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In the 21st century, chemistry has seen a major shift in data management practices. 

Analyzing research trends is crucial for maintaining relevance and innovation. This 

study aims to: (1) identify the contributions of researchers and country, and assess their 

impact; (2) map the network of interactions among publications, references, topics, 

researchers, and institutions; and (3) predict future directions and recommend research 

opportunities in chemistry. This study employs bibliometric analysis and science 

mapping techniques with VOSviewer. The study finds that: (1) Jacqueline. M. Cole 

had made important contribution, pioneering the application of data-mining to 

discover material and autometic text-mining to build databases. Her research has 

opened new perspective and inspired other researcher. The United States is a leader 

for research in big data, so many researchers emerged in this field. Because having the 

most data centers and the best university for studying data science and AI; (2) big data 

research in chemistry is not yet deeply and continuously explored, with researchers 

often working in small groups and focusing on topics such as "machine learning," 
"chemometrics," "cheminformatics," and "deep learning"; and (3) "data mining" is 

underexplored, presenting new research opportunities and directions for chemistry in 

the era of big data. 
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Introduction  

Nowadays, advancements in information technology (IT) have led to the rapid generation of vast 

amounts of data. The evolution of mobile devices, digital sensors, virtual communication, as well as 
computing and electronic storage, has been remarkably swift. This large volume of data, which exhibits the 

common characteristics of the 4Vs—Volume, Variety, Velocity, and Veracity—is referred to as "Big Data." 

The term Volume refers to the size of the data, Velocity denotes the speed at which data is created and 

processed, Variety relates to the sources and types of data (Lancy, 2001), and Veracity addresses the 
reliability of the data (Gantz & Reinsel, 2011). As of 2020, the total amount of data created, captured, copied, 

and consumed globally reached 64.2 zettabytes, and it is projected to reach 180 zettabytes by 2025 (Taylor, 

2023). A significant portion of this data is generated primarily from the Internet of Things (IoT), multimedia, 
and social media (Yaqoob et al., 2016). With the global data volume increasing by 40% annually, it presents 

a considerable challenge for researchers and practitioners to address this evolving issue. 

In chemistry, the rise of big data is closely linked to advancements in sophisticated instruments or 

sensors, and simultaneous experimental methods. In biochemistry, among the various analytical 
instruments used for metabolomics—the study of metabolite collections within biological systems—mass 

spectrometers (MS) are the most frequently employed. Due to their high sensitivity and capability to analyze 

numerous samples simultaneously, MS generates substantial amounts of data. For instance, in 

metabolomics, LC-MS can produce over 10 GB of data for each analysis of 30 samples (Guo et al., 2022). 
Furthermore, a significant amount of real-time data is also generated by IoT sensors, where machines or 

objects connected to the internet continuously stream data to local servers or cloud storage (Purnama & 

Sejati, 2023). In addition to sophisticated instrumentation, the miniaturization of testing and laboratory 
automation facilitates chemical testing within biological systems through High-Throughput Screening 

(HTS). HTS is characterized by the ability to test a range of 104 to 105 data points per day (Mayr & Bojanic, 

2009). 

In addition to experimental sources, the volume of big data in chemistry is also increasing due to 
advancements in computational simulations and databases containing a wide range of chemical literature 

and information. Widely recognized computational simulations such as molecular dynamics (MD) provide 

information on the positions and velocities of all particles at each time step, which is used to explore both 
microscopic and macroscopic properties of model systems. The data generated from these simulations are 

vast and complex, as the data is continuously collected at each time step (Yeguas & Casado, 2014). Chemical 

information, derived from both experimental and computational results, is aggregated into databases. 

Publicly accessible databases such as PubChem and ChEMBL, as well as commercial databases like 
SciFinder, contain extensive amounts of data extracted from tens of thousands of articles. Similarly, in 

industry, repositories collect substantial quantities of data. For instance, AstraZeneca International's 

bioscience information system contains over 150 million data points derived from experiments conducted 
before 2008 (Tetko et al., 2016). 

In the 21st century, chemistry, like other sciences, has undergone a significant shift in the ways data 

are collected, stored, and utilized. The collection of vast amounts of data has become commonplace in 

supporting discoveries in chemistry through computer algorithms. Indeed, many experiments now generate 
so much raw data that a scientist could not feasibly review it all manually within a single lifetime. In this era 

of data, there has been a transformation in chemical discoveries from a trial-and-error approach to a data-

driven approach supported by machines through artificial intelligence (AI) (Duke et al., 2024). In the 19th 
century, chemists recognized the importance of collecting chemical data, leading to the creation of catalogs 

such as the Beilstein Handbook of Organic Chemistry (Luckenbach, 1981), the Gmelin Handbook of 

Inorganic Chemistry (Mague, 1984), and the standardized IUPAC Color Book (Hartshorn, 2017). With the 

advent of computers in the 20th century, chemists began to compile chemical information in electronic 
formats and employed search techniques through the Chemical Abstracts Service (CAS) (Morgan, 1965). 

Data literacy is now considered a fundamental skill due to the increasing prevalence of data 

interactions in daily life. Individuals frequently make decisions based on data and manage their personal 
information. Consequently, there is a renewed push to introduce data literacy in schools, aiming to enhance 

data literacy across society through education (Wolff et al., 2016). In the field of chemistry, the term "Data-

driven Chemistry" has emerged, though it lacks a clear definition in various books and publications. 

However, data-driven approaches have been applied in organic chemistry through methods such as Linear 
Free Energy Relationships (LFER), chemometrics, cheminformatics, and machine learning (Williams et al., 

2021). At the University of Edinburgh, for instance, data-driven chemistry is offered as a course in the 

undergraduate chemistry program, which includes the introduction to programming languages such as 
Python and their applications in chemistry, included topics such as data classification, statistical analysis, 

3D visualization, and curve fitting. 

The shift in various aspects of chemistry due to big data requires a better understanding of current 

trends in chemical research. By gaining a deep insight into these trends, researchers can adapt to rapid 
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changes and ensure that their work remains relevant and innovative in the era of big data. Bibliometric 
analysis is a systematic study of scientific literature designed to identify patterns, trends, and impacts within 

a particular field (Passas, 2024). The advent of scientific databases such as Scopus and Web of Science has 

facilitated the acquisition of large-scale bibliometric data, supported by bibliometric software tools like 

Gephi, Leximancer, and VOSviewer. Bibliometric analysis techniques are divided into two categories: (1) 
performance analysis and (2) science mapping. Essentially, performance analysis records the contributions 

of research constituents, while science mapping focuses on the relationships among these constituents. 

Results from science mapping techniques can be enhanced in the form of network metrics, clustering, or 
visualization (Donthu et al., 2021). 

Based on the above discussion, bibliometric analysis plays a crucial role. Through this analysis, 

chemists can map the development of chemical research overtime, identifying patterns of changes in research 

focus and methodologies during spesific periods. From the identified patterns, predicted trends in chemical 
research for the future. Additionally, by reviewing previous findings, identified research gaps such as 

underexplored areas or unsolved problems, as well as evaluated the impact of research on both theoritical 

and practical aspects. If bibliometric analysis is not conducted, research may lose relevance and innovation, 
resulting in outcomes unreflected current needs. This can lead to repeat the same studies, overlook important 

gaps and reduce the impact of research. Thus, this study performs a bibliometric analysis of trends in 

chemical research in the era of big data using science mapping techniques and the VOSviewer visualization 

software. The objectives of this study are: (1) to identify the contributions of researchers and affiliations and 
assess the impact of their research based on publications and citations, (2) to map the network of interactions 

among publications, references, topics, researchers, and affiliations through clustering and visualization, and 

(3) to predict future research directions in chemistry and provide recommendations for research 
opportunities based on identified patterns. 

 

Method  

This study employs bibliometric analysis methods. Bibliometric analysis involves four stages: (1) 

defining the objectives and scope of the bibliometric study, (2) selecting techniques for bibliometric analysis, 

(3) collecting data for bibliometric analysis, and (4) performing the bibliometric analysis and reporting the 
findings (Donthu et al., 2021). The scope of this research encompasses all aspects of big data in chemistry, 

including the collection, management, storage, analysis, and interpretation of chemical big data from both 

experimental and computational results. The bibliometric analysis technique employed is science mapping, 

which includes citation analysis (relationships between publications), co-citation analysis (relationships 
between references), bibliographic coupling (relationships between citing publications), co-word analysis 

(relationships between topics), and co-author analysis (relationships between authors). 

In this study, the researchers utilized bibliometric data sourced from the Scopus database 
(www.scopus.com). Scopus is one of the largest databases providing a collection of reputable publications. 

Data collection was conducted on August 24, 2024, through a search for documents containing the title, 

abstract, and keywords "Big Data" AND Chemistry. The search criteria were restricted based on subject 

area: Chemistry; document type: Article; publication stage: Final; source type: Journal; and language: 
English. The search results can be processed directly using Microsoft Excel software to analyze statistics 

such as the number of publications per year, publications by each author, publications by each institution, 

publications by each country, publications by each sponsor, citations per author, citations per publication, 
and citations per year. Additionally, the search results can be exported as a .csv file, which can be analyzed 

using VOSviewer. The information required for each mapping analysis is detailed in Table 1, so it is 

important to ensure these requirements are met during the export process. 
 

Table 1. Data Requirements and Units of Analysis for Science Mapping Techniques  

(Donthu et al., 2021) 

Analysis Technique Units of Analysis Data Requirements 

Citation Analysis Document Author Name, Citation, Title, Journal, DOI, Reference  

Co-citation Analysis Document Reference 

Bibliographic Coupling Document Author Name, Title, Journal, DOI, Reference 

Co-word Analysis Word Title, Abstract, Author’s Keyword, Indexed Keyword, Full 

Text 

Co-author Analysis Author, Affiliation, 

Country 

Author, Affiliation (Institution and Country)  
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Results and Discussion  

The search results reveal that only 145 articles meet the criteria. These articles, published between 

2003 and 2024, involve 703 authors and have a total of 5,945 citations. According to number of citations, 
Table 2 shows list ten articles with the most citations. In 2015 stands out as the most frequently cited year, 

with 1,344 citations from 10 articles. This indicates that articles published in 2015, particularly about the 

management of computational big data through AI to understand theoretical chemistry, provided a strong 

foundation and attracted wide attention for many subsequent studies. In 2021, articles focusing on the 
management of big data through AI for drug discovery were cited by many articles in a relatively short time. 

This shows that this area of research is highly relevant and in demand, as the emergence of new diseases or 

unresolved old diseases necessitates effective drug discovery. One method for evaluating the quality of 
publications is by counting how often they are cited by other researchers. A highly-cited work indicates that 

it is frequently referenced in discussions among researchers. In other words, publications with numerous 

citations suggest that they have significant relevance and contribution to the advancement of knowledge in 

their field. 
Table 2. List 10 articles with the most citations 

No Title Year Citation Referensi 

1 
Big data meets quantum chemistry approximations: The Δ-

machine learning approach 
2015 603 

(Ramakrishnan et al., 

2015) 

2 
Artificial intelligence to deep learning: machine intelligence 

approach for drug discovery 
2021 466 (Gupta et al., 2021) 

3 
Managing the computational chemistry big data problem: The 
ioChem-BD platform 

2015 419 
(Álvarez-Moreno et 

al., 2015) 

4 
Machine learning molecular dynamics for the simulation of 

infrared spectra 
2017 369 

(Gastegger et al., 

2017) 

5 
Flexible and durable wood-based triboelectric nanogenerators for 

self-powered sensing in athletic big data analytics 
2019 366 (Luo et al., 2019) 

6 
ChemDataExtractor: A Toolkit for Automated Extraction of 

Chemical Information from the Scientific Literature 
2016 322 (Swain & Cole, 2016) 

7 
The Evolution of Chemical High-Throughput Experimentation to 

Address Challenging Problems in Pharmaceutical Synthesis 
2017 211 (Krska et al., 2017) 

8 
Visualization of very large high-dimensional data sets as 

minimum spanning trees 
2020 166 

(Probst & Reymond, 

2020) 

9 
Learning from the Harvard Clean Energy Project: The Use of 

Neural Networks to Accelerate Materials Discovery 
2015 163 

(Pyzer‐Knapp et al., 

2015) 

10 
Machine learning based toxicity prediction: From chemical 

structural description to transcriptome analysis 
2018 137 

(Y. Wu & Wang, 

2018) 

 

The most-cited author is Anatole von Lilienfeld from the Vector Institute and at University of 

Toronto, Canada, with 661 citations across two publications published in 2015 and 2021. But the researcher 
with the most publications related to big data in chemistry is Jacqueline M. Cole (2016, 2020, 2024) from 

the University of Cambridge. Another prominent researcher is Hao Zhu (2020, 2021, 2023) from Rowan 

University. In other word, work’s Anatole provide a strong foundation to be cited, as focused on the 

theoretical field like a physics-based understanding of chemical compound space using machine learning, 
quantum and statistical mechanics, and high-performance computing. Meanwhile research’s Cole and Zhu 

are concerned the specific applied context. Cole is a pioneer in the application of data-mining to discover 

material and automatic text-mining to build databases. Zhu is an expert in the use of public big data and 
molecular structure information to predict the chemical efficacy and toxicity. Interestingly, neighboring 

countries such as Singapore also have researchers engaged in this topic. Markus Kraft from Nanyang 

Technological University, Singapore, is among the researchers contributing to this field. Although Kraft 

only a co-author, his collaboration with UK researchers on the validation of thermodynamic big data could 
open up opportunities for similar researcher to develop in Singapore. 
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Table 3. List 10 authors with the most citations 

No Author Year Citation Ref. 

1 O. Anatole Von Lilienfeld 2015, 2021 661 (Lemm et al., 2021; Ramakrishnan et al., 2015) 

2 Pavlo. O Dral 2015, 2019 612 (Ramakrishnan et al., 2015; X. Wu et al., 2019) 

3 
Raghunathan 

Ramakrishnan 
2015, 2021 609 (Ramakrishnan et al., 2015; Senthil et al., 2021) 

4 Jacqueline M. Cole 
2016, 2020, 

2024 
391 

(Cole, 2020; Jung et al., 2024; Swain & Cole, 

2016) 

5 Jean-Louis Reymond 2016, 2020 255 (Probst & Reymond, 2020; Tetko et al., 2016) 

6 Paola Gramatica 2010, 2011 156 
(Bhhatarai & Gramatica, 2011; Li & Gramatica, 

2010) 

7 Hao Zhu 
2020, 2021, 

2023 
115 

(Chung et al., 2023; Jia et al., 2021; Yan et al., 

2020) 

8 Xian Liu 2014, 2021 74 (Liu et al., 2014; Wang et al., 2021) 

9 Sonia Arrasate 2018, 2020 47 (Bediaga et al., 2018; Santana et al., 2020) 

10 Humbert Gonzalez-diaz 2018, 2020 47 (Bediaga et al., 2018; Santana et al., 2020) 

 
Research on big data in the field of chemistry began in 2003, with only one article published according 

to Scopus. There were no publications from 2004 to 2009. However, the field experienced a peak in 2022, 

with 20 publications emerging that year. Figure 1 displays the number of publications from 2003 to 2024. 
From 2018 to 2022, many studies focused on the development of data analysis methods and tools, involving 

the integration of data and AI. This indicates a strong push for innovation and extensive exploration to adopt 

new technologies, resulting in numerous experimental and discovery-oriented researchs. Subsequently, from 

2023 to 2024, there was a decline due to a shift in research focus and approaches toward the concrete 
application of previously theoritical findings, such as SARS-CoV detection. The complexity of applied 

research, requiring adequate facilities, technological and funding readiness, plays a significant role in trend 

applied studies. 
 

 

 
Figure 1. Number of Articles Per Year from 2003 to 2024 

 
The country with the highest number of big data research publications in chemistry is the United 

States, with 38 articles, followed by China with 32 articles. Figure 2 illustrates the top 10 countries that have 

facilitated the most research on big data in chemistry. Both countries are developed nations that allocate 
substantial budgets to Research and Development (R&D). With significant funding, they possess advanced 

computational infrastructure capable of handling large data volumes. This infrastructure supports 

researchers in performing complex analyses and processing big data efficiently. The United States have the 

most data centers (5.381) and the best university (MIT) for studying data science and AI. Thus, the direction 
of research will refer to the US, where many researchers and their innovation emerge due to good facilities. 

As a result, researchers in other countries will conduct studies based on findings and approaches that have 

already proven effective. In Asia, China stands out as the most serious Asian country in studying big data 
in the field of chemistry. Although China does not have facilities as good as the US, China provides 

substantial funding for its researchers to conduct studies and researches in abroad. The National Natural 

Science Foundation of China (NSFC) is the most frequent sponsor, funding a total of 20 articles. Meanwhile, 

the Chinese Academy of Sciences is the institution that has facilitated the most research, with eight articles 
published under its support.  
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Figure 2. Number of Articles by Country from 2003 to 2024 

 

Citation analysis aims to explore the relationships between publications by identifying the most 

influential publications in a research field (Donthu et al., 2021). Based on the citation analysis results, no 

publication has shown significant influence on the advancement of big data research in chemistry. The 
publication by Ramakrishnan (Ramakrishnan et al., 2015), which has the highest number of connections 

with other publications, is cited by studies conducted by Choi (Choi et al., 2018) and Senthil (Senthil et al., 

2021). Despite Ramakrishnan's publication being cited 603 times, it is not referenced by other research 
specifically examining big data in chemistry. Additionally, Zabolotna (Zabolotna et al., 2022) is linked to 

two publications by Lin  (Lin et al., 2019) and Humbeck (Humbeck et al., 2018), but Zabolotna is cited by 

these works rather than citing them. These findings suggest that researchers in this field are still somewhat 

fragmented and not yet fully interconnected, indicating that a continuous body of knowledge has not yet 
been established. In other words, the research in this area has not yet been thoroughly examined and 

integrated across different researchers. 

 
Figure 3. Visualization of Citation Analysis Results 

 

Co-citation analysis aims to examine the relationships between references to understand the 
development of basic themes in a research field (Donthu et al., 2021). References are interconnected because 

they are cited by the same documents. The more a reference is linked to other references, the more relevant 

it is within the research field. The publication by Rogers & Hahn (Rogers & Hahn, 2010) on "molecular 

fingerprints" is identified as a central node or the most relevant reference, appearing in various research 
contexts. This is due to the capability of molecular fingerprints to numerically represent molecules, making 

them amenable to various analytical methods including machine learning, and their applications in areas 

such as drug discovery and computational simulations. Based on the co-citation results, three clusters 
reflecting core themes within the context of big data in chemistry have been identified cluster 1 (red) 

reflecting themes such as "enhancement of DFT methods," "application of machine learning," and 

"molecular enumeration”, cluster 2 (green) describing themes related to "development of molecular 

fingerprints" and "drug discovery”, cluster 3 (blue) focusing on "application of deep learning." Overall, the 
fundamental themes in big data research in chemistry revolve around the integration of computational 

methods with artificial intelligence. 
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Figure 4. Visualization of Co-citation Analysis Results 

 

Bibliographic coupling aims to analyze the relationships between publications to understand the 

periodic or current development of themes within a research field (Donthu et al., 2021). Publications are 
connected through shared references, indicating that they focus on similar themes. Figure 5 presents the 

visualization of the bibliographic coupling results. Publication by Harari (Harari et al., 2024) is minimally 

connected with other publications due to its focus on a novel topic. It explores the identification and analysis 
of SARS-CoV-2 virus mutations using millions of genomes and language models. The novelty of the topic 

results in limited references to similar works. Despite being published some time ago, publication by Wei 

(Wei et al., 2018) is also minimally connected with other publications. It discusses the use of nano-scale X-

ray spectroscopy to study the morphological evolution and composition of cathode particles in lithium-ion 
batteries, employing big data to identify significant minor phases in operating batteries. The low level of 

connection suggests that this research theme has not been widely explored.  The results indicate that both 

new and underexplored research areas, such as those highlighted, present opportunities for the emergence 
of unique and innovative follow-up studies. 

 
Figure 5. Visualization of Bibliographic Coupling Results 
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Co-word analysis aims to explore the relationships between current or emerging topics in a research 
field by focusing on the content within the publications themselves (Donthu et al., 2021). The results of the 

co-word analysis identified eight clusters: Cluster 1 (cheminformatics, data curation, drug discovery, 

quantitative structure-activity relationship, upper-division undergraduate, virtual screening, workflow), 

Cluster 2 (artificial intelligence, computational chemistry, deep learning, density functional theory, 
dimensionality reduction, emerging technologies, new directions in chemistry research), Cluster 3 (artificial 

neural networks, ChemBL, ligand-based virtual screening, machine learning, multitarget models, 

perturbation theory), Cluster 4 (analytical chemistry, chemometrics, mass spectrometry, omics, Raman 
spectroscopy), Cluster 5 (big data, bioinformatics, cloud computing), Cluster 6 (enthalpy formation, error-

cancelling balance, validation), Cluster 7 (inkjet printing, silver nanoparticles), and Cluster 8 (data mining). 

Figure 6 shows the visualization of the co-word analysis results. 

 
Figure 6. Visualization of Co-word Analysis Results 

 
Based on the co-word analysis, it is observed that the topic of “machine learning” is closely related to 

“big data,” indicating that big data analysis methods frequently employ artificial intelligence, particularly 

machine learning techniques. Additionally, statistical methods such as “chemometrics” and computer 
science approaches like “cheminformatics” are also connected to big data in chemistry. Interestingly, the 

topic of “data mining” forms its own distinct cluster, separate from other topics. Data mining (DM) is a 

subdomain of artificial intelligence (AI) defined as a process aimed at extracting knowledge from data and 

presenting findings comprehensively to users (Schuh et al., 2019).This suggests that the topic of data mining 
has not been widely utilized or explored in the context of chemical research. Consequently, this represents 

a new research opportunity and opens up new directions for chemistry research in the era of big data, 

aligning with its more recent emergence compared to other topics. 

 
Figure 7. Historical Development of Data Analysis (Schuh et al., 2019) 

 
In cluster 1, it is evident that drug discovery involving big data can be more efficient and effective 

when employing the appropriate and systematic steps of "cheminformatics." Cheminformatics is a broad 

term encompassing the design, creation, organization, management, retrieval, analysis, dissemination, 
visualization, and use of chemical information (Arulmozhi & Rajesh, 2011). "Data curation" serves as the 

initial step to ensure that the data to be analyzed is accurate and well-structured. Following this, 
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"Quantitative Structure-Activity Relationship" (QSAR) is utilized—one of the cheminformatics methods 
that is useful for predicting biological activity by analyzing its relationship with chemical structure. Finally, 

"virtual screening" is conducted to evaluate thousands of designs computationally based on the developed 

models. In cluster 2, “deep learning” (DL) plays a crucial role in advancing computational chemistry due to 

its ability to analyze large amounts of data generated from computational methods such as Density 
Functional Theory (DFT). A branch of artificial intelligence (AI) known as machine learning uses 

algorithms to enable robots to learn from data and improve over time (Vrontis et al., 2022). Artificial neural 

networks with many hidden layers are employed in DL, a type of machine learning (ML), to help computers 
learn from vast volumes of data (Howard, 2019). The integration of AI and computation allows for studies 

that were previously difficult to access, thus accelerating new discoveries in chemistry. 

In cluster 3, “artificial neural networks” are an integral part of “machine learning”. One example of 

leveraging machine learning algorithms is in “ligand-based virtual screening”, which is useful for accurately 
evaluating the potential interactions between compounds and biological targets such as proteins. The data 

stored in “ChemBL” can be utilized for this evaluation. The effectiveness of the evaluation can be enhanced 

with “multitarget models”, which allow for the simultaneous assessment of a compound's potential against 
multiple targets. To achieve optimal results, “perturbation theory” is used to predict how small changes in 

variables can affect the overall outcomes. In cluster 4, Mass Spectrometry (MS) instruments significantly 

contribute to generating large volumes of data in measurements. Generally, -omics studies such as genomics, 

proteomics, metabolomics, lipidomics, and glycomics produce big data from MS’s measurement. This data 
can be analyzed using chemometrics, which involves applying statistical and mathematical procedures to 

evaluate experimental data beyond univariate approaches (Inobeme et al., 2022). Chemometrics is 

frequently used in analytical chemistry, for instance, in measurements using Raman spectrometers to test 
food authenticity (Xu et al., 2020). 

In cluster 5, a large amount of biomedical data, such as images and signals including omics data, has 

been accumulating over time. Bioinformatics can be used to analyze this big data. Bioinformatics involves 

using computer science to collect, store, analyze, and disseminate biological data and information. In 
addition to methods like bioinformatics, handling big data can be facilitated by infrastructure through 

internet-based services known as cloud computing. By using these services, large volumes of data can be 

stored, processed, and analyzed with high cost flexibility and scalability. Cloud computing also enables data 
access from various locations and supports team collaboration in data analysis. In cluster 6 and 7, The topics 

are specifically interrelated, which prevents the emergence of patterns that could describe something. 

In cluster 8, the focus is solely on data mining. This indicates that in chemistry, data mining has not 

been explored in depth, and many data mining techniques are still in the exploration phase, with their 
applications in the chemical context not yet fully optimized. A better understanding of how data mining can 

be used to identify patterns and hidden relationships within large chemical datasets can provide deeper 

insights and accelerate discoveries that were previously difficult to achieve or not previously considered. By 
studying deeper into data mining, the expansion of cluster 8 can occur, offering researchers opportunities to 

drive innovation and discover new applications that integrate data mining with cheminformatics and 

bioinformatics, thereby accelerating progress in the field of chemistry. 

Co-author analysis aims to examine social interactions or relationships among authors and their 
affiliations, and their impact on the development of research fields (Donthu et al., 2021). Based on the co-

author analysis, it is observed that researchers do not collaborate with other researchers outside their specific 

study areas. This is evident from the lack of connections between clusters. Similarly, there is a lack of 
collaboration among institutions. This indicates that authors and institutions tend to work independently or 

collaborate only in small groups with minimal cross-group interaction. The negative impact of such a lack 

of collaboration is that big data research in chemistry may face limited perspectives, resulting in reduced 

innovation and slower progress in discoveries or problem-solving. However, international collaborations are 
emerging, with the United States being the most active in collaborating with other countries. China follows, 

although it more frequently collaborates with countries in the same region, such as Japan, Hong Kong, 

Australia, and Singapore. Figure 8 displays the visualization of co-author analysis by country.  
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Figure 8. Visualization of Co-author Analysis by Country 

Conclusion  

This study was conducted to examine trends in big data research in chemistry as recorded in the 

Scopus database using bibliometric analysis. The bibliometric analysis technique employed is science 
mapping using the VOSviewer visualization software. The study's findings indicate that (1) the most 

impactful researcher is Pavlo O. Dral, while the most contributing researchers are Jacqueline M. Cole and 

Hao Zhu. The United States is the leading country in facilitating big data research in chemistry, followed by 

China. (2) Citation analysis reveals that researchers in this field are still fragmented, leading to research that 
is not fully explored in a continuous and in-depth manner. Co-citation analysis identifies that the core theme 

of big data research in chemistry is the integration of computation with artificial intelligence. Co-author 

analysis shows that researchers do not collaborate extensively with others, working independently or only 
in small groups. This lack of collaboration results in limited perspectives, hindering innovation and slowing 

down research progress. Co-word analysis identifies frequently discussed topics such as "machine learning," 

"chemometrics," "cheminformatics," and "deep learning." (3) The topic of "data mining" has not been 

extensively explored within the context of chemical research, presenting a new research opportunity and the 
potential to open new directions in chemistry research in the big data era. 
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