A Comparison of Machine Learning and Deep Learning Methods for Temperatures Predictions on Java Island
DOI:
https://doi.org/10.15294/edukom.v12i1.23812Keywords:
Climate change, Deep Learning, Forecasting, Machine Learning, TemperaturesAbstract
Climate change is a global long-term change in temperatures and weather. Climate change is a worldwide issue that requires proper handling to reduce the negative impact on humans and the environment. Analyzing historical data is beneficial for studying climate change. Machine learning and deep learning methods are useful tools for data analysis. The goal of this paper is to find the best model for forecasting temperatures, a case study in Java Island. Java Island is the most densely island and the central economy and business in Indonesia. Climate change research in Java Island is important for sustainability. It runs several algorithms i.e., Gradient Boosting, AdaBoost, XGBoost, CatBoost, Light GBM, Random Forest, Support Vector Regression, Extreme Learning Machine, Long Short-Term Memory, Gated Recurrent Unit, Bidirectional Long Short-Term Memory, and Bidirectional Gated Recurrent Unit. The experiment uses a historical daily time series of temperatures from 1 January 1990 to 31 December 2024. In general, the experimental results show that Gradient Boosting produces the highest average coefficient of determination R2 scores of 0.34 and the lowest Mean Absolute Error scores of 0.69. Long Short-Term Memory and Gated Recurrent Units are the deep learning models that also work well for forecasting. According to the experimental results, in some cases, machine learning models outperform deep learning models and vice versa.
References
Abbass, K., Qasim, M. Z., Song, H., Murshed, M., Mahmood, H., & Younis, I. (2022). A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environmental Science and Pollution Research, 29(28), 42539–42559. https://doi.org/10.1007/s11356-022-19718-6
Alonso-Robisco, A., Bas, J., Carbo, J. M., de Juan, A., & Marques, J. M. (2024). Where and how machine learning plays a role in climate finance research. Journal of Sustainable Finance & Investment, 1–42. https://doi.org/10.1080/20430795.2024.2370325
Andrian, G., Arisandi, D., & Handhayani, T. (2024). CLUSTERING DATA METEOROLOGI WILAYAH INDONESIA TIMUR DENGAN METODE K-MEANS DAN FUZZY C-MEANS. INTI Nusa Mandiri, 18(2), 100–106. https://doi.org/10.33480/inti.v18i2.5039
Bamal, A., Uddin, M. G., & Olbert, A. I. (2024). Harnessing machine learning for assessing climate change influences on groundwater resources: A comprehensive review. Heliyon, 10(17), e37073. https://doi.org/10.1016/j.heliyon.2024.e37073
Bansal, N., Defo, M., & Lacasse, M. A. (2021). Application of Support Vector Regression to the Prediction of the Long-Term Impacts of Climate Change on the Moisture Performance of Wood Frame and Massive Timber Walls. Buildings, 11(5), 188. https://doi.org/10.3390/buildings11050188
Chen, W., Qi, W., Li, Y., Zhang, J., Zhu, F., Xie, D., Ru, W., Luo, G., Song, M., & Tang, F. (2021). Ultra-Short-Term Wind Power Prediction Based on Bidirectional Gated Recurrent Unit and Transfer Learning. Frontiers in Energy Research, 9. https://doi.org/10.3389/fenrg.2021.808116
Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7, e623. https://doi.org/10.7717/peerj-cs.623
Di Persio, L., & Fraccarolo, N. (2023). Energy Consumption Forecasts by Gradient Boosting Regression Trees. Mathematics, 11(5), 1068. https://doi.org/10.3390/math11051068
Doz, D., Cotič, M., & Felda, D. (2023). Random Forest Regression in Predicting Students’ Achievements and Fuzzy Grades. Mathematics, 11(19), 4129. https://doi.org/10.3390/math11194129
Duan, Y., Liu, Y., Wang, Y., Ren, S., & Wang, Y. (2023). Improved BIGRU Model and Its Application in Stock Price Forecasting. Electronics, 12(12), 2718. https://doi.org/10.3390/electronics12122718
Gaertner, B. (2024). Geospatial patterns in runoff projections using random forest based forecasting of time-series data for the mid-Atlantic region of the United States. Science of The Total Environment, 912, 169211. https://doi.org/10.1016/j.scitotenv.2023.169211
Hancock, J. T., & Khoshgoftaar, T. M. (2020). CatBoost for big data: an interdisciplinary review. Journal of Big Data, 7(1), 94. https://doi.org/10.1186/s40537-020-00369-8
Handhayani, T. (2023). An integrated analysis of air pollution and meteorological conditions in Jakarta. Scientific Reports, 13(1), 5798. https://doi.org/10.1038/s41598-023-32817-9
Handhayani, T., & Lewenusa, I. (2024). An Analysis of Meteorological Data in Sumatra and Nearby using Agglomerative Clustering. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 8(2), 234–241. https://doi.org/10.29207/resti.v8i2.5663
Handhayani, T., Lewenusa, I., & Arpipi, M. Y. R. (2024). Forecasting Volatile Fresh Chili Prices In Indonesia Using Support Vector Regression. 2024 International Conference on Information Technology Research and Innovation (ICITRI), 281–286. https://doi.org/10.1109/ICITRI62858.2024.10699118
Handhayani, T., Lewenusa, I., Herwindiati, D. E., & Hendryli, J. (2022). A Comparison of LSTM and BiLSTM for Forecasting the Air Pollution Index and Meteorological Conditions in Jakarta. In 2022 5th International Seminar on Research of Information Technology and Intelligent Systems, ISRITI 2022. https://doi.org/10.1109/ISRITI56927.2022.10053078
Handhayani, T., & Rusdi, Z. (2023). K-Means Using Dynamic Time Warping For Clustering Cities in Java Island According to Meteorological Conditions. 2023 Eighth International Conference on Informatics and Computing (ICIC), 1–6. https://doi.org/10.1109/ICIC60109.2023.10381899
He, Z., Jiang, T., Jiang, Y., Luo, Q., Chen, S., Gong, K., He, L., Feng, H., Yu, Q., Tan, F., & He, J. (2022). Gated recurrent unit models outperform other Machine learning models in prediction of minimum temperature in greenhouse Based on local weather data. Computers and Electronics in Agriculture, 202, 107416. https://doi.org/10.1016/j.compag.2022.107416
Ibrahem Ahmed Osman, A., Najah Ahmed, A., Chow, M. F., Feng Huang, Y., & El-Shafie, A. (2021). Extreme gradient boosting (Xgboost) model to predict the groundwater levels in Selangor Malaysia. Ain Shams Engineering Journal, 12(2), 1545–1556. https://doi.org/10.1016/j.asej.2020.11.011
Ishak, Y. A., Handhayani, T., Lauro, M. D., Lauro, M. D., William, W., Pragantha, J., & Lewenusa, I. (2024). Advanced Clustering Approach For Mapping Regions of Paddy Productivity In Indonesia Using Intelligent K-Means. IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS) , 1–5.
Ladi, T., Jabalameli, S., & Sharifi, A. (2022). Applications of machine learning and deep learning methods for climate change mitigation and adaptation. Environment and Planning B: Urban Analytics and City Science, 49(4), 1314–1330. https://doi.org/10.1177/23998083221085281
Mahamat, A. A., Boukar, M. M., Leklou, N., Celino, A., Obianyo, I. I., Bih, N. L., Stanislas, T. T., & Savastanos, H. (2024). Decision Tree Regression vs. Gradient Boosting Regressor Models for the Prediction of Hygroscopic Properties of Borassus Fruit Fiber. Applied Sciences, 14(17), 7540. https://doi.org/10.3390/app14177540
Milojevic-Dupont, N., & Creutzig, F. (2021). Machine learning for geographically differentiated climate change mitigation in urban areas. Sustainable Cities and Society, 64, 102526. https://doi.org/10.1016/j.scs.2020.102526
Newman, R., & Noy, I. (2023). The global costs of extreme weather that are attributable to climate change. Nature Communications, 14(1), 6103. https://doi.org/10.1038/s41467-023-41888-1
Özen, F. (2024). Random forest regression for prediction of Covid-19 daily cases and deaths in Turkey. Heliyon, 10(4), e25746. https://doi.org/10.1016/j.heliyon.2024.e25746
Purba, A. C., Handhayani, T., & Hendryli, J. (2025). Comparison of Support Vector Regression (SVR) and Long Short-Term Memory (LSTM) Methods for Meteorological Data Prediction in Nusa Tenggara. 2025 International Conference on Computer Sciences, Engineering, and Technology Innovation (ICoCSETI), 675–680. https://doi.org/10.1109/ICoCSETI63724.2025.11020432
Santos, R. M., & Bakhshoodeh, R. (2021). Climate change/global warming/climate emergency versus general climate research: comparative bibliometric trends of publications. Heliyon, 7(11), e08219. https://doi.org/10.1016/j.heliyon.2021.e08219
Sopany, M. R., Lewenusa, I., & Handhayani, T. (2025). Comparison of GRU and Random Forest Models in Predicting Meteorological Data on Sumatra Island. 2025 International Conference on Computer Sciences, Engineering, and Technology Innovation (ICoCSETI), 691–695. https://doi.org/10.1109/ICoCSETI63724.2025.11019750
Waidelich, P., Batibeniz, F., Rising, J., Kikstra, J. S., & Seneviratne, S. I. (2024). Publisher Correction: Climate damage projections beyond annual temperature. Nature Climate Change, 14(11), 1210–1210. https://doi.org/10.1038/s41558-024-02174-0
Wang, J., Lu, S., Wang, S.-H., & Zhang, Y.-D. (2022). A review on extreme learning machine. Multimedia Tools and Applications, 81(29), 41611–41660. https://doi.org/10.1007/s11042-021-11007-7
Wen, H.-T., Wu, H.-Y., & Liao, K.-C. (2022). Using XGBoost Regression to Analyze the Importance of Input Features Applied to an Artificial Intelligence Model for the Biomass Gasification System. Inventions, 7(4),126. https://doi.org/10.3390/inventions7040126
Yuan, Y. (2023). Application of Multiple Linear Regression and Time-Series Models for Forecasting Sales of New Energy Vehicles. Proceedings of the International Conference on Financial Innovation, FinTech and Information Technology, FFIT 2022, October 28-30, 2022, Shenzhen, China. https://doi.org/10.4108/eai.28-10-2022.2328445



