measurement. ZnO thin films on a plasma power of 30 W and 40 W have a polycrystalline structure, while the plasma power of 20 W has a crystalline structure that tends to amorphous. The orientation (100) has the highest intensity and the value of full width half maximum (FWHM) at the smallest plasma power 30 W. The resulting transmittance spectrum shows interference fringe pattern. Transmittance value the greater the enhancement of plasma with the largest value of ~ 92% owned plasma power 40 W. The magnitude of the energy gap depends on the amount of power generated at the plasma deposition. The resulting film conductivity value between 1.16 to 4.02 x10-6 x10-7 so that it can be applied for transparent conductive oxide (TCO)

References

Bao Ma, Quan,Z-Zhen Ye, Hai-Ping He, Li-Ping Zhu, Bing-Hui Zhao. 2007. Effect of deposition pressure on the properties of transparent conductive ZnO:Ga films prepared by DC reactive magnetron sputtering. Materials Science in Semiconductor Processing 10 (2007) 167-172.

Barker, A, S.Crowther, D.Rees. 1997.

Room Temperature R.F. Magnetron Sputtered ZnO for Electromechanical Devices. Sensors and Actuators A 58 (1997) 229-235.

Barnes, T.M, J.Leaf, C.Fry, C.A. Wolden.2004. Room Temperature Chemical Vapor Deposition of C-Axis ZnO. Journal Of Crystal Growth 274 (2005) 412417.

Bie, X, J.G.Lu, L.Gong, L. Lin, B.H.Zhao, Z.Z.Ye. 2009. Transparent Conductive Zno:Ga Films Prepared By DC Magnetron Sputtering at Low Temperature.

Elsevier. Applied Surface Science 256 (2009) 289-293.

Chen, M, Z.L. Pei, C. Sun, L.S. Wen, X. Wang. 2000. Surface characterization of transparent conductive oxide Al-doped ZnO films. Elsevier. Journal of Crystal Growth 220 (2000) 254}262.

Dikovska, A. Og, P. A. Atanasov, C.

Vasileva, I. G. Dimitrov, T. R. Stoyanchov.2005. Thin ZnO Films Produced By Pulsed Laser Deposition. Journal of Optoelectronics and Advanced Materials Vol. 7, No. 3, June 2005, p. 1329 1334.

Fortuna, E.M.C, P.M. C. Barquinha, A. C. M. B. G. Pimentel, A.M. F. Gonalves, A.J. S. Marques, R.F. P. Martins, & L.M.N. Pereira. 2004.Wide- Bandgap High-Mobility Zno Thin-Film Transistors Produced At Room Temperature . Applied Physics Letters Volume 85, Number 13.

Fox, M. 2001. Optical Properties of Solids. New York: Oxford University Press: 9, 49.Gao, W& Z. Li. 2004. ZnO Thin Films Produced by Magnetron Sputtering. Elsevier. Ceramic Internasional 30 (2004) 1155-1159.

Jayaraj, M.K, A.Antony & M. Ramachandran 2002. Transparent Conducting Zinc Oxide Thin Film Prepared by Off-Axis Rf Magnetron Sputtering. Bull. Mater. Sci., Vol. 25, No. 3, June 2002, pp. 227230. Indian Academy of Sciences

Khranovskyy,V, U. Grossner, V. Lazorenko, G. Lashkarev, B.G. Svensson, R.

Yakimova. 2007. Conductivity Increase Of Zno:Ga Films by Rapid Thermal Annealing. ScienceDirect: Superlattices and Microstructures 42 (2007) 379386

Kim, D-H, H.Jeon, G.Kim, S.Hwangboe, V.P. Verma, W.Choi, Minhyon Jeon. 2008. Comparison of The Optical Properties of Undoped and Ga-doped ZnO Thin Films Deposited Using RF Magnetron Sputtering at Room Temperature. Elsevier. Optic Communications 281 (2008) 2120-2125.

Nafees, M., W.Liaqut, S.Ali,

M.A.Shafique. 2012. Synthesis of ZnO/Al:ZnO Nanomaterial: Structural And Band Gap Variation in ZnO nanomaterial by Al doping. Springer. Applied Nanoscience.

Postava, K, H.Sueki, M. Aoyama, T.Yamaguchi, K. Murakami, Y.Igasaki. 2000. Doping effects on Optical Properties of Epitaxial ZnO layers determined by Spectroscopic ellipsometry. Elsevier. Applied Surface Science 175-176 (2001) 543-548.

Sahoo, T, L-W.Jang, J-W. Jeon,

M.Kim, J-S. Kim & I.-H. Lee. Photoluminescence Properties of ZnO Thin Films Grown by Using the Hydrothermal Technique . Journal of the Korean Physical Society, Vol. 56, No. 3, March 2010, pp. 809_812.

Sudjamoko,W,B.Siswanto. 2009. Influence Of Substrate Temperature On Structural, Electrical And Optical.. Atom Indonesia Vol. 35 No. 2 (2009) 115.

Suryanarayana,C & MG.Norton.1998. X-ray Diffraction A Practical Approach. New York:Plenum Press.

Tokumoto,M.S, A.Smith, C.V.Santilli, S.H.Pulcinelli, A.F.Craievich, E.Elkaim, A. Traverse, V.Brios. 2002. Structural Electrical and Optical Properties of Undoped and Indium doped Zno Thin Films Prepared By Pyrosol Prosess at Different Temperatures. Elsevier. Thin solid films (2002) 284-293.

Zhang, Y, G.Du, Dali Liu, X.Wang, Y. Ma, J.Wang, J.Yin, X.Yang, X. ou, S.Yang. 2002. Crystal Growth of Undoped ZnO Films on Si Substrates Under Different Sputterin Conditions. Elsevier. Journal of crystal growth 243 (2002) 439-443.

Section
Articles