Enhancing Waste Classification with MobileNetV2: Adding a Plastic Sachets Class for Sustainable Management

Authors

  • Argiyan Dwi Pritama Universitas Amikom Purwokerto Author
  • Velizha Sandy Kusuma Universitas Amikom Purwokerto Author
  • Wiga Maulana Baihaqi Universitas Amikom Purwokerto Author
  • Pungkas Subarkah Universitas Amikom Purwokerto Author

DOI:

https://doi.org/10.15294/edukom.v12i1.18931

Keywords:

MobileNetV2, Transfer Learning, Waste

Abstract

The issue of waste management remains a critical concern due to its adverse impact on the environment. This research enhances a deep learning-based waste classification model by introducing a new class, namely plastic sachets, to broaden the classification scope and increase the model's relevance to waste types commonly found in the community. The dataset used is an extended version of a previous open-source dataset, comprising 2,968 images divided into seven classes. Data preprocessing steps include stratified data splitting, data augmentation to increase image diversity, and pixel normalization. The model adopts the MobileNetV2 architecture through a transfer learning approach, utilizing 2D Global Average Pooling and Dense layers with softmax activation for multi-class classification. Evaluation using precision, recall, and F1-score demonstrated strong performance, with an overall accuracy of 97%. While the model performs well across most classes, further improvement is needed for minority classes such as plastic sachets. This study highlights the promising potential of deep learning in supporting automated waste sorting to promote sustainable waste management practices in Indonesia.

References

Akay, M., Du, Y., Sershen, C. L., Wu, M., Chen, T. Y., Assassi, S., Mohan, C., & Akay, Y. M. (2021). Deep Learning Classification of Systemic Sclerosis Skin Using the MobileNetV2 Model. IEEE Open Journal of Engineering in Medicine and Biology, 2, 104–110. https://doi.org/10.1109/OJEMB.2021.3066097

Al-rimy, B. A. S., Saeed, F., Al-Sarem, M., Albarrak, A. M., & Qasem, S. N. (2023). An Adaptive Early Stopping Technique for DenseNet169-Based Knee Osteoarthritis Detection Model. Diagnostics, 13(11). https://doi.org/10.3390/diagnostics13111903

Buslaev, A., Iglovikov, V. I., Khvedchenya, E., Parinov, A., Druzhinin, M., & Kalinin, A. A. (2020). Albumentations: Fast and flexible image augmentations. Information (Switzerland), 11(2), 1–20. https://doi.org/10.3390/info11020125

Cui, X., Li, Y., Xie, Z., Liu, H., Yang, S., & Mou, C. (2023). ADQE: Obtain Better Deep Learning Models by Evaluating the Augmented Data Quality Using Information Entropy. Electronics (Switzerland), 12(19), 1–26. https://doi.org/10.3390/electronics12194077

Dogan, Y. (2023). A New Global Pooling Method for Deep Neural Networks: Global Average of Top-K Max- Pooling. Traitement du Signal, 40(2), 577–587. https://doi.org/10.18280/ts.400216

Heenaye-Mamode Khan, M., Gooda Sahib-Kaudeer, N., Dayalen, M., Mahomedaly, F., Sinha, G. R., Nagwanshi, K. K., & Taylor, A. (2022). Multi-Class Skin Problem Classification Using Deep Generative Adversarial Network (DGAN). Computational Intelligence and Neuroscience, 2022(1), 1797471. https://doi.org/https://doi.org/10.1155/2022/1797471

Huang, G.-L., He, J., Xu, Z., & Huang, G. (2020). A combination model based on transfer learning for waste classification. Concurrency and Computation: Practice and Experience, 32(19), e5751. https://doi.org/https://doi.org/10.1002/cpe.5751

Khoiri, I. A., Nurhidayati, R., & Kunci, K. (2024). Peran Manajemen Sumber Daya Manusia dalam Program GEMARI ( Gerakan Masyarakat Mengumpulkan Sampah Plastik ) di Tlogosari Wetan , Semarang. 3(2), 1–16.

May Ningrum, C., & Istiqomah, A. (2020). SISTEM PENGELOLAAN DAN NILAI EKONOMI SAMPAH DI PEMUKIMAN KAMPUNG PULO GEULIS KOTA BOGOR. JAMBURA AGRIBUSINESS JOURNAL, 1(2).

Mohammed, M. A., Al-Khateeb, B., Yousif, M., Mostafa, S. A., Kadry, S., Abdulkareem, K. H., & Garcia-Zapirain, B. (2022). Novel Crow Swarm Optimization Algorithm and Selection Approach for Optimal Deep Learning COVID-19 Diagnostic Model. Computational Intelligence and Neuroscience, 2022(1), 1307944. https://doi.org/https://doi.org/10.1155/2022/1307944

Mustaqim, A., Siregar, S. I., & Baqaruzi, S. (2020). Fabrikasi Tempat Sampah Pintar Dengan Pemilahan dan Pemadatan Otomatis (Vol. 01, Nomor 2).

Nguyen, K. A., Chen, W., Lin, B. S., & Seeboonruang, U. (2021). Comparison of Ensemble Machine Learning Methods for Soil Erosion Pin Measurements. ISPRS International Journal of Geo-Information, 10(1). https://doi.org/10.3390/ijgi10010042

Prochazka, R., Valicek, J., Harnicarova, M., Kusnerova, M., Tozan, H., Borzan, C., Kadnar, M., Palkova, Z., Galik, R., & Slamova, K. (2024). Collection of Plastic Packaging of Various Types: Sorting of Fractions of Plastic Waste Using Both Automated and Manual Modes. IEEE Access, 12(March), 44244–44261. https://doi.org/10.1109/ACCESS.2024.3376230

Putra, M. A., Rustan, F., Liwe, L. M., & Suryaningrum, K. M. (2023). Securing Text File Using Combination of Vigenere and One - Time Pad Cipher Algorithm. Procedia Computer Science, 227, 1030–1038. https://doi.org/10.1016/j.procs.2023.10.612

Sakinah, R. A., & Aberth, W. A. V. P. (2024). Ancaman Lingkungan Indonesia: Jutaan Ton Sampah Tidak Terkelola, Memilah Sampah: Langkah Kecil Menuju Keberlanjutan. GoodStats Data. https://data.goodstats.id/statistic/ancaman-lingkungan-indonesia-jutaan-ton-sampah-tidak-terkelola-di-2024-YzBe5

Shi, Y., Li, J., Yu, Z., Li, Y., Hu, Y., & Wu, L. (2022). Multi-Barley Seed Detection Using iPhone Images and YOLOv5 Model. Foods, 11(21). https://doi.org/10.3390/foods11213531

Skula, I., & Kvet, M. (2024). A Framework for Preparing a Balanced and Comprehensive Phishing Dataset. IEEE Access, 12, 53610–53622. https://doi.org/10.1109/ACCESS.2024.3387437

Tan, L., Lu, J., & Jiang, H. (2021). Tomato Leaf Diseases Classification Based on Leaf Images: A Comparison between Classical Machine Learning and Deep Learning Methods. AgriEngineering, 3(3), 542–558. https://doi.org/10.3390/agriengineering3030035

Usman, O. L., Muniyandi, R. C., Omar, K., & Mohamad, M. (2021). Gaussian smoothing and modified histogram normalization methods to improve neural-biomarker interpretations for dyslexia classification mechanism. PLOS ONE, 16(2), 1–27. https://doi.org/10.1371/journal.pone.0245579

Wijayanti, A. N., Dhokhikah, Y., & Rohman, A. (2023). Analisis partisipasi masyarakat terhadap pengelolaan sampah di Kecamatan Sumbersari, Kabupaten Jember, Provinsi Jawa Timur. Jurnal Pengelolaan Lingkungan Berkelanjutan (Journal of Environmental Sustainability Management), 28–45. https://doi.org/10.36813/jplb.7.1.28-45

Yoo, J., & Kang, S. (2023). Class-Adaptive Data Augmentation for Image Classification. IEEE Access, 11(March), 26393–26402. https://doi.org/10.1109/ACCESS.2023.3258179

Downloads

Published

2025-08-30

Article ID

18931

How to Cite

Pritama, A. D., Sandy Kusuma, V. ., Baihaqi, W. M., & Subarkah, P. . (2025). Enhancing Waste Classification with MobileNetV2: Adding a Plastic Sachets Class for Sustainable Management. Edu Komputika Journal, 12(1), 13-20. https://doi.org/10.15294/edukom.v12i1.18931