

Entrepreneurship Education and Environmental Awareness as Catalysts for Green Entrepreneurial Intention: A Self-Efficacy Perspective

Damas Gianlugi Alrizqi^{1*}, Mildayanti¹, Agung Muliaman Anas¹, Nurul Haeriyah Ridwan¹, Moch Faizal Rachmadi²

¹Universitas Negeri Makassar, Indonesia

²Universitas Ivet, Indonesia

*Corresponding Author: damas@unm.ac.id

Abstract

This study analyzes the influence of entrepreneurship education and environmental awareness on students' green entrepreneurial intention, with green entrepreneurial self-efficacy as the mediator. Data were collected through a survey of 150 university students in Makassar using a 1–5 Likert scale and analyzed using SEM-PLS (WarpPLS). The results show that entrepreneurship education and environmental awareness positively affect green entrepreneurial self-efficacy, and that self-efficacy positively affects green entrepreneurial intention. In addition, self-efficacy has been shown to mediate the effects of entrepreneurship education and environmental awareness on green entrepreneurial intention. The findings emphasize the importance of strengthening students' self-confidence through entrepreneurship learning and integrating sustainability issues into campus programs.

Keywords: education entrepreneurship, awareness environment, green entrepreneurial self-efficacy, green entrepreneurial intention

INTRODUCTION

Sustainability issues have become a major concern in the global development agenda along with the increasing environmental challenges faced by modern economic activities (Sierra & Suárez-Collado, 2021). Pressure on the business world to not only pursue economic growth, but also be socially and ecologically responsible is getting stronger (Camilleri, 2017; Várzaru et al., 2021). In this context, Green entrepreneurship is seen as a strategic approach that is able to integrate economic goals and environmental sustainability through the creation of businesses that are not only oriented towards profit, but also on social and ecological impacts (Haldar, 2019). The success of green entrepreneurship development is highly dependent on the emergence of green entrepreneurial intention because entrepreneurial intention is the initial stage that determines the realization of sustainable entrepreneurial behavior (Sehabuddin et al., 2025). Thus, understanding the factors that shape green entrepreneurial intention is crucial in driving the transformation towards a sustainable economy.

Universities have a crucial role in shaping this intention through providing entrepreneurship education and strengthening awareness of environmental issues, (Boldureanu et al., 2020; Mei et al., 2020; Santika et al., 2022) including the ability to identify opportunities and manage business risks. Entrepreneurship education is designed to equip students with the knowledge, skills, and mindset of entrepreneurship (De Carolis & Litzky, 2019; Saadat et al., 2022). Environmental awareness, meanwhile, helps students understand the urgency of environmental issues and the importance of sustainability-based

solutions. (Dönmez & Yardımcı, 2024) Conceptually, the combination of entrepreneurship learning and environmental awareness is expected to not only shape positive attitudes but also encourage students to view green entrepreneurship as a viable and realistic career option.

However, various empirical findings indicate that the presence of entrepreneurship education and increased environmental awareness have not been fully followed by high green entrepreneurial intentions among students (Barba-Sánchez et al., 2022). Previous research tends to emphasize the role of environmental literacy, pro-environmental values, or institutional support as the main determinants of green entrepreneurial intentions (Alimehmeti et al., 2025; Pascucci et al., 2022; Peng et al., 2021). This approach implicitly treats entrepreneurship education and environmental awareness as factors that act directly on intentions, without explaining the internal processes that enable them to be converted into the belief to act. As a result, there remains a gap between educational exposure and the formation of sustainable entrepreneurial intentions (Ashari et al., 2021; Ayob et al., 2023; Valencia-Arias et al., 2025).

This gap becomes even more relevant when examined in the context of developing cities, particularly Makassar as one of the centers of education and economic growth in Eastern Indonesia facing increasingly complex environmental challenges (MakassarKota, 2026). Although Makassar has a large student population and the potential to become a driving force for entrepreneurship, the younger generation's involvement in developing sustainability-based businesses remains relatively limited (Abduh et al., 2024; Surya et al., 2021). Students have generally been exposed to environmental issues and taken entrepreneurship courses, but this potential has not been fully actualized in the form of green entrepreneurial intentions (Shabeb Ali et al., 2023). This condition indicates a gap between the potential of higher education and the realization of green entrepreneurial intentions at the local level (Prasetyo et al., 2025), so that an empirical study is needed that specifically examines the role of entrepreneurship education and environmental awareness in shaping students' green entrepreneurial intentions in Makassar City by considering psychological factors in the form of green entrepreneurial self-efficacy.

One psychological mechanism that has the potential to bridge this gap is green entrepreneurial self-efficacy, which is an individual's belief in their ability to start and manage an environmentally friendly business (Alshebami et al., 2024). Based on Social Cognitive Theory, self-efficacy plays a crucial role in shaping behavioral intentions because it influences motivation, persistence, and perception of risk (Schunk, 2012). Students who have received entrepreneurship education and have high environmental awareness may not necessarily have green entrepreneurial intentions if they doubt their ability to realize sustainable business ideas (Alvarez-Risco et al., 2021). Although self-efficacy has strong theoretical relevance (Shabeb Ali et al., 2023; Zhang et al., 2022), empirical studies that place green entrepreneurial self-efficacy as an explanatory mechanism for the relationship between entrepreneurship education, environmental awareness, and green entrepreneurial intention are still relatively limited, especially in the context of higher education in developing countries.

Different from previous research (Barba-Sánchez et al., 2022; Liu et al., 2022; Peng et al., 2021), this study positions green entrepreneurial self-efficacy as the main psychological mechanism explaining how entrepreneurship education and environmental awareness function as catalysts for forming green entrepreneurial intention. Therefore, this study aims to empirically analyze the roles of entrepreneurship education and environmental awareness as catalysts for the formation of green entrepreneurial intention among students, adopting green entrepreneurial self-efficacy as the main perspective. This study is expected to make theoretical contributions to enrich the green entrepreneurship literature and to offer practical implications for the development of entrepreneurship education curricula that support sustainable development. This study positions green entrepreneurial self-efficacy as the primary psychological mechanism explaining how entrepreneurship education and environmental awareness serve as catalysts in the formation of green entrepreneurial intention.

METHOD

This study uses a quantitative, explanatory research design to analyze the causal relationships among entrepreneurship education, environmental awareness, green entrepreneurial self-efficacy, and students' green entrepreneurial intention. Data collection was conducted via a structured questionnaire.

The population in this study was university students in Makassar who had taken entrepreneurship

courses. The sample size was determined using a formula (Lwanga & Lemeshow, 1991) commonly used in survey research with large or unknown populations.

$$\begin{aligned}
 n &= \frac{Z^2 p(1-p)}{d^2} \\
 &= \frac{(1,96)^2 \cdot 0,5 \cdot (1-0,5)}{(0,08)^2} \\
 &= \frac{0,9604}{0,0064} \\
 &= 150,06
 \end{aligned}$$

Based on these calculations, a sample size of 150 respondents was obtained. The sampling technique used purposive sampling, with the criteria being active students with basic entrepreneurial knowledge and an understanding of environmental issues. Data were collected using a five-point Likert scale questionnaire, ranging from 1 (strongly disagree) to 5 (strongly agree), to measure respondents' perceptions of each research indicator. The five-point scale was chosen because it was considered able to provide respondents with clarity of choice and adequate for SEM-PLS analysis.

The research instrument was adapted from previous research that remained relevant and was tailored to the research context.

Data analysis was conducted using the Structural Equation Modeling-Partial Least Squares (SEM-PLS) method with WarpPLS software. Model evaluation was conducted in two stages: testing the measurement and structural models. The outer model tested convergent validity, construct reliability, and multicollinearity, while the inner model examined the relationships among latent variables and the mediating role of green entrepreneurial self-efficacy at the 5 percent significance level (Hair et al., 2021).

Table 1. Instrument Research (2026)

No	Variables	Questionnaire Items (Likert 1–5)	Source
1	Entrepreneurship Education (EE)	EE1 I understand steps base start business from learning entrepreneurship. EE2 Entrepreneurship learning improves my ability to recognize business opportunities. EE3 Entrepreneurship learning trained me to prepare a structured business plan. EE4 Entrepreneurship learning helps me understand how to manage business risks. EE5 Entrepreneurship learning has made me more prepared to try entrepreneurship.	(Adeel et al., 2023; Saadat et al., 2022)
2	Environmental Awareness (EA)	EA1 I realized problem environment impact on quality life public. EA2 I feel the need to contribute to protecting the environment. EA3 I consider the environmental impact of the products/services I use. EA4 I believe that businesses need to adopt environmentally friendly practices. EA5 I am interested in finding information about sustainability solutions/innovations.	(Dönmez & Yardımcı, 2024; Sakarya et al., 2023)
3	Green Entrepreneurial Self-Efficacy (GESE)	GESE1 I am confident in being able to develop environmentally friendly business ideas. GESE2 I am confident in identifying business opportunities that benefit the environment. GESE3 I am confident in managing business	(Guo, 2022; Newman et al., 2019)

		operations with sustainability principles. GESE4 I am confident in being able to face the challenges/risks of environmentally friendly businesses.
		GESE5 I am confident in convincing others about the value of environmentally friendly businesses.
4	Green Entrepreneurial Intention (GEI)	<p>GEI1 I intend to start a business that applies environmentally friendly principles.</p> <p>GEI2 I am interested in making green entrepreneurship a career choice.</p> <p>GEI3 I plan to look for business opportunities/ideas that support sustainability.</p> <p>GEI4 If there is an opportunity and resources, I will try to start an environmentally friendly business.</p> <p>GEI5 I will try to realize my green entrepreneurship plan in the next few years.</p>
		(Al-Mamary, 2025; Cai et al., 2022; Senthil Kumar et al., 2026)

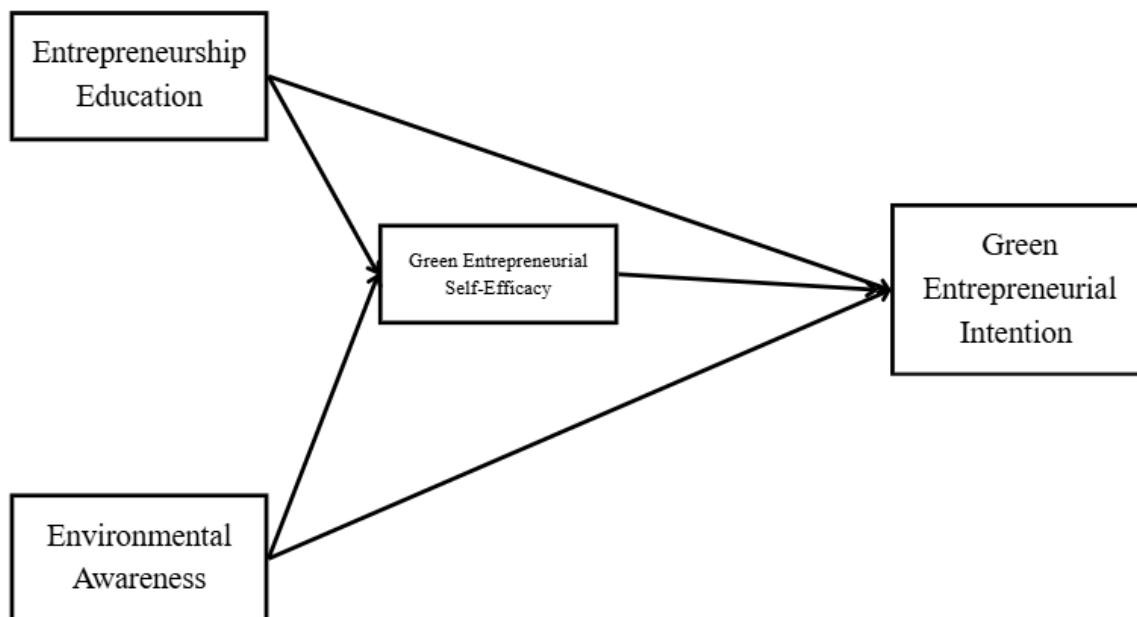


Figure 1. Research Framework (2026)

RESULTS AND DISCUSSION

Table 2. Distribution of Universities

University	Amount
Makassar State University (UNM)	85
Hasanuddin University (Unhas)	45
Alauddin State Islamic University Makassar	8
Muhammadiyah University of Makassar	5
Other	4
Amount	150

Source: Primary Data (2026)

The distribution of respondents shows a predominance of students from two major universities in Makassar, namely UNM and Unhas, as secondary contributors, while other universities play a complementary role in the sample with smaller proportions. This composition indicates that the characteristics of the study respondents primarily reflect the educational context and entrepreneurial experiences of students at these two institutions, while still providing a variety of institutional settings through the involvement of several other universities in Makassar.

Table 3. Age Distribution

Category Age (years)	Amount
18–20	58
21–22	71
23–25	21
Amount	150

Source: Primary Data (2026)

The age distribution of respondents indicates that the majority are in the early adulthood age range, which generally represents active students in the middle phase of their studies. Therefore, the sample profile is dominated by an age group currently exploring their careers and making decisions regarding professional choices. Meanwhile, the younger age group still reflects students in the early stages of their studies, while the older age group represents students in the final stages of their studies or those with more extensive academic experience. This composition provides sufficient variation to capture differences in levels of readiness and confidence in the context of green entrepreneurship intentions.

Table 4. Gender Distribution

Gender	Amount
Man	92
Woman	58
Total	150

Source: Primary Data (2026)

The distribution of respondents by gender shows a male-dominated composition, so the sample characteristics in this study reflect the views and experiences of male respondents more than female respondents. Nevertheless, the representation of female respondents remains sufficient to provide a variety of perspectives in the analysis, particularly when examining intentions and self-efficacy in the context of green entrepreneurship.

Table 5. Loading Factor, AVE and Composite Reliability

Item	Loading Factors	AVE	Composite Reliability
EE1	0.750		
EE2	0.755		
EE3	0.820	0.831	0.881
EE4	0.751		
EE5	0.784		
EA1	0.746		
EA2	0.738		
EA3	0.671	0.760	0.760
EA4	0.723		
EA5	0.695		
GESE1	0.803	0.872	0.872

Item	Loading Factors	AVE	Composite Reliability
GESE2	0.799		
GESE3	0.785		
GESE4	0.843		
GESE5	0.839		
GEI1	0.770		
GEI2	0.886		
GEI3	0.829	0.886	0.886
GEI4	0.791		
GEI5	0.867		

Source: WarpPLS Result (2026)

In general, all indicators have adequate loading, most of which are above 0.70. Only a few items in the EA construct are slightly below 0.70, but this is still acceptable because the AVE value for each construct is high, above the minimum limit of 0.50, indicating that convergent validity is met. Furthermore, the Composite Reliability value for each construct is also in the good category, exceeding the threshold of 0.70, so the instrument is considered reliable and consistent in measuring its construct. Therefore, based on this table, the quality of the indicator measurement is adequate.

Table 6. Correlations among l.vs. with sq. rts. of AVEs

	EE	EA	GESE	GEI
EE	0.773	0.225	0.557	0.521
EA	0.225	0.715	0.328	0.377
GESE	0.557	0.328	0.814	0.622
GEI	0.521	0.377	0.622	0.830

Source: WarpPLS Result (2026)

The table shows the results of the discriminant validity test using the Fornell–Larcker criterion, which compares the square root of the AVE on the diagonal marked in bold with the correlation between constructs in other rows/columns. The diagonal value for each construct appears larger than the correlation between that construct and the other constructs. This indicates that each construct has good measurement uniqueness and is able to differentiate itself from other constructs, thus discriminant validity is declared fulfilled. Thus, the constructs in the model do not experience problems with conceptual overlap, and the analysis can proceed to the evaluation of the structural model and hypothesis testing.

Table 7: Model Fit and Quality Indices

No.	Model fit and quality indices	Fit Criteria	Analysis Results	Note
1	Average Path Coefficient (APC)	p < 0.05	0.316 P<0.001	Accepted
2	Average R-squared (ARS)	p < 0.05	0.410 P<0.001	Accepted
3	Average Adjusted R-squared (AARS)	p < 0.05	0.400 P<0.001	Accepted
4	Average block VIF (AVIF)	Accepted if <= 5 Normal <= 3.3	1,250	Accepted
5	Average Full collinearity VIF (AFVIF)	Accepted if <= 5 Normal <= 3.3	1,623	Accepted
6	Tenenhaus GoF (GoF)	small >= 0.1, medium >= 0.25, large >= 0.36 >= 0.25, large >= 0.36	0.502	Large
7	Sympson's Paradox ratio (SPR)	accepted if >= 0.7 Ideally = 1	1,000	Accepted
8	R-squared Contribution Ratio (RSCR)	Accepted if >= 0.9 Ideally = 1	1,000	Accepted
9	Statistical Suppression Ratio (SSR)	Accepted if >= 0.7	1,000	Accepted
10	Nonlinear Bivariate Causality Direction Ratio (NLBCDR)	Accepted if >= 0.7	1,000	Accepted

Source: WarpPLS Result (2026)

The table serve results evaluation feasibility of the structural model (inner model) through Model Fit and Quality Indices in WarpPLS. general, all indicator show that the model has good and proper match analyzed more carry on. The APC, ARS, and AARS values are significant, which indicates that the average coefficient track as well as ability model explanation (R-square) in general overall meaningful in a way statistics. Next, the AVIF and AFVIF values are far below the acceptance limit and is also in the category ideal), so that show No there is problem multicollinearity good on predictors vertical and in a way Overall. The Tenenhaus GoF value is in the large category, indicating a high power of the model in explaining the data. In addition, additional quality indices such as SPR, RSCR, SSR, and NLBCDR meet the acceptance criteria, thus confirming that the model is free from statistical issues such as *Simpson's paradox*, problematic suppression, and inconsistent bivariate causality directions. Thus, it can be concluded that the structural model has met all the feasibility criteria, so that the analysis process can proceed to hypothesis testing and interpretation of path coefficients.

Table 8. Hypothesis Testing

Code	Track	Coef. (β)	p-value	Decision
H1	EE → GESE	0.502	<0.001	Accepted
H2	EA → GESE	0.228	0.002	Accepted
H3	GESE → GEI	0.426	<0.001	Accepted
H4	EE → GEI	0.247	<0.001	Accepted
H5	EA → GEI	0.174	0.014	Accepted
H6	EE → GESE → GEI	0.214	<0.001	Accepted
H7	EA → GESE → GEI	0.097	0.044	Accepted

Source: WarpPLS Result (2026)

The results of the hypothesis testing indicate that all relationships proposed in the model are empirically supported. Entrepreneurship education and environmental awareness are proven to act as motivating factors that strengthen students' self-confidence in pursuing green entrepreneurship, and at the same time, both are directly related to increased green entrepreneurial intentions. In addition to their direct influence, these findings confirm that green entrepreneurial self-efficacy functions as an important psychological mechanism that bridges the influence of entrepreneurship education and environmental awareness on green entrepreneurial intentions. Thus, the model indicates that efforts to increase green entrepreneurial intentions in students will be more effective if educational interventions and increased environmental awareness are accompanied by strategies that specifically build self-efficacy to start and manage environmentally friendly businesses.

The test results show that entrepreneurship education has a positive and significant effect on students' green entrepreneurial self-efficacy. This finding indicates that the learning process not only

functions as a transfer of knowledge (Chen et al., 2022; Piperopoulos & Dimov, 2015), but also builds students' self-confidence to be able to initiate and manage a sustainability-oriented business (Kisubi et al., 2021; Larsen et al., 2023). This result is in line with Social Cognitive Theory which places self-efficacy as a result of learning experiences, competency strengthening, and exposure to relevant examples and practices (Bandura, 1997; Capa-Aydin et al., 2018; Usher et al., 2023). In the context of entrepreneurship education, materials such as business planning, opportunity analysis, strategy development, and simulations or entrepreneurial projects can strengthen the perception of self-ability, including when students are exposed to environmentally friendly business ideas and practices (Abd Rahim et al., 2022; Keshmiri, 2025).

This strengthens the argument that entrepreneurship education can be a catalyst for the emergence of self-confidence to run a green business (Vivekananth et al., 2023), especially when learning is designed based on experience and problem-based learning that requires students to solve real problems, for example, a circular economy-based business model (Salinas-Navarro et al., 2024; Yen & Lin, 2022). Thus, increasing green entrepreneurial self-efficacy is not enough only through environmental knowledge, but requires strengthening entrepreneurial competencies structured through curriculum, project assignments, mentoring, and a campus ecosystem that facilitates entrepreneurial practice (Subhadrammal et al., 2023). This finding also confirms that efforts to increase green entrepreneurial intentions will be more effective if they begin with an entrepreneurship learning strategy that explicitly targets increasing students' self-confidence in executing green business ideas.

Another finding is that environmental awareness has a positive and significant effect on students' green entrepreneurial self-efficacy. This indicates that the greater students' understanding and concern for environmental issues, the stronger their belief in their ability to engage in sustainability-oriented entrepreneurial activities (Alshebami et al., 2024; Cai et al., 2022). Environmental awareness not only fosters sensitivity to ecological issues but also encourages individuals to view environmental issues as opportunities that can be addressed through innovation and green business initiatives (Lwin et al., 2026). When students recognize the urgency of environmental issues and the importance of sustainable solutions, they tend to have greater psychological readiness to believe that environmentally friendly business-based actions can be implemented and managed (Chang et al., 2022).

Theoretically, these findings align with the framework of environmental psychology and pro-environmental behavior, which emphasize that environmental awareness and concern can increase an individual's motivation and readiness to act (Sharpe et al., 2021; Thiermann & Sheate, 2020). Social Cognitive Theory explains that environmental awareness can act as a source of self-efficacy formation through increased attention to goals, strengthening the meaning of actions (Bandura, 1997), and the emergence of beliefs that environmentally oriented behavior is relevant and valuable to do (Erfanian et al., 2024). In other words, environmental awareness helps reduce internal doubts because individuals have clear reasons why these actions are important and worth fighting for, thus increasing confidence in running green businesses.

Universities need to increase students' environmental awareness by integrating sustainability into their courses (Angelaki et al., 2024; Hay & Eagle, 2020). Strengthening this aspect can increase students' confidence in running environmentally friendly businesses (Alshebami et al., 2024). Building green entrepreneurial self-efficacy not only through entrepreneurship training but also through experiences and exposure to relevant and contextual environmental issues, so students feel more capable and prepared to develop sustainable businesses (Salinas-Navarro et al., 2024).

Furthermore, the findings of this study indicate that green entrepreneurial self-efficacy has a positive and significant effect on students' green entrepreneurial intentions. Green entrepreneurial intentions are influenced not only by interest in environmental issues but also by students' confidence in their ability to effectively implement and manage green businesses (Wang et al., 2021). Students who feel capable of identifying sustainable business opportunities, managing environmentally friendly operations, and facing business risks and challenges tend to have a stronger intention to truly pursue green entrepreneurship as a career choice (Elrayah et al., 2024; Lwin et al., 2026).

Social Cognitive Theory positions self-efficacy as a key determinant of planned behavior (Bandura, 1997), as it influences motivation, persistence, and perceived control over an action. Self-efficacy becomes even more crucial because the characteristics of sustainable businesses often require additional

capabilities, such as adapting to dynamic green consumer preferences (Alshebami, 2023; Sanchez-Garcia et al., 2024). When self-efficacy is high, students tend to view these challenges as manageable, thus strengthening and realistic intentions to start a green business (Hussain et al., 2021).

Increasing green entrepreneurial intention is not enough by simply providing knowledge about entrepreneurship or environmental issues (Cai et al., 2022). Learning strategies are needed that specifically strengthen green entrepreneurial self-efficacy, such as business incubation programs that direct students to concrete environmental solutions (Abd Rahim et al., 2022). Thus, self-efficacy serves as a psychological driver that encourages students to take concrete steps toward green entrepreneurship, not simply by having an interest or concern for environmental issues.

Another finding explains that entrepreneurship education has a positive and significant impact on students' green entrepreneurial intentions. The entrepreneurship education students receive plays a role in encouraging the emergence of intentions to start a sustainability-oriented business (Mehraj et al., 2023). Entrepreneurship education not only introduces basic business concepts but also shapes students' perspectives on market opportunities (Othman & Othman, 2021). When students' entrepreneurial competencies in understanding business processes and managing risks are enhanced, entrepreneurial intentions become more realistic and action-oriented (Lv et al., 2021).

In line with this, Human Capital Theory explains that investment in education will increase individual capacity, thereby increasing the tendency to engage in productive activities, including entrepreneurship (Krieger et al., 2022; Kusumawijaya & Astuti, 2022). Entrepreneurship education can be a means to bring together business competencies with sustainable issues (Foucier & Wiek, 2019; Hsu & Pivec, 2021). Furthermore, these results can also be understood from a planned behavior perspective, where entrepreneurship education contributes to strengthening cognitive readiness and positive evaluations of entrepreneurial choices (Jiang et al., 2021). Increasing green entrepreneurial intentions can be optimized through curriculum design and an entrepreneurship learning ecosystem that explicitly incorporates a sustainability orientation (Rajpal & Singh, 2024).

Has been found to be a factor driving students' green entrepreneurial intentions. Rather than viewing ecological issues as external issues distant from the business world, students with high environmental awareness tend to view them as opportunities (Nafukho & El Mansour, 2025). This orientation fosters green entrepreneurial intentions not only from a business interest but also from a drive to contribute to sustainable solutions through business-based value creation.

The perspective of environmental psychology and pro-environmental behavior emphasizes that awareness of environmental consequences can encourage a more responsible orientation to action (Sobotová et al., 2025; Wyss et al., 2022). When students understand the negative impacts of unsustainable economic activities, they tend to have more positive evaluations of environmentally friendly business models and are more motivated to choose actions that align with sustainability values (Roy, 2023). Furthermore, environmental awareness can also strengthen motivational aspects, as individuals perceive that involvement in green businesses has a broader meaning and purpose than simply economic gain (Flagstad & Johnsen, 2022; Hameed et al., 2021).

Furthermore, the results of the mediation role test indicate that green entrepreneurial self-efficacy mediates the influence of entrepreneurship education on green entrepreneurial intention. Entrepreneurship education will be more effective in encouraging green entrepreneurial intention when the learning experience obtained by students successfully increases their confidence in their ability to manage environmentally friendly businesses (Man Seong et al., 2025). In the context of green entrepreneurship, this mechanism is important because the development of sustainability-based businesses requires additional capabilities beyond general business competencies, such as managing green market uncertainty, balancing economic goals and environmental impacts, and a relatively higher need for innovation (Cholil et al., 2024). When self-efficacy has not been formed, entrepreneurial learning has the potential to stop at increasing knowledge without developing into intentional readiness to act (Hasan et al., 2020; Kaabnezhadian et al., 2025).

Green entrepreneurial self-efficacy acts as a mechanism that bridges the learning process with the formation of intentions. Entrepreneurship education provides input in the form of knowledge, planning exercises, case-based learning, and collaborative experiences. (Abd Rahim et al., 2022) However, the transformation of this input into intentions is influenced by the extent to which students develop

expectations of success in green entrepreneurial activities. Thus, the findings This strengthen view that achievements education relevant entrepreneurship for green entrepreneurship no only assessed from aspect cognitive, but also from formation belief execution on oneself student.

In line with findings previously confirmed the importance of green entrepreneurial self-efficacy as connecting mechanism education entrepreneurship with green entrepreneurial intention. Findings This show that green entrepreneurial self-efficacy also mediates influence awareness environment towards green entrepreneurial intention. Awareness environment although play a role in build orientation sustainability and sensitivity to issue ecological (Mago et al., 2025), No in a way automatic boils down to intention entrepreneurship green if student Not yet own belief on ability himself For executing friendly business ideas environment. With Thus, awareness environment tend form motivation and framework mark (Sarid & Goldman, 2021), while self-efficacy plays a role in transform motivation the become readiness intentional For act through entrepreneurship green (Adeniyi et al., 2022).

College tall need designing interventions that are not only increase exposure education entrepreneurship and empowerment awareness environment (Hsu & Pivec, 2021), but also in a systematic target Strengthening green entrepreneurial self-efficacy. (Soonsan et al., 2025) Relevant strategies covers learning based experience through project entrepreneurship green incubation program based business with bait come back directed (Suharto et al., 2025). With approach said, education entrepreneurship and awareness environment No stop at an increase knowledge or concern, but rather capable form belief self student in execute business green, so that green entrepreneurial intention can grow more strong and focused.

CONCLUSION

This study concludes that entrepreneurship education and environmental awareness are important determinants that strengthen green entrepreneurial self-efficacy, and in turn, self-efficacy is a strong predictor of students' green entrepreneurial intentions. The findings also confirm that both exogenous variables still have a direct influence on intentions, but the indirect pathway through self-efficacy provides a mechanistic explanation that enriches understanding of the process of green entrepreneurial intention formation. Theoretically, these results support the position of green entrepreneurial self-efficacy as the primary psychological mechanism bridging educational exposure and sustainability orientation towards intention formation. In practice, universities need to design entrepreneurship learning that integrates sustainability issues and systematically foster self-efficacy through applied activities such as green business projects, mentoring, and incubation, so that students' green entrepreneurial intentions develop more strongly and more clearly.

As a limitation, this study used a cross-sectional survey design and was limited to the Makassar region, so generalization of the results requires caution. Future research is recommended to test the model in cross-regional or cross-disciplinary contexts, using a longitudinal design, and incorporating contextual factors such as institutional support, a green campus climate, or access to incubation to enhance the model's explanatory power.

REFERENCES

Abd Rahim, N., Mohamed, Z., Tasir, Z., & Shariff, S. A. (2022). Impact of experiential learning and case study immersion on the development of entrepreneurial self-efficacy and opportunity recognition among engineering students. *Higher Education Pedagogies*, 7(1), 130–145. <https://doi.org/10.1080/23752696.2022.2109500>

Abduh, T., Remmang, H., Abubakar, H., & Karim, A. (2024). Entrepreneurship and MSME market orientation toward creative industries: Society Era 5.0 in Makassar city. *Asian Economic and Financial Review*, 14(2), 76–87. <https://doi.org/10.55493/5002.v14i2.4964>

Adeel, S., Daniel, A. D., & Botelho, A. (2023). The effect of entrepreneurship education on the determinants of entrepreneurial behaviour among higher education students: A multi-group analysis. *Journal of Innovation & Knowledge*, 8(1), 100324. <https://doi.org/10.1016/j.jik.2023.100324>

Adeniyi, A. O., Derera, E., & Gamede, V. (2022). Entrepreneurial Self-Efficacy for Entrepreneurial Readiness in a Developing Context: A Survey of Exit Level Students at TVET Institutions in Nigeria. *Sage Open*, 12(2). <https://doi.org/10.1177/21582440221095059>

Alimehmeti, G., Ndoka, E., & Paletta, A. (2025). Cultivating green pioneers: examining the antecedents of sustainable entrepreneurial intent in higher education. *International Journal of Sustainability in Higher Education*. <https://doi.org/10.1108/IJSHE-03-2024-0206>

Al-Mamary, Y. H. (2025). Factors shaping green entrepreneurial intentions towards green innovation: an integrated model. *Future Business Journal*, 11(1), 21. <https://doi.org/10.1186/s43093-025-00443-8>

Alshebami, A. S. (2023). Green Innovation, Self-Efficacy, Entrepreneurial Orientation and Economic Performance: Interactions among Saudi Small Enterprises. *Sustainability*, 15(3), 1961. <https://doi.org/10.3390/su15031961>

Alshebami, A. S., Fazal, S. A., Seraj, A. H. A., Al Marri, S. H., & Alsultan, W. S. (2024). Fostering potential entrepreneurs: an empirical study of the drivers of green self-efficacy in Saudi Arabia. *Discover Sustainability*, 5(1), 21. <https://doi.org/10.1007/s43621-024-00201-w>

Alvarez-Risco, A., Mlodzianowska, S., Zamora-Ramos, U., & Del-Aguila-Arcentales, S. (2021). Green entrepreneurship intention in university students: The case of Peru. *Entrepreneurial Business and Economics Review*, 9(4), 85–100. <https://doi.org/10.15678/EBER.2021.090406>

Angelaki, M. E., Bersimis, F., Karvounidis, T., & Douligeris, C. (2024). Towards more sustainable higher education institutions: Implementing the sustainable development goals and embedding sustainability into the information and computer technology curricula. *Education and Information Technologies*, 29(4), 5079–5113. <https://doi.org/10.1007/s10639-023-12025-8>

Ashari, H., Abbas, I., Abdul-Talib, A.-N., & Mohd Zamani, S. N. (2021). Entrepreneurship and Sustainable Development Goals: A Multigroup Analysis of the Moderating Effects of Entrepreneurship Education on Entrepreneurial Intention. *Sustainability*, 14(1), 431. <https://doi.org/10.3390/su14010431>

Ayob, M., Loon, K. W., & Wahid, S. D. (2023). Sustainable Entrepreneurship Intention among University Students: A Conceptual Paper. *International Journal of Academic Research in Business and Social Sciences*, 13(5). <https://doi.org/10.6007/IJARBSS/v13-i5/16931>

Bandura, A. (1997). *Self-efficacy: The exercise of control*. W. H. Freeman.

Barba-Sánchez, V., Mitre-Aranda, M., & Brío-González, J. del. (2022). The entrepreneurial intention of university students: An environmental perspective. *European Research on Management and Business Economics*, 28(2), 100184. <https://doi.org/10.1016/j.iedeen.2021.100184>

Boldureanu, G., Ionescu, A. M., Bercu, A.-M., Bedrule-Grigoruță, M. V., & Boldureanu, D. (2020). Entrepreneurship Education through Successful Entrepreneurial Models in Higher Education Institutions. *Sustainability*, 12(3), 1267. <https://doi.org/10.3390/su12031267>

Cai, X., Hussain, S., & Zhang, Y. (2022). Factors That Can Promote the Green Entrepreneurial Intention of College Students: A Fuzzy Set Qualitative Comparative Analysis. *Frontiers in Psychology*, 12. <https://doi.org/10.3389/fpsyg.2021.776886>

Camilleri, M. A. (2017). Corporate sustainability and responsibility: creating value for business, society and the environment. *Asian Journal of Sustainability and Social Responsibility*, 2(1), 59–74. <https://doi.org/10.1186/s41180-017-0016-5>

Capa-Aydin, Y., Uzuntiryaki-Kondakci, E., & Ceylandag, R. (2018). The relationship between vicarious experience, social persuasion, physiological state, and chemistry self-efficacy: The role of mastery experience as a mediator. *Psychology in the Schools*, 55(10), 1224–1238. <https://doi.org/10.1002/pits.22201>

Chang, C., Shih, M., & Peng, H. (2022). Enhancing entrepreneurial opportunity recognition: Relationships among green innovative capability, green relational capability, and co-innovation behavior. *Business Strategy and the Environment*, 31(4), 1358–1368. <https://doi.org/10.1002/bse.2959>

Chen, H., Tang, Y., & Han, J. (2022). Building Students' Entrepreneurial Competencies in Chinese Universities: Diverse Learning Environment, Knowledge Transfer, and Entrepreneurship Education. *Sustainability*, 14(15), 9105. <https://doi.org/10.3390/su14159105>

Cholil, S. R., Gernowo, R., & Edi Widodo, C. (2024). A Novel BED: BWM-Entropy-D Numbers as Determinants of Sustainable Entrepreneurship in MSMEs. *IEEE Access*, 12, 167367–167387. <https://doi.org/10.1109/ACCESS.2024.3491838>

De Carolis, D. M., & Litzky, B. E. (2019). Unleashing the potential of university entrepreneurship education. *New England Journal of Entrepreneurship*, 22(1), 58–66. <https://doi.org/10.1108/NEJE-04-2019-0022>

Dönmez, R. Ö., & Yardımcı, E. (2024). Environmental awareness and sustainable consumption behaviours of Turkish nursing students. *PeerJ*, 12, e17366. <https://doi.org/10.7717/peerj.17366>

Elrayah, M., Semlali, Y., Mabkhot, H., & Elshaer, I. A. (2024). Mapping personality traits and green entrepreneurship and their direct effect on green entrepreneurship intention among Saudi Arabia's future generation. *Journal of Infrastructure Policy and Development*, 8(6), 4327. <https://doi.org/10.24294/jipd.v8i6.4327>

Erfanian, S., Maleknia, R., & Azizi, R. (2024). Environmental Responsibility in Urban Forests: A Cognitive Analysis of Visitors' Behavior. *Forests*, 15(10), 1773. <https://doi.org/10.3390/f15101773>

Flagstad, I., & Johnsen, S. Å. K. (2022). The psychology of green entrepreneurship: Founder-driven development of green climate in small-scale companies. *Cogent Business & Management*, 9(1). <https://doi.org/10.1080/23311975.2022.2079245>

Foucquier, T., & Wiek, A. (2019). A Process-Oriented Framework of Competencies for Sustainability Entrepreneurship. *Sustainability*, 11(24), 7250. <https://doi.org/10.3390/su11247250>

Guo, J. (2022). The significance of green entrepreneurial self-efficacy: Mediating and moderating role of green innovation and green knowledge sharing culture. *Frontiers in Psychology*, 13. <https://doi.org/10.3389/fpsyg.2022.1001867>

Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Danks, N. P., & Ray, S. (2021). *Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R*. Springer International Publishing. <https://doi.org/10.1007/978-3-030-80519-7>

Haldar, S. (2019). Towards a conceptual understanding of sustainability-driven entrepreneurship. *Corporate Social Responsibility and Environmental Management*, 26(6), 1157–1170. <https://doi.org/10.1002/csr.1763>

Hameed, I., Zaman, U., Waris, I., & Shafique, O. (2021). A Serial-Mediation Model to Link Entrepreneurship Education and Green Entrepreneurial Behavior: Application of Resource-Based View and Flow Theory. *International Journal of Environmental Research and Public Health*, 18(2), 550. <https://doi.org/10.3390/ijerph18020550>

Hasan, M., Hatidja, St., Rasyid R., Abd., Nurjanna, N., Walenta, A. S., Tahir, J., & Haeruddin, M. I. M. (2020). Entrepreneurship education, intention, and self efficacy: an examination of knowledge transfer within family businesses. *Entrepreneurship and Sustainability Issues*, 8(1), 526–538. [https://doi.org/10.9770/jesi.2020.8.1\(37\)](https://doi.org/10.9770/jesi.2020.8.1(37))

Hay, R., & Eagle, L. (2020). Impact of integrated sustainability content into undergraduate business education. *International Journal of Sustainability in Higher Education*, 21(1), 131–143. <https://doi.org/10.1108/IJSHE-05-2019-0174>

Hsu, J. L., & Pivec, M. (2021). Integration of Sustainability Awareness in Entrepreneurship Education. *Sustainability*, 13(9), 4934. <https://doi.org/10.3390/su13094934>

Hussain, I., Nazir, M., Hashmi, S. B., Di Vaio, A., Shaheen, I., Waseem, M. A., & Arshad, A. (2021). Green and Sustainable Entrepreneurial Intentions: A Mediation-Moderation Perspective. *Sustainability*, 13(15), 8627. <https://doi.org/10.3390/su13158627>

Jiang, Y., Li, G., Cai, X., Yang, Z., Huang, Y., Zhang, L., & Huang, L. (2021). Entrepreneurship Education, Psychological Cognition, and Entrepreneurship Activities: An Analysis Based on a Fuzzy-Set Qualitative Comparative Analysis. *Frontiers in Psychology*, 12. <https://doi.org/10.3389/fpsyg.2021.733319>

Kaabnezhadian, N., Jahani, S., Cheraghian, B., & Tadayon Najafabadi, M. (2025). The Effect of Entrepreneurship Education on Self-efficacy Belief and Entrepreneurial Intention of Midwifery Graduates. *Journal of Health Reports and Technology*, 11(2). <https://doi.org/10.5812/jhrt-159230>

Keshmiri, F. (2025). The effect of gamification in entrepreneurship and business education on pharmacy students' self-efficacy and learning outcomes. *BMC Medical Education*, 25(1), 491.

https://doi.org/10.1186/s12909-025-07052-7

Kisubi, M. K., Bonuke, R., & Korir, M. (2021). Entrepreneurship education and self-employment intentions: A conditional effect of entrepreneurial self-efficacy evidence from a developing country. *Cogent Business & Management*, 8(1). https://doi.org/10.1080/23311975.2021.1938348

Krieger, A., Stuetzer, M., Obschonka, M., & Salmela-Aro, K. (2022). The growth of entrepreneurial human capital: origins and development of skill variety. *Small Business Economics*, 59(2), 645–664. https://doi.org/10.1007/s1187-021-00555-9

Kusumawijaya, I. K., & Astuti, P. D. (2022). The Examining of Entrepreneurial Intention Among Students with Entrepreneurial Education and Individual Value: Mediation Role of Human Capital. *Media Ekonomi Dan Manajemen*, 37(2), 273. https://doi.org/10.24856/mem.v37i2.3013

Larsen, I. B., Blenker, P., & Neergaard, H. (2023). The entrepreneurial mindset in entrepreneurship education: what can we learn from S-O-R models? *Education + Training*, 65(8/9), 1043–1069. https://doi.org/10.1108/ET-09-2022-0364

Liu, M., Gorgievski, M. J., Qi, J., & Paas, F. (2022). Perceived university support and entrepreneurial intentions: Do different students benefit differently? *Studies in Educational Evaluation*, 73, 101150. https://doi.org/10.1016/j.stueduc.2022.101150

Lv, Y., Chen, Y., Sha, Y., Wang, J., An, L., Chen, T., Huang, X., Huang, Y., & Huang, L. (2021). How Entrepreneurship Education at Universities Influences Entrepreneurial Intention: Mediating Effect Based on Entrepreneurial Competence. *Frontiers in Psychology*, 12. https://doi.org/10.3389/fpsyg.2021.655868

Lwanga, S. K., & Lemeshow, S. (1991). *Sample Size in Health Studies: A Practical Manual*. World Health Organization.

Lwin, K. T. Z., Siri, N. S., & Zan, T. T. (2026). Explicating Who Has a Desire to Go Green! Personality, Green Opportunity Recognition and Green Entrepreneurship Intention. *Sustainable Development*, 34(S1), 1419–1435. https://doi.org/10.1002/sd.70197

Mago, M., Yadav, M., Sharma, S., & Kaur, H. (2025). Environmental knowledge influencing pro-environmental behavior among university students: a serial mediation and MGA approach. *International Journal of Sustainability in Higher Education*, 26(5), 1072–1095. https://doi.org/10.1108/IJSHE-02-2024-0110

MakassarKota. (2026, January 13). *Wali Kota Makassar Paparkan Strategi Hadapi Banjir, Air Bersih, dan Sanitasi di Hadapan WRI-RISE Indonesia*. Https://Makassarkota.Go.Id/2026/01/Wali-Kota-Makassar-Paparkan-Strategi-Hadapi-Banjir-Air-Bersih-Dan-Sanitasi-Di-Hadapan-Wri-Rise-Indonesia/?Utm_source=chatgpt.Com.

Man Seong, C., Chi Hau, T., Chun Cheng, T., & Boo Chen, T. (2025). Impacts of green curriculum exposure and sustainability awareness on green entrepreneurship intention among Malaysian university students: The mediating role of self-efficacy. *Industry and Higher Education*, 39(4), 379–394. https://doi.org/10.1177/09504222251354885

Mehrjai, D., Ul Islam, M. I., Qureshi, I. H., Basheer, S., Baba, M. M., Nissa, V. u., & Asif Shah, M. (2023). Factors affecting entrepreneurial intention for sustainable tourism among the students of higher education institutions. *Cogent Business & Management*, 10(3). https://doi.org/10.1080/23311975.2023.2256484

Mei, H., Lee, C.-H., & Xiang, Y. (2020). Entrepreneurship Education and Students' Entrepreneurial Intention in Higher Education. *Education Sciences*, 10(9), 257. https://doi.org/10.3390/educsci10090257

Nafukho, F. M., & El Mansour, W. (2025). Factors determining entrepreneurial opportunity recognition and the significant role of education and training. *European Journal of Training and Development*, 49(1/2), 77–96. https://doi.org/10.1108/EJTD-04-2023-0054

Newman, A., Obschonka, M., Schwarz, S., Cohen, M., & Nielsen, I. (2019). Entrepreneurial self-efficacy: A systematic review of the literature on its theoretical foundations, measurement, antecedents, and outcomes, and an agenda for future research. *Journal of Vocational Behavior*, 110, 403–419. https://doi.org/10.1016/j.jvb.2018.05.012

Othman, N. H., & Othman, N. (2021). The Mediating Effect of Emotion on Entrepreneurship Education and Business Opportunity Recognition. *International Journal of Business and Society*, 21(3), 1479–

1493. <https://doi.org/10.33736/ijbs.3365.2020>

Pascucci, T., Cardella, G. M., Hernàndez-Sànchez, B., & Sànchez-Garcìa, J. C. (2022). Environmental Sensitivity to Form a Sustainable Entrepreneurial Intention. *Sustainability*, 14(16), 10398. <https://doi.org/10.3390/su141610398>

Peng, H., Li, B., Zhou, C., & Sadowski, B. M. (2021). How Does the Appeal of Environmental Values Influence Sustainable Entrepreneurial Intention? *International Journal of Environmental Research and Public Health*, 18(3), 1070. <https://doi.org/10.3390/ijerph18031070>

Piperopoulos, P., & Dimov, D. (2015). Burst Bubbles or Build Steam? Entrepreneurship Education, Entrepreneurial Self-Efficacy, and Entrepreneurial Intentions. *Journal of Small Business Management*, 53(4), 970–985. <https://doi.org/10.1111/jsbm.12116>

Prasetyo, B., Supardi, E., Kurniawati, S., Mulyadi, H., Waspada, I., & Istikomah, N. (2025). Bibliometric Analysis of Green Entrepreneurship Research in Higher Education: Trends and Future Research Directions. *Journal of Business and Management Review*, 6(3), 235–257. <https://doi.org/10.47153/jbmr.v6i3.1565>

Rajpal, M., & Singh, B. (2024). How to drive sustainable entrepreneurial intentions: Unraveling the nexus of entrepreneurship education ecosystem, attitude and orientation. *Corporate Social Responsibility and Environmental Management*, 31(3), 1705–1721. <https://doi.org/10.1002/csr.2644>

Roy, S. K. (2023). Impact of green factors on undergraduate students' green behavioral intentions: A hybrid two-stage modeling approach. *Helion*, 9(10), e20630. <https://doi.org/10.1016/j.heliyon.2023.e20630>

Saadat, S., Aliakbari, A., Alizadeh Majd, A., & Bell, R. (2022). The effect of entrepreneurship education on graduate students' entrepreneurial alertness and the mediating role of entrepreneurial mindset. *Education + Training*, 64(7), 892–909. <https://doi.org/10.1108/ET-06-2021-0231>

Sakarya, S., Güney, M., Akıncı Demirbaş, E., & Çakmak, A. (2023). University students' awareness profile on environmental sensitivity and global climate change. *Environment, Development and Sustainability*, 27(2), 3103–3123. <https://doi.org/10.1007/s10668-023-04003-4>

Salinas-Navarro, D. E., Palma-Mendoza, J. A., & Vilalta-Perdomo, E. (2024). Integrating Circular Supply Chains into Experiential Learning: Enhancing Learning Experiences in Higher Education. *Sustainability*, 16(23), 10789. <https://doi.org/10.3390/su162310789>

Sanchez-Garcia, V. E., Gallego, C., Marquez, J. A., & Peribáñez, E. (2024). The Green Entrepreneurial Self-Efficacy as an Innovation Factor That Enables the Creation of New Sustainable Business. *Sustainability*, 16(16), 7197. <https://doi.org/10.3390/su16167197>

Santika, I. W., Wardana, I. M., Setiawan, P. Y., & Widagda, I. G. N. J. A. (2022). Entrepreneurship education and green entrepreneurial intention. *Linguistics and Culture Review*, 6, 797–810. <https://doi.org/10.21744/lingcure.v6nS1.2159>

Sarid, A., & Goldman, D. (2021). A Value-Based Framework Connecting Environmental Citizenship and Change Agents for Sustainability—Implications for Education for Environmental Citizenship. *Sustainability*, 13(8), 4338. <https://doi.org/10.3390/su13084338>

Schunk, D. H. (2012). Social cognitive theory. In *APA educational psychology handbook, Vol 1: Theories, constructs, and critical issues*. (Vol. 1, pp. 101–123). American Psychological Association. <https://doi.org/10.1037/13273-005>

Sehabuddin, A., Widodo, J., Murniawaty, I., & Budiantoro, R. A. (2025). Mediating Role of Green Entrepreneurial Orientation Between Entrepreneurship Education and Academic Support on Green Entrepreneurial Intention. *Dinamika Pendidikan*, 19(2), 168–177. <https://doi.org/10.15294/dp.v19i2.8086>

Senthil Kumar, J. P., Gangadhara, H., Usha Rani, J., Kusuma, T., & Ravi, A. (2026). Exploration of green entrepreneurial intention among university students: Integrated model perspective of a theory of planned behaviour and social cognitive theory. *The International Journal of Management Education*, 24(2), 101353. <https://doi.org/10.1016/j.ijme.2025.101353>

Shabeeb Ali, M. A., Ammer, M. A., & Elshaer, I. A. (2023). Born to Be Green: Antecedents of Green Entrepreneurship Intentions among Higher Education Students. *Sustainability*, 15(8), 6668. <https://doi.org/10.3390/su15086668>

Sharpe, E. J., Perlaviciute, G., & Steg, L. (2021). Pro-environmental behaviour and support for

environmental policy as expressions of pro-environmental motivation. *Journal of Environmental Psychology*, 76, 101650. <https://doi.org/10.1016/j.jenvp.2021.101650>

Sierra, J., & Suárez-Collado, Á. (2021). Understanding Economic, Social, and Environmental Sustainability Challenges in the Global South. *Sustainability*, 13(13), 7201. <https://doi.org/10.3390/su13137201>

Sobotová, B., Šrol, J., & Adamus, M. (2025). Dragons in Action: Psychological Barriers as Mediators of the Relationship Between Environmental Value Orientation and Pro-Environmental Behaviour. *Journal of Applied Social Psychology*, 55(3), 156–170. <https://doi.org/10.1111/jasp.13083>

Soonsan, N., Prasankarn, H., Tanticharatwarodom, P., Prasankarn, J., & Jumani, Z. A. (2025). University entrepreneurial support and green entrepreneurial behavior: a quantitative serial mediation. *Journal of Innovation and Entrepreneurship*, 14(1), 54. <https://doi.org/10.1186/s13731-025-00494-9>

Subhadrammal, D., Bliemel, M., Bressan, A., & de Burgh-Woodman, H. (2023). Extra-curricular support for entrepreneurship among engineering students: development of entrepreneurial self-efficacy and intentions. *Humanities and Social Sciences Communications*, 10(1), 688. <https://doi.org/10.1057/s41599-023-02171-2>

Suharto, S., Andrini, V. S., Hidayati, U., & Etika, E. D. (2025). Impact of Experiential Learning and Entrepreneurial Orientation on Student Start-up Business Performance with Social Network Moderation. *Dinamika Pendidikan*, 20(1), 93–108. <https://doi.org/10.15294/dp.v20i1.23847>

Surya, B., Suriani, S., Menne, F., Abubakar, H., Idris, M., Rasyidi, E. S., & Remmang, H. (2021). Community Empowerment and Utilization of Renewable Energy: Entrepreneurial Perspective for Community Resilience Based on Sustainable Management of Slum Settlements in Makassar City, Indonesia. *Sustainability*, 13(6), 3178. <https://doi.org/10.3390/su13063178>

Thiermann, U. B., & Sheate, W. R. (2020). Motivating individuals for social transition: The 2-pathway model and experiential strategies for pro-environmental behaviour. *Ecological Economics*, 174, 106668. <https://doi.org/10.1016/j.ecolecon.2020.106668>

Usher, E. L., Butz, A. R., Chen, X.-Y., Ford, C. J., Han, J., Mamaril, N. A., Morris, D. B., Peura, P., & Piercy, R. R. (2023). Supporting self-efficacy development from primary school to the professions: A guide for educators. *Theory Into Practice*, 62(3), 266–278. <https://doi.org/10.1080/00405841.2023.2226559>

Valencia-Arias, A., Londoño-Celis, W., Moya, L. P., Iparraguirre Sanchez, G. K., Cardona-Acevedo, S., & Rodríguez-Correa, P. A. (2025). Sustainable entrepreneurial intention in undergraduates: the influence of entrepreneurship education. *Discover Sustainability*, 6(1), 588. <https://doi.org/10.1007/s43621-025-01379-3>

Vărzaru, A. A., Bocean, C. G., & Nicolescu, M. M. (2021). Rethinking Corporate Responsibility and Sustainability in Light of Economic Performance. *Sustainability*, 13(5), 2660. <https://doi.org/10.3390/su13052660>

Vivekananth, S., Indiran, L., & Abdul Kohar, U. H. (2023). The Influence of Entrepreneurship Education on University Students' Entrepreneurship Self-Efficacy and Entrepreneurial Intention. *Journal of Technical Education and Training*, 15(4). <https://doi.org/10.30880/jtet.2023.15.04.011>

Wang, W., Cao, Q., Zhuo, C., Mou, Y., Pu, Z., & Zhou, Y. (2021). COVID-19 to Green Entrepreneurial Intention: Role of Green Entrepreneurial Self-Efficacy, Optimism, Ecological Values, Social Responsibility, and Green Entrepreneurial Motivation. *Frontiers in Psychology*, 12. <https://doi.org/10.3389/fpsyg.2021.732904>

Wyss, A. M., Knoch, D., & Berger, S. (2022). When and how pro-environmental attitudes turn into behavior: The role of costs, benefits, and self-control. *Journal of Environmental Psychology*, 79, 101748. <https://doi.org/10.1016/j.jenvp.2021.101748>

Yen, W.-C., & Lin, H.-H. (2022). Investigating the effect of flow experience on learning performance and entrepreneurial self-efficacy in a business simulation systems context. *Interactive Learning Environments*, 30(9), 1593–1608. <https://doi.org/10.1080/10494820.2020.1734624>

Zhang, J., Li, B., Zhang, Y., Gong, C., & Liu, Z. (2022). From Entrepreneurship Education, Government Support, and Global Competence to Entrepreneurial Behavior: The Serial Double Mediating Effect of the Self-Efficacy and Entrepreneurial Intention. *Frontiers in Psychology*, 13.

<https://doi.org/10.3389/fpsyg.2022.838232>