Integration of Skyline Query with the PROMETHEE MCDM Method: A Case Study on Structural Official Selection

Authors

  • Budiman Wijaya University of Mataram Author
  • Heri Wijayanto University of Mataram Author
  • Ida Bagus Ketut Widiartha University of Mataram Author

DOI:

https://doi.org/10.15294/edukom.v12i1.29049

Keywords:

Multi-Criteria Decision Making, Promethee, Skyline Query

Abstract

The selection of structural officials within higher education institutions is a strategic and complex process that demands objectivity, transparency, and a data-driven approach. However, the increasing number of candidates and the diversity of evaluation criteria, such as years of service, rank, education, age, and performance, pose significant challenges in ensuring fair and efficient decision-making. Addressing this gap, this study proposes a hybrid method by integrating Skyline Query with the Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE), offering a novel contribution to multi-criteria decision-making (MCDM) in public sector human resource selection. Skyline Query is employed as a preselection mechanism to eliminate 161 dominated candidates from an initial dataset of 228, allowing only the 67 most non-dominated candidates to advance to the ranking stage. PROMETHEE is then applied to generate rankings based on leaving and entering flow values. To evaluate the consistency and validity of this combined approach, the resulting rankings are compared with those from the pure PROMETHEE method using Spearman’s Rank Correlation. The analysis yields a high correlation coefficient of ρ = 0.967, indicating a very strong agreement between the two methods and confirming that the Skyline filtering does not distort ranking quality. The findings demonstrate that the Skyline+PROMETHEE integration significantly enhances the efficiency of the selection process by reducing computational complexity while preserving decision accuracy. Moreover, this approach strengthens the transparency and accountability of structural official selection, particularly in the context of the University of Mataram, and can be generalized to other institutional decision-making scenarios.

References

Alves, A. S. F., Nunes, L. J. R., Matias, J. C. O., Espadinha-Cruz, P., & Godina, R. (2024). An integrated PROMETHEE II-Roadmap model: Application to the recovery of residual agroforestry biomass in Portugal. Journal of Cleaner Production, 445. https://doi.org/10.1016/j.jclepro.2024.141307

Amman, M., Rashid, T., & Ali, A. (2023). Fermatean fuzzy multi-criteria decision-making based on Spearman rank correlation coefficient. Granular Computing, 8(6), 2005–2019.

Axali, J., Devereaux, L., Spencer, A., & Vasilev, F. (2024). A multicriteria decision-making approach for ransomware detection using mitre att&ck mitigation strategy. Authorea Preprints.

Bocianowski, J., Wrońska-Pilarek, D., Krysztofiak-Kaniewska, A., Matusiak, K., & Wiatrowska, B. (n.d.). Comparison of Pearson’s and Spearman’s correlation coefficients for selected traits of Pinus sylvestris L.

Ciaccia, P., & Martinenghi, D. (2024). Optimization strategies for parallel computation of skylines. ArXiv Preprint ArXiv:2411.14968.

Damarjati, C., Wicaksana, G., Suripto, S., Wijayanto, H., Setyawan, H., & Chen, H. C. (2024). University Department Recommendations Using Subject-Score-Based Skyline Queries. Proceedings - 2024 International Conference on Information Technology and Computing, ICITCOM 2024, 133–138. https://doi.org/10.1109/ICITCOM62788.2024.10762120

Ejegwa, P. A., Kausar, N., Aydin, N., Feng, Y., & Olanrewaju, O. A. (2024). A new Fermatean fuzzy Spearman-like correlation coefficient and its application in evaluating insecurity problem via multi-criteria decision-making approach. Heliyon, 10(22).

Fachri M. (2022). Implikasi Praktek Gaya Kepemimpinan Situasional Kepala Badan Kepegawaian Daerah Provinsi Riau. Tesis Program Studi Ilmu Adminisrasi Publik. Universitas Islam Riau.

Glavinovic, R., & Vukic, L. (2023). The Promethee method and its applications in the maritime industry: a review of studies from the Hrcak database. Transportation Research Procedia, 73, 94–101. https://doi.org/10.1016/j.trpro.2023.11.896

Gülmez, B. (2025). A novel hybrid MCDM framework combining TOPSIS, PROMETHEE II, and VIKOR for peach drying method selection. Current Research in Food Science, 10. https://doi.org/10.1016/j.crfs.2025.101034

Gulzar, Y., & Alwan, A. A. (2022). CIDS: An Efficient Algorithm for Processing Skyline Queries for Partially Complete Data in Cloud Environment. IEEE Access, 10, 66449–66466. https://doi.org/10.1109/ACCESS.2022.3185087

Gulzar, Y., Alwan, A. A., Salleh, N., & Shaikhli, I. F. A. (2017). Skyline query processing for incomplete data in cloud environment. 6th International Conference on Computing & Informatics (ICOCI), 24–25.

Hoseinzade, Z., Zavarei, A., & Shirani, K. (2021). Application of prediction–area plot in the assessment of MCDM methods through VIKOR, PROMETHEE II, and permutation. Natural Hazards, 109, 2489–2507.

Ieva, F., Ronzulli, M., Romo, J., & Paganoni, A. M. (2025). A Spearman dependence matrix for multivariate functional data. Journal of Nonparametric Statistics, 37(1), 82–104.

Jiang, J., Zhang, X., & Yuan, Z. (2024). Feature selection for classification with Spearman’s rank correlation coefficient-based self-information in divergence-based fuzzy rough sets. Expert Systems with Applications, 249, 123633.

Kumar, R. (2025). A Comprehensive Review of MCDM Methods, Applications, and Emerging Trends. Decision Making Advances, 3(1), 185–199.

Ma, W., & Xu, H. (2023). Skyline-Enhanced Deep Reinforcement Learning Approach for Energy-Efficient and QoS-Guaranteed Multi-Cloud Service Composition. Applied Sciences (Switzerland), 13(11). https://doi.org/10.3390/app13116826

Meo, E. N., Boro, V. I. A., & others. (2021). Kesetaraan Gender dalam Perekrutan Aparatur Sipil Negara Menempati Jabatan Struktural di Pemerintah Daerah Provinsi Nusa Tenggara Timur. PERSPEKTIF, 10(1), 204–210.

Mohamud, M. A., Ibrahim, H., Sidi, F., Rum, S. N. M., Dzolkhifli, Z., & Xiaowei, Z. (2024). A Performance Analysis of Prediction Techniques in Handling High-Dimensional Uncertain Data for the Application of Skyline Query over Data Stream. IEEE Access. https://doi.org/10.1109/ACCESS.2024.3450863

Okoye, K., & Hosseini, S. (2024). Correlation tests in R: pearson cor, kendall’s tau, and spearman’s rho. In R programming: Statistical data analysis in research (pp. 247–277). Springer.

Ouadah, A., Hadjali, A., Nader, F., & Benouaret, K. (2019). SEFAP: an efficient approach for ranking skyline web services. Journal of Ambient Intelligence and Humanized Computing, 10(2), 709–725. https://doi.org/10.1007/s12652-018-0721-7

Piscopo, V., Ascione, S., & Scamardella, A. (2024). A new wave spectrum assessment procedure based on spearman rank correlation algorithm. Ocean Engineering, 308. https://doi.org/10.1016/j.oceaneng.2024.118348

Prima, W., Putra, F., Sapriadi, S., & Hayati, R. (2024). Application of the PROMETHEE Method in Determining Scholarship Recipients at University. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control. https://doi.org/10.22219/kinetik.v9i4.2014

Rachmad, Y. E., Afriyadi, H., Kertati, I., cicik Wijayanti, T., Zakiah, M. M., Purwaningrum, E. K., Tinambunan, A. P., Simanihuruk, P., Roza, N., Ginanjar, R., & others. (2009). Manajemen Sumber Daya Manusia. PT. Sonpedia Publishing Indonesia.

Sorrentino, G. (n.d.). A Skyline and ranking query odyssey: a journey from skyline and ranking queries up to f-skyline queries.

Tanti, L. (2016). Analisis Promosi Kenaikan Jabatan Berdasarkan Evaluasi Kinerja Pegawai. Creative Information Technology Journal, 3(4), 331–343.

Trivedi, P., Shah, J., Moslem, S., & Pilla, F. (2023). An application of the hybrid AHP-PROMETHEE approach to evaluate the severity of the factors influencing road accidents. Heliyon, 9(11). https://doi.org/10.1016/j.heliyon.2023.e21187

Tufail, F., Shabir, M., & Abo-Tabl, E. S. A. (2022). A Comparison of Promethee and TOPSIS Techniques Based on Bipolar Soft Covering-Based Rough Sets. IEEE Access, 10, 37586–37602. https://doi.org/10.1109/ACCESS.2022.3161470

Vinícius Cardoso de Oliveira, M., Eng, P., Rocha Loures, E., Fernando Deschamps, Pe., Simone Gomes, Pe., & Pucpr, Pe. (n.d.). CRITICALITY ANALYSIS OF AGILITY CRITERIA USING AHP AND PROMETHEE METHOD.

Wan, X., Han, X., & Wang, J. (2024). Computing Prominent Skyline on Massive Data. Data Science and Engineering. https://doi.org/10.1007/s41019-024-00259-6

Wątróbski, J. (2023). Temporal PROMETHEE II — New multi-criteria approach to sustainable management of alternative fuels consumption. Journal of Cleaner Production, 413. https://doi.org/10.1016/j.jclepro.2023.137445

Yu, H., & Hutson, A. D. (2024). A robust Spearman correlation coefficient permutation test. Communications in Statistics - Theory and Methods, 53(6), 2141–2153. https://doi.org/10.1080/03610926.2022.2121144

Yuan, D., Zhang, L., Li, S., & Sun, G. (2024). Skyline query under multidimensional incomplete data based on classification tree. Journal of Big Data, 11(1). https://doi.org/10.1186/s40537-024-00923-8

Zhao, J., Ma, Y., Cui, J., Peng, Y., Li, K., & Wang, T. (2021). SecSky: A Secure Dynamic Skyline Query Scheme with Data Privacy. IEEE Access, 9, 5690–5703. https://doi.org/10.1109/ACCESS.2020.3047950

Downloads

Published

2025-08-30

Article ID

29049

How to Cite

Wijaya, B., Wijayanto, H., & Widiartha, I. B. K. (2025). Integration of Skyline Query with the PROMETHEE MCDM Method: A Case Study on Structural Official Selection. Edu Komputika Journal, 12(1), 1-12. https://doi.org/10.15294/edukom.v12i1.29049