Feature Extraction Implementation in the Forecasting Method to Predict Indonesian Oil and Gas Exports and Imports

Authors

DOI:

https://doi.org/10.15294/edukom.v11i1.7879

Keywords:

CatBoost, Data Mining, Exponential Smoothing Forecasting, SARIMAX, XGBoost

Abstract

Future export and import predictions can use data mining and forecasting applications of data mining. Then, normalisation is carried out using datasets taken at the centre of the statistical agency using a mix-max scaler. The normalisation results are then calculated using several forecasting methods, such as Exponential Smoothing, SARIMAX, XGBoost, and CatBoost. The accuracy of this method can be improved by using feature extraction decomposition. They are decomposing, such as trend, residue, and seasonal. The results of the decomposition then become new features that are entered into the prediction model. The prediction results are evaluated using the root mean square error (RMSE). The smaller the RMSE, the better the results. The prediction results without using the method obtained by the Exponential Smoothing method have the best level of accuracy with an average RMSE value of 0.111 and the SARIMAX method with an average RMSE value of 0.146. Meanwhile, the prediction results using the CatBoost and XGBoost feature extraction methods have the best level of accuracy with an RMSE value of 0.046. From the results of the comparison of predictions, the addition of decomposition features to most forecasting methods can significantly increase the accuracy of the calculation.

Author Biographies

  • Michael Anggun Kado Pradana, Mercu Buana University of Yogyakarta
    Michael Anggun Kado Pradana is a dedicated student in the Information Systems  at Universitas Mercu Buana of Yogyakarta, Faculty of Information Technology, specializing in Data Mining since 2020. His academic interests include exploring the latest advancements in data mining and applying innovative solutions to real-world problems. Michael is committed to expanding his knowledge and contributing to the field through both academic and practical experiences.
  • Irfan Pratama, Mercu Buana university Of Yogyakarta

    Irfan Pratama is currently a lecturer in the Information Systems Program at Universitas Mercu Buana Yogyakarta. He earned his Bachelor of Computer Science (S.Kom.) from Universitas Islam Indonesia and his Master of Engineering (M.Eng.) from Universitas Gadjah Mada. Additionally, Irfan holds a Master of Computer Engineering (MCE) and a Master of Cybersecurity Forensics (MCF), demonstrating his commitment to advancing his professional skills and knowledge.

    With a robust academic background and extensive experience in engineering and computer science, Irfan Pratama has made substantial contributions to various projects and initiatives. His research interests encompass Soft Computing, Data Mining, and Machine Learning, areas in which he has been actively involved in both academic exploration and practical application. His dedication to excellence and innovation has established him as a respected figure in the field of information systems.

References

Ananda, D., Pertiwi, A., & Muslim, M. A. (2022). Prediksi Rating Aplikasi Playstore Menggunakan Xgboost Prediksi Rating Aplikasi Playstore Menggunakan Xgboost. October 2020.

Anggraeni, A. S., Utama, R. C., & Wati, D. C. (2022). Penghalusan eksponensial dan dekomposisi saham apple.inc. Jurnal Sintak, 1(1), 24–30. https://journal.iteba.ac.id/index.php/jurnalsintak/article/view/25%0Ahttps://journal.iteba.ac.id/index.php/jurnalsintak/article/download/25/25

Aswi, A., Rahma, I., & S, M. F. (2024). Penerapan Metode Hybrid Dekomposisi-Arima dalam Peramalan Jumlah Wisatawan Mancanegara. 7(1), 19–26. https://doi.org/10.12962/j27213862.v7i1.18738

Chandra, C., & Budi, S. (2020). Analisis Komparatif ARIMA dan Prophet dengan Studi Kasus Dataset Pendaftaran Mahasiswa Baru. Jurnal Teknik Informatika Dan Sistem Informasi, 6(2), 278–287. https://doi.org/10.28932/jutisi.v6i2.2676

Gaol, I. L. L., Sinurat, S., & Siagian, E. R. (2019). Implementasi Data Mining Dengan Metode Regresi Linear Berganda Untuk Memprediksi Data Persediaan Buku Pada Pt. Yudhistira Ghalia Indonesia Area Sumatera Utara. KOMIK (Konferensi Nasional Teknologi Informasi Dan Komputer), 3(1), 130–133. https://doi.org/10.30865/komik.v3i1.1579

Herni Yulianti, S. E., Oni, S., & Yuana, S. (2022). Penerapan Metode Extreme Gradient Boosting (XGBOOST) pada Klasifikasi Nasabah Kartu Kredit. Journal of Mathematics: Theory and Applications, 4(1), 21–26. https://doi.org/10.31605/jomta.v4i1.1792

Hudzaifah, M., & Rismayadi, A. A. (2021). Peramalan Arus Lalu Lintas Berdasarkan Waktu Tempuh Dan Cuaca Menggunakan Metode Time Series Decomposition. Jurnal Responsif : Riset Sains Dan Informatika, 3(2), 207–215. https://doi.org/10.51977/jti.v3i2.559

Istianto, A. F., Id Hadiana, A., & Rakhmat Umbara, F. (2024). Prediksi Curah Hujan Menggunakan Metode Categorical Boosting (Catboost). JATI (Jurnal Mahasiswa Teknik Informatika), 7(4), 2930–2937. https://doi.org/10.36040/jati.v7i4.7304

Julianto, I. R., Indwiarti, & Rohmawati, A. A. (2021). Prediksi Jumlah Kunjungan Wisatawan Di Jawa Barat Dengan Model Arimax Dan Sarimax Menggunakan Data Google Trends. E-Proceeding of Engineering, 8(435), 4229–4241.

Khalil, T. (2014). A Survey of Feature Selection and Feature Extraction Techniques in Machine Learning. 372–378.

Kharis, S. A. A. (2023). Prediksi Kelulusan Siswa pada Mata Pelajaran Matematika menggunakan Educational Data Mining. Jurnal Riset Pembelajaran Matematika Sekolah, 7(1), 21–29. https://doi.org/10.21009/jrpms.071.03

Latief, N. H., Nur’eni, N., & Setiawan, I. (2022). Peramalan Curah Hujan di Kota Makassar dengan Menggunakan Metode SARIMAX. STATISTIKA Journal of Theoretical Statistics and Its Applications, 22(1), 55–63. https://doi.org/10.29313/statistika.v22i1.990

Lv, C. X., An, S. Y., Qiao, B. J., & Wu, W. (2021). Time series analysis of hemorrhagic fever with renal syndrome in mainland China by using an XGBoost forecasting model. BMC Infectious Diseases, 21(1), 1–13. https://doi.org/10.1186/s12879-021-06503-y

Maysofa, L., Syaliman, K. U., & Sapriadi. (2023). Implementasi Forecasting Pada Penjualan Inaura Hair Care Dengan Metode Single Exponential Smoothing. Jurnal Testing Dan Implementasi Sistem Informasi, 1(2), 82–91.

Nagakusuma, J., Palit, H., & Juwiantho, H. (2022). Prediksi Penjualan Pada Data Penjualan Perusahaan X Dengan Membandingkan Metode GRU , SVR , DAN.

Nugraha, W., & Syarif, M. (2023). Teknik Weighting untuk Mengatasi Ketidakseimbangan Kelas Pada Prediksi Churn Menggunakan XGBoost, LightGBM, dan CatBoost. Techno.Com, 22(1), 97–108. https://doi.org/10.33633/tc.v22i1.7191

Pratama, A. A., Agushinta R., D., & Mukhyi, M. A. (2022). Penerapan Metode Moving Average dan Exponential Smoothing untuk Prediksi Nilai Ekspor dan Impor Indonesia. Jurnal Ilmiah FIFO, 14(1), 58. https://doi.org/10.22441/fifo.2022.v14i1.006

Purbolingga, Y., Marta, D., Rahmawatia, A., & Wajhi, B. (2023). Perbandingan Algoritma CatBoost dan XGBoost dalam Klasifikasi Penyakit Jantung. Jurnal APTEK Vol. 15 No 2 (2023) 126-133, 15(2), 126–133. http://journal.upp.ac.id/index.php/aptek/article/download/1930/1163/4970

Rahmawati, D. (2021). Pemodelan Box-Jenkins dan Exponential Smoothing untuk Prediksi Pengunjung Daerah Wisata Sayang Ka’ak Ciamis. Jurnal Riset Matematika, 1(2), 109–118. https://doi.org/10.29313/jrm.v1i2.375

Rifatama, M. I., Faisal, M. R., Herteno, R., Budiman, I., Itqan, M., & Mazdadi. (2023). Optimasi algoritma k-nearest neighbor dengan seleksi fitur menggunakan xgboost. JIRE (Jurnal Informatika & Rekayasa Elektronika), 6(1), 64–72.

Sari, F. I., Gunawan, E. L., Adhigiadany, C. A., & Lisanthoni, A. (2023). Model Prediksi Kepadatan Lalu Lintas : Perbandingan Antara Algoritma Random Forest dan XGBoost. 2023(Senada), 296–303.

Setiyani, L., Wahidin, M., Awaludin, D., & Purwani, S. (2020). Analisis Prediksi Kelulusan Mahasiswa Tepat Waktu Menggunakan Metode Data Mining Naïve Bayes : Systematic Review. Faktor Exacta, 13(1), 35. https://doi.org/10.30998/faktorexacta.v13i1.5548

Sitepu, F. T. B., Sirait Vince Amelia Prada, & Yunis, R. (2021). Analisis Runtun Waktu Untuk Memprediksi Jumlah Mahasiswa Baru Dengan Model Random Forest. Paradigma - Jurnal Komputer Dan Informatika, 23(1), 99–105. https://doi.org/10.31294/p.v23i1.9781

Sunarko, B., Hasanah, U., Hidayat, S., Muhammad, N., Ardiansyah, M. I., Ananda, B. P., Hakiki, M. K., & Baroroh, L. T. (2023). Penerapan Stacking Ensemble Learning untuk Klasifikasi Efek Kesehatan Akibat Pencemaran Udara. Edu Komputika Journal, 10(1), 55–63. https://doi.org/10.15294/edukomputika.v10i1.72080

Wildan, K., & Asy’ari, S. (2023). Penentuan Metode Peramalan (Forecasting) Pada Permintaan Penjualan Di Cv. Lia Tirta Jaya Prigen. 2(11), 4077–4089.

Downloads

Article ID

7879

Published

2024-08-30

How to Cite

Pradana, M. A. K., & Pratama, I. (2024). Feature Extraction Implementation in the Forecasting Method to Predict Indonesian Oil and Gas Exports and Imports. Edu Komputika Journal, 11(1), 11-22. https://doi.org/10.15294/edukom.v11i1.7879