Analysis of Forecasting Methods on Rice Price Data at Milling Level According to Quality

Authors

  • Indira Dhekawanti Aulia Universitas Mercu Buana Yogyakarta Author
  • Irfan Pratama Universitas Mercu Buana Yogyakarta Author

DOI:

https://doi.org/10.15294/edukom.v11i1.4763

Keywords:

Forecasting, Random Forest Regression, Rice Prices, RMSE

Abstract

Rice is a primary source of carbohydrates for many Indonesians, and its prices often surge due to uncontrolled demand. Therefore, the government is crucial in monitoring rice prices to maintain stability. Information technology, particularly data mining such as forecasting, is essential for providing accurate information on future rice prices. It will assist various stakeholders in making informed pricing policy decisions. This study employs Random Forest Regression and Gradient Boosting Regressor methods to predict rice prices using a dataset that includes monthly average rice prices at milling levels, categorized by quality (Premium and Medium), spanning from January 2013 to April 2024. The dataset consists of 136 rows, each representing a unique combination of year, month, and quality, and is stored in CSV format. Methodological steps include data collection, preprocessing, modeling, and model evaluation using monthly average rice prices at milling levels based on quality, including premium and medium grades. The results from Random Forest Regression indicate Root Mean Square Error (RMSE) values of 24.90 for premium rice and 25.47 for medium rice. The study reveals that Random Forest Regression outperforms Gradient Boosting Regressor in this context. Future research should explore additional prediction methods and consider other variables influencing rice prices to enhance model accuracy.

References

Adjie Setyadj, M., Faqih, A., & Arie Wijaya, Y. (2023). Peramalan Harga Komoditas Beras Di Kalimantan Timur Menggunakan Algoritma Neural Network. JATI (Jurnal Mahasiswa Teknik Informatika), 7(1), 320–324. https://doi.org/10.36040/jati.v7i1.6327

Alfarisi, S. (2017). Sistem Prediksi Penjualan Gamis Toko QITAZ Menggunakan Metode Single Exponential Smoothing. JABE (Journal of Applied Business and Economic), 4(1), 80. https://doi.org/10.30998/jabe.v4i1.1908

Alghifari, F., & Juardi, D. (2021). Penerapan Data Mining Pada Penjualan Makanan Dan Minuman Menggunakan Metode Algoritma Naïve Bayes. Jurnal Ilmiah Informatika, 9(02), 75–81. https://doi.org/10.33884/jif.v9i02.3755

Amalia, A., Radhi, M., Sinurat, S. H., Sitompul, D. R. H., & Indra, E. (2022). Prediksi Harga Mobil Menggunakan Algoritma Regressi Dengan Hyper-Parameter Tuning. Jurnal Sistem Informasi Dan Ilmu Komputer Prima(JUSIKOM PRIMA), 4(2), 28–32. https://doi.org/10.34012/jurnalsisteminformasidanilmukomputer.v4i2.2479

Amalia, R., Masdiyanti, & Nadir Nadir. (2023). Analisis Fluktuasi Dan Trend Harga Komoditas Telur Ayam Ras Di Kabupaten Bulukumba. Jurnal Sains Agribisnis, 3(1), 21–28.

Hilmi, N., & Saputra, W. A. (2023). Implementasi HE, AHE, dan CLAHE Pada Metode Convolutional Neural Network untuk Identifikasi Citra X-Ray Paru-Paru Normal atau Terinfeksi Covid19. Edu Komputika Journal, 10(1), 1–9. https://doi.org/10.15294/edukomputika.v10i1.57237

Jiuhardi. (2023). Analisis Kebijakan Impor Beras Terhadap Peningkatan Kesejahteraan Petani di Indonesia. INOVASI : Jurnal Ekonomi, Keuangan Dan Manajemen, 19(1), 1–13.

Kraugusteeliana, K., Muis, S., Nugroho, F., Karim, A., & Siagian, Y. (2023). Data Mining Klasifikasi Breast Cancer Menerapkan Algoritma Gradient Boosted Trees. JURNAL MEDIA INFORMATIKA BUDIDARMA Volume 7, Nomor 2, April 2023, Page 881-890, 7(April), 881–890. https://doi.org/10.30865/mib.v7i2.6095

Magnolia, C., Nurhopipah, A., & Kusuma, B. A. (2023). Penanganan Imbalanced Dataset untuk Klasifikasi Komentar Program Kampus Merdeka Pada Aplikasi Twitter. Edu Komputika Journal, 9(2), 105–113. https://doi.org/10.15294/edukomputika.v9i2.61854

Mambang, & Byna, A. (2017). Analisis Perbandingan Algoritma C.45, Random Forest Dengan Chaid Decision Tree Untuk Klasifikasi Tingkat Kecemasan Ibu Hamil. Semnasteknomedia Online, 5(1), 103–108. https://ojs.amikom.ac.id/index.php/semnasteknomedia/article/view/1771

Mardiyanti Elsa Nurul, Dewi Tresna, O. Y. (2021). Analisa Prediksi Tegangan Input Sensor Capcitive Soil Moisture dengan Random Forest untuk Mendukung Pertanian Pintar. 2(1), 13–23. http://journal.isas.or.id/index.php/JASENS

Mukhlisin, Imrona, M., & Murdiansyah, D. T. (2019). Prediksi Harga Beras Premium dengan Metode Algoritma K-Nearest Neighbor. E-Proceeding of Engineering, 7(1), 2714–2724.

Putra, R. E., & Sinaga, A. S. (2022). Perkiraan Harga Beras Premium DKI Jakarta Menggunakan Regresi Linier. Journal of Information Engineering and Educational Technology, 6(2), 80–85. https://doi.org/10.26740/jieet.v6n2.p80-85

Rayuwati, Husna Gemasih, & Irma Nizar. (2022). IMPLEMENTASI AlGORITMA NAIVE BAYES UNTUK MEMPREDIKSI TINGKAT PENYEBARAN COVID. Jural Riset Rumpun Ilmu Teknik, 1(1), 38–46. https://doi.org/10.55606/jurritek.v1i1.127

Riyadi, A. S., Wardhani, I. P., Irfan, & Perdana, A. (2023). Aplikasi Perbandingan Prediksi Harga Bitcoin Menggunakan Deep Learning Dengan Metode Arima, Sarima, Ltsm Dan Gradient Boosting Regressor. Seminar Nasional Teknologi Informasi Dan Komunikasi STI&K (SeNTIK), 7(1), 192–199.

Saadah, S., & Salsabila, H. (2021). Prediksi Harga Bitcoin Menggunakan Metode Random Forest. Jurnal Komputer Terapan, 7(1), 24–32. https://doi.org/10.35143/jkt.v7i1.4618

Sabar Sautomo, & Hilman Ferdinandus Pardede. (2021). Prediksi Belanja Pemerintah Indonesia Menggunakan Long Short-Term Memory (LSTM). Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(1), 99–106. https://doi.org/10.29207/resti.v5i1.2815

Sumarni, S., & Rustam, S. (2020). Klasifikasi Topik Tugas Akhir Mahasiswa menggunakan Algoritma Particle Swarm Optimization dan K-Nearest Neighbor. ILKOM Jurnal Ilmiah, 12(2), 168–175. https://doi.org/10.33096/ilkom.v12i2.604.168-175

Suryanto, A. A. (2019). Penerapan Metode Mean Absolute Error (Mea) Dalam Algoritma Regresi Linear Untuk Prediksi Produksi Padi. Saintekbu, 11(1), 78–83. https://doi.org/10.32764/saintekbu.v11i1.298

Syakir, Y., Iman Hermanto, T., Ramadhan, Y. R., Studi, P., Informatika, T., Teknologi, S. T., & Purwakarta, W. (2022). Analisis Marketplace Shopee Untuk Memprediksi Penjualan dengan Algoritma Regresi Linier. Jurnal Sains Komputer & Informatika (J-SAKTI, 6(2), 904–915.

Wantari, N. K. (2021). Aplikasi Persamaan Linier Dalam Matematika Bisnis:(Model Persamaan Linier/Harga Keseimbangan Pasar/Suplus Konsumen Atau …. Jurnal Dunia Ilmu, 1(3), 1–8. http://duniailmu.org/index.php/repo/article/view/46

Yudianto, F., Herlambang, T., Anshori, M. Y., Adinugroho, M., & Rulyansah, A. (2023). Sosialisasi Perhitungan Numerik Terkait Forecasting Pengunjung Hotel (Studi di Hotel Primebiz Surabaya). Indonesia Berdaya, 4(3), 989–996. https://doi.org/10.47679/ib.2023511

Downloads

Article ID

4763

Published

2024-08-29

How to Cite

Aulia, I. D., & Pratama, I. . (2024). Analysis of Forecasting Methods on Rice Price Data at Milling Level According to Quality. Edu Komputika Journal, 11(1), 1-10. https://doi.org/10.15294/edukom.v11i1.4763