Population mapping in Kudus Regency using spectral built-up index with Google Earth Engine

Authors

  • Trida Ridho Fariz Universitas Negeri Semarang Author
  • Dewi Liesnoor Setyowati Universitas Negeri Semarang Author
  • Meilinda Damayanti UP Los Baños Author
  • Dwi Rahmawati Universitas Negeri Semarang Author
  • Ely Nurhidayati Universitas Tanjungpura Author

Keywords:

Mapping population, Gridded population data, Built-up indices, Landsat 8, Google Earth Engine

Abstract

Population data plays a pivotal role in environmental management and regional development. However, a significant challenge in Indonesia lies in the reliance on administrative boundaries for population data, hindering integration with physical environmental boundaries like watersheds or ecoregions. This article endeavors to map grid-based population distribution in Kudus Regency. Data sources encompass Landsat 8 satellite imagery, SRTM DEM, land cover maps (SHP), and census population data. The research methodology involves creating a settlement map via machine learning on Google Earth Engine, followed by the development of built-up land index transformations (NDBI, VrNIR-BI, VgNIR-BI) and subsequent linear regression analysis. Findings reveal that the grid-based population map derived from VrNIR-BI demonstrates superior accuracy compared to other indices. Errors in population mapping primarily stem from the amalgamation of dry agricultural land and non- settlement built-up land within the indices. Addressing this challenge entails employing a built-up land index capable of effectively discerning built-up areas from open land while accurately delineating urban and rural regions.

References

Amalia, AV, Fariz, TR, Lutfiananda, F., Ihsan, HM, Atunnisa, R., & Jabbar, A. (2024). Comparison of SWAT-based ecohydrological modeling in Rawa Pening Catchment Area, Indonesia. Indonesian Journal of Science Education , 13 (1).

Aubrecht, C., Özceylan, D., Steinnocher, K., & Freire, S. (2013). Multi-level geospatial modeling of human exposure patterns and vulnerability indicators. Natural Hazards, 68(1), 147-163.

As-syakur, A., Adnyana, I., Arthana, IW, & Nuarsa, IW (2012). Enhanced built-up and bareness index (EBBI) for mapping built-up and bare land in an urban area. Remote Sensing, 4(10), 2957-2970.

Kudus Regency Central Statistics Agency. 2017. Kudus Regency in Figures for 2017. Kudus: BPS Kudus Regency

Central Java Province Central Statistics Agency. 20 21 . Central Java Province in Figures for 20 21 . Semarang: BPS Provincial Central Java

Deville, P., Linard, C., Martin, S., Gilbert, M., Stevens, F.R., Gaughan, A.E., ... & Tatem, A.J. (2014). Dynamic population mapping using mobile phone data. Proceedings of the National Academy of Sciences, 111(45), 15888-15893.

Estoque, R.C., & Murayama, Y. (2015). Classification and change detection of built-up lands from Landsat-7 ETM+ and Landsat-8 OLI/TIRS images: A comparative assessment of various spectral indices. Ecological indicators, 56, 205-217.

Fariz, TR, & Nurhidayati, E. (2020). Mapping Land Coverage in the Kapuas Watershed Using Machine Learning in Google Earth Engine. Journal of Applied Geospatial Information, 4(2), 390-395.

Fariz, TR, & Faniza, V. (2023). Comparison of built-up land indices for building density mapping in urban environments. In AIP Conference Proceedings (Vol. 2683, No. 1). AIP Publishing.

Fecht, D., Cockings, S., Hodgson, S., Piel, F.B., Martin, D., & Waller, L.A. (2020). Advances in mapping population and demographic characteristics at small-area levels. International journal of epidemiology, 49(Supplement_1), i15-i25.

Hall, O., Bustos, M.F.A., Olén, N.B., & Niedomysl, T. (2019). Population centroids of the world administrative units from nighttime lights 1992-2013. Scientific data, 6(1), 1-8.

Hinkle, D. E., Wiersma, W., & Jurs, S. G. (2003). Applied statistics for the behavioral sciences (Vol. 663). Houghton Mifflin College Division.

Ischak. 1993. The role of maps in the field of population. Educational Horizons Number 1, Year XII, February 1993

Kaimaris, D., & Patias, P. (2016). Population estimation in an urban area with remote sensing and geographical information systems. International Journal of Advanced Remote Sensing and GIS, 5(6), 1795-1812.

Ministry of Environment and Forestry. (2019). Guidebook: Determining the Carrying Capacity and Capacity of the Regional Environment. Jakarta: Directorate General of Forestry Planning and Environmental Management, KLHK.

Khomarudin, M.R., Strunz, G., Ludwig, R., Zoßeder, K., Post, J., Kongko, W., & Pranowo, W.S. (2010). Hazard analysis and estimation of people exposure as contribution to tsunami risk assessment in the west coast of Sumatra, the south coast of Java and Bali. Zeitscrift fuer Geomorphologie, Supplementary Issues, 54(3), 337-356.

Kienberger, S. (2012). Spatial modeling of social and economic vulnerability to floods at the district level in Búzi, Mozambique. Natural Hazards, 64(3), 2001-2019.

Leyk, S., Gaughan, A.E., Adamo, S.B., de Sherbinin, A., Balk, D., Freire, S., ... & Pesaresi, M. (2019). The spatial allocation of population: a review of large-scale gridded population data products and their fitness for use. Earth System Science Data, 11(3), 1385-1409.

Li, L., & Lu, D. (2016). Mapping population density distribution at multiple scales in Zhejiang Province using Landsat Thematic Mapper and census data. International Journal of Remote Sensing, 37(18), 4243-4260.

Lu, Z., Im, J., & Quackenbush, L. (2011). A volumetric approach to population estimation using LiDAR remote sensing. Photogrammetric Engineering & Remote Sensing, 77(11), 1145-1156.

Ma, T. (2018). Multi-level relationships between satellite-derived nighttime lighting signals and social media–derived human population dynamics. Remote Sensing, 10(7), 1128.

Moos, N., Juergens, C., & Redecker, A.P. (2021). Geo-Spatial Analysis of Population Density and Annual Income to Identify Large-Scale Socio-Demographic Disparities. ISPRS International Journal of Geo-Information, 10(7), 432.

Nuissl, H., & Siedentop, S. (2021). Urbanization and Land Use Change. In Sustainable Land Management in a European Context (pp. 75-99). Springer, Cham.

Oliphant, A.J., Thenkabail, P.S., Teluguntla, P., Xiong, J., Gumma, M.K., Congalton, R.G., & Yadav, K. (2019). Mapping cropland extent of Southeast and Northeast Asia using multi-year time-series Landsat 30-m data using a random forest classifier on the Google Earth Engine Cloud. International Journal of Applied Earth Observation and Geoinformation, 81, 110-124.

Patel, N.N., Angiuli, E., Gamba, P., Gaughan, A., Lisini, G., Stevens, F.R., ... & Trianni, G. (2015). Multitemporal settlement and population mapping from Landsat using Google Earth Engine. International Journal of Applied Earth Observation and Geoinformation, 35, 199-208.

Kudus Regency Government. 2012. Kudus Regency Regional Regulation Number 16 of 2012 concerning Kudus Regency Spatial Planning for 2012-2032. Kudus: Kudus Regional Government

Peng, Z., Wang, R., Liu, L., & Wu, H. (2020). Fine-Scale Dasymetric Population Mapping with Mobile Phone and Building Use Data Based on Grid Voronoi Method. ISPRS International Journal of Geo-Information, 9(6), 344.

Piyoosh, A.K., & Ghosh, S.K. (2018). Development of a modified bare soil and urban index for Landsat 8 satellite data. Geocarto International, 33(4), 423-442.

Rakuasa, H., & Lasaiba, M.A. (2024). Future Population Prediction 2050 Of Banten Province, Jakarta, West Java, Central Java, Special Region of Yogjakarta, East Java, Using Worldpop Data With Google Earth Engine. Journal of Data Analytics, Information, and Computer Science , 1 (2), 79-86.

Romdhoni, MF (2020). The Use of Landsat Image and Census Data for Modeling Population Density and Urban Density in Palembang, Indonesia. Journal of Architectural Research and Design Studies, 4(2), 67-76.

Setiyono , Y. R. , Aulia, Y. H., & Widayani, P. (2017). Spatiotemporal Built-up Land Density Mapping Using Various Spectral Indices in Landsat-7 ETM+ and Landsat-8 OLI/TIRS (Case Study: Surakarta City). IOP Conference Series: Earth and Environmental Science (Vol. 98, No. 1, p. 012006). IOP Publishing.

Sukristiyanti, R. Suharyadi., Jatmiko, RH (2007). Evaluation of urban indices on multi-temporal Landsat images in building density extraction. Journal of Geological and Mining Research, 17, 1-10.

Wagle, N., Acharya, T.D., Kolluru, V., Huang, H., & Lee, D.H. (2020). Multi-temporal land cover change mapping using Google Earth Engine and ensemble learning methods. Applied Sciences, 10(22), 8083.

Wang, L., Wang, S., Zhou, Y., Liu, W., Hou, Y., Zhu, J., & Wang, F. (2018). Mapping population density in China between 1990 and 2010 using remote sensing. Remote sensing of environment, 210, 269-281.

Wolff, M., Haase, D., & Haase, A. (2018). Compact or spread? A quantitative spatial model of urban areas in Europe since 1990. PloS one, 13(2), e0192326.

Wu, C. D., & Lung, S. C. C. (2012). Applying GIS and fine-resolution digital terrain models to assess three-dimensional population distribution under traffic impacts. Journal of exposure science & environmental epidemiology, 22(2), 126-134.

Xi, Y., Thinh, N.X., & Li, C. (2019). Preliminary comparative assessment of various spectral indices for built-up land derived from Landsat-8 OLI and Sentinel-2A MSI imageries. European Journal of Remote Sensing, 52(1), 240-252.

Xu, R. (2021). Mapping rural settlements from landsat and sentinel time series by integrating pixel-and object-based methods. Land, 10(3), 244.

Yulianto, F., Tjahjono, B., & Anwar, S. (2014). Detection of settlements and population distribution using GIS and remotely sensed data, in the surrounding area of Merapi Volcano, Central Java, Indonesia. Int. J. Emerg. Technol. Adv. Eng., 4(3), 1-10.

Zha, Y., Gao, J., & Ni, S. (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International journal of remote sensing, 24(3), 583-594.

Zhang, Y., Shen, W., Li, M., & Lv, Y. (2020). Assessing spatio-temporal changes in forest cover and fragmentation under urban expansion in Nanjing, eastern China, from long-term Landsat observations (1987–2017). Applied Geography, 117, 102190.

Zhuang, H., Liu, X., Yan, Y., Ou, J., He, J., & Wu, C. (2021). Mapping Multi-Temporal Population Distribution in China from 1985 to 2010 Using Landsat Images via Deep Learning. Remote Sensing, 13(17), 3533.

Zulkarnain, F., Manessa, MDM, Suseno, W., Bakhtiar, R., Safaryanto, AN, & Widjaja, BW (2019). People in pixels: developing remote sensing-based geodemographic estimation through volunteered geographic information and crowdsourcing. In Remote Sensing Technologies and Applications in Urban Environments IV (Vol. 11157, p. 111570A). International Society for Optics and Photonics.

Downloads

Published

2024-12-01

Article ID

7662