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 This study aims to assess the potential of bio-char derived from Moringa oleifera seeds 

through an evaluation of its physical and chemical properties. Moringa oleifera seeds were 

processed into fine powder, dried, and then subjected to pyrolysis at 400°C using a 

microwave reactor. Nitrogen gas was introduced before and during the pyrolysis process to 

create a low-oxygen environment. The pyrolysis continued until no more condensable vapors 
were detected, indicating that the thermal decomposition process had reached completion. 

The resulting bio-char was collected and analyzed to determine its physical and chemical 

characteristics, including proximate analysis (moisture content, ash content, volatile matter, 

and fixed carbon), calorific value, and density. The results showed that the bio-char from 

Moringa oleifera seed powder had a very high fixed carbon content of 79.13% and low 

volatile matter. The calorific value reached 25.04 MJ/kg, which is comparable to that of low-

rank coal. Additionally, the bio-char had a density of 0.905 g/cm³, which is relatively high 

compared to most biomass-derived bio-chars. These characteristics indicate that bio-char 

from Moringa oleifera seeds holds significant potential for use as a solid fuel in the form of 

briquettes or pellets, as a biomass energy source, and as a long-term carbon storage medium 

for climate change mitigation. 
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INTRODUCTION 

 

The global dependence on fossil fuels has 

been a major concern in recent decades. This is due 

to their non-renewable nature and adverse impact 

on the environment. Fossil fuels, including 

petroleum, coal and natural gas, were formed over 

millions of years and will run out if continuously 

exploited at current consumption rates. Fossil fuel 

reserves are limited, which are expected to be 

depleted in 50-70 years if no new fields are found as 

fossil energy sources (Yana et al., 2022). In addition 

to scarcity issues, the use of fossil fuels contributes 

significantly to global climate change. Burning 

fossil fuels releases greenhouse gases, mainly 

carbon dioxide (CO2), which causes global 

warming. Two-thirds of the increase in global 

energy demand in 2023 is met by fossil fuels, which 

drives increased CO2 emissions (IEA, 2024). The 

Intergovernmental Panel on Climate Change 

(IPCC) reports that CO2 emissions from fossil fuel 

combustion and industrial processes accounted for 

about 78% of the total increase in greenhouse gas 

emissions from 1970 to 2010 (Hood, 2005). To 

address this, one of the most promising potential 

renewable energy sources is biomass. Biomass can 

be sourced from forestry, agriculture, and water as 

feedstock for energy production (Radhiana et al., 

2023). 

The abundant availability of biomass 

worldwide and its easy availability from 

agricultural by-products and industrial processes 
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make it a high potential renewable energy source 

(Perea-Moreno et al., 2019). The constraint in 

utilizing biomass waste as an energy source lies in 

the nature of raw (untreated) biomass, which 

generally has a low energy density value, high 

moisture content, and a high content of fly ash 

compared to fossil fuels such as coal (Mamvura & 

Danha, 2020). A promising approach is the 

utilization of biomass for bio-char production 

through pyrolysis, which has potential as a 

renewable energy source (Lehmann & Joseph, 

2024). Bio-char is one of the main products of 

pyrolysis, in addition to bio-oil and gas, which can 

also be utilized as a sustainable alternative energy 

source (Powar & Gangil, 2013). 

The advantages of using energy from 

biomass include providing an environmentally 

friendly source of energy and increasing the 

efficiency of agricultural resource utilization 

(Haryanti et al., 2018). One biomass that is suitable 

for conversion to bio-char is Moringa oleifera seeds. 

Previous research results show that Moringa 

oleifera seeds contain relatively high carbon 

(>77.6%) and moderate oxygen (<19.7%) on 

average, resulting in an O/C ratio of 0.25, which is 

comparable to lignite coal at 0.21. Therefore, 

Moringa oleifera seeds have the potential to be 

converted into char (bio-char) and liquid (bio-oil) 

products through pyrolysis  (Sukarni et al., 2024). 

Pyrolysis, a thermal decomposition of organic 

materials in low oxygen conditions, is used to 

convert biomass into bio-char. This process 

produces a solid product with low moisture content 

and higher energy compared to the initial biomass. 

The properties of bio-char are influenced by various 

technological parameters, especially pyrolysis 

temperature and feedstock type. Differences in 

these parameters can result in products with varying 

pH values, specific surface area, pore volume, 

volatile matter, ash content, and carbon content 

(Tomczyk et al., 2020). 

From a molecular perspective, bio-char 

exhibits a more stable structure than the original 

carbon present in its raw biomass feedstock. This 

stability suggests that bio-char is more resistant to 

degradation back into CO₂ (Asmunandar et al., 

2023). Bio-char has potential applications in soil 

quality improvement while simultaneously acting 

as a carbon sink, whereas the oil and gas products 

from the pyrolysis process can be utilized as sources 

of energy and heat (Dolah et al., 2021). 

Additionally, bio-char derived from biomass 

pyrolysis has potential as an alternative fuel with 

high calorific value, which can positively influence 

combustion temperature, duration, and overall 

efficiency (Iskandar et al., 2021). 

The research conducted by Aini et al., 

(2023) using waste materials such as twigs, leaves, 

and tea fluff with pyrolysis temperature variations 

between 300-500°C, showed that bio-char from tea 

twigs better meets the criteria for high-quality bio-

char according to SNI 1683:2021. This is due to the 

high carbon content in tea twigs, which is more than 

40%. Thus, it can be concluded that carbon content 

and pyrolysis temperature affect the quality of the 

resulting bio-char. The use of Moringa oleifera 

seeds, which have high carbon content (>77.6%), is 

expected to produce bio-char with better 

characteristics. 

Although various studies have shown the 

potential of biomass as a renewable energy source, 

research on the utilization of Moringa oleifera seeds 

specifically as a raw material for bio-char is still 

limited, especially in the context of optimizing 

pyrolysis parameters and comprehensive 

characterization of its physical and chemical 

properties. Most previous studies have focused on 

agricultural waste such as twigs, leaves, and other 

organic residues, which generally have lower 

carbon content. Meanwhile, Moringa oleifera seeds 

have high fixed carbon content and an O/C ratio 

comparable to lignite coal, indicating great 

potential as an alternative solid fuel. Additionally, 

there is a lack of research that comprehensively 

examines the relationship between pyrolysis 

temperature and important parameters such as 

density, calorific value, ash content, and stability of 

bio-char from Moringa oleifera seeds. Therefore, 

this research is important to enrich scientific 

information on the utilization of Moringa oleifera 

seeds as a raw material for high-quality bio-char. 

The findings of this study are expected to contribute 

scientifically to the development of more efficient 

and sustainable biomass energy, while expanding 

the potential applications of bio-char in the energy 

and environmental sectors. 

 

MATERIALS AND METHOD 

 

This research uses Moringa oleifera 

(Moringa) seed powder as raw material. Before 

being pyrolyzed, Moringa oleifera seed powder was 

dried at 60℃ for 24 hours and sieved using a mesh 
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size of 20. The Moringa oleifera seed powder is 

shown in Figure 1. 

 

 
Figure 1. Moringa oleifera seed powder. 

 

The raw materials are then pyrolyzed using 

a microwave reactor as the heating media. 

Microwaves are electromagnetic waves with a very 

high frequency, generally 2450 MHz with a 

wavelength of 12.24 cm (Anis et al., 2020). 

Microwave assisted pyrolysis is faster and more 

efficient in producing products compared to 

conventional heating. Microwave heating can 

accelerate the pyrolysis process where heat arises 

from within the material, allowing more 

homogeneous heating and the heating rate can be 

faster (Anis et al., 2018). A schematic of the 

pyrolysis process using a microwave reactor can be 

seen in Figure 2. 

 

 
Figure 2.  Schematic diagram of pyrolysis using 

microwave technology (Anis et al., 

2020). 
 

The microwave-based pyrolysis process in 

this study utilized a 1-liter ceramic vessel as the 

external reactor and a 250 mL Pyrex beaker as the 

internal reactor. The external reactor contained a 

microwave absorber to convert microwave energy 

into thermal energy, while the internal reactor held 

the biomass feedstock for pyrolysis. The use of these 

two reactor types was intended to facilitate the 

separation of the absorber and the resulting bio-

char, enabling accurate measurement of the bio-

char yield. The external reactor was connected to a 

stainless steel pipe serving as the vapor outlet. The 

temperature inside both the internal reactor and the 

microwave oven chamber was monitored using K-

type thermocouples. These thermocouples were 

connected to a thermocontroller to regulate the 

pyrolysis process temperature. Prior to and during 

the pyrolysis process, nitrogen gas was introduced 

into the reactor at a flow rate of 0.15 NL/min. 

The vapor exiting the pipe was condensed 

using a Leibig condenser or double-tube condenser 

(300 mm long) and cooled with water. The bio-oil 

resulting from condensation was collected in a 500 

ml container. This pyrolysis process used 100 g of 

raw material inserted into the internal reactor, and 

100 g of granular activated carbon inserted into the 

external reactor as a microwave energy absorber. 

The pyrolysis experiment was conducted at a 

temperature of 400°C. After reaching the target 

temperature, the pyrolysis temperature was 

maintained for 120 minutes.  

Collection of pyrolysis products was done 

after the bio-oil stopped flowing from the 

condenser, and then the bio-char could be taken 

after the reactor cooled down. The yield of bio-char 

product was weighed using a balance. Further 

characterization of the physical and chemical 

properties of the pyrolysis bio-char product was 

conducted, including calorific value (ASTM D-

240), density (ASTM B-311-17), and proximate 

analysis including ash content (Ash) using ASTM 

D-3174-12, moisture content (MC) using ASTM D-

3173-17, volatile matter (VM) using ASTM D-

3175-17, and fixed carbon (FC) using ASTM D 

3172-13. 

 

RESULTS AND DISCUSSION 

 

Figure 3 shows the results of proximate 

analysis (moisture content, volatile matter, ash 

content, and fixed carbon) of bio-char from 

pyrolysis of Moringa oleifera seeds at a temperature 

of 400°C. 

Based on Figure 3, the Moringa oleifera 

seed bio-char has a low volatile matter (VM) 

content of 5.09%, a very high fixed carbon (FC)  
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Table 1. Comparison of VM, FC, and Ash composition of Moringa oleifera seed bio-char with bio-char from 

other biomass. 

Bio-char 
VM 

(wt.%) 

FC 

(wt.%) 

Ash 

(wt.%) 
Reference 

Moringa oleifera seeds 5.09 79.13 15.78 This research 

Pine nut shells 41.08 57.38 1.54 (Qin et al., 2020) 

Soybean straw 25.93 54.14 19.93 (Xu et al., 2021) 

Coffee husks 41.8 41.9 16.29 (Del Pozo et al., 2022) 

Olive mill waste 33.55 61.7 4.8 (Del Pozo et al., 2022) 

Durian peels 33.48 55.09 11.43 (Manmeen et al., 2023) 

 

content of 79.13%, and an ash content of 15.78%. 

The exceptionally high FC content is a key 

indicator that this bio-char contains a substantial 

amount of stable carbon, which burns slowly while 

releasing maximum energi (Chandrasekaran et al., 

2024). This makes Moringa oleifera seed bio-char a 

highly promising candidate for high-quality solid 

fuels, such as carbon briquettes, pellets, or blends 

for biomass power generation.  

 

 
Figure 3. Composition of MC, VM, FC, and Ash 

in bio-char produced from the pyrolysis 

of Moringa oleifera seeds. 
 

The FC value of Moringa oleifera seeds is 

higher compared to other materials, as shown in 

Table 1, including olive mill waste (61.7%), pine nut 

shells (57.38%), and durian shells (55.09%). On the 

other hand, the low VM content (5.09%) indicates 

high chemical and thermal stability. Bio-char with 

low VM is more resistant to biological 

decomposition and does not easily ignite 

spontaneously, making it suitable for long-term 

storage and carbon sequestration applications 

(Rodrigues et al., 2023). In comparison, bio-char 

from coffee husk and pine nut shells has very high 

VM content, 41.8% and 41.08% respectively, which 

means it is more reactive to rapid combustion but 

less stable for long-term storage or use. 

However, the ash content of Moringa 

oleifera seed bio-char is quite high (15.78%), 

indicating that the solid residue after combustion is 

more than other materials such as pine nut shells 

(1.54%) and olive mill waste (4.8%). This can be a 

constraint in combustion systems that require high 

efficiency or require regular cleaning. Nevertheless, 

the ash content can be a added value if the bio-char 

is used as a soil ameliorant, because the ash 

contains minerals that can increase soil fertility, 

depending on its composition (Asirifi et al., 2025) 

Overall, the proximate profile of Moringa 

oleifera seed bio-char shows an optimal balance for 

energy and environmental applications, namely 

high FC for efficient and long-lasting combustion, 

low VM for stability and storage safety, and ash that 

can be utilized in agricultural applications. This 

combination makes Moringa oleifera seed bio-char 

a superior material in the development of renewable 

bioenergy, as well as a biomass-based solution for 

carbon management and soil improvement. 

Calorific value can be defined as the heat 

released from the combustion of a certain quantity 

of fuel (mass). Table 2 shows the calorific value of 

Moringa oleifera seed bio-char and its comparison 

with bio-char from other biomass. Based on the 

data, Moringa oleifera seed bio-char produced by 

pyrolysis at 400°C has a high calorific value of 25.04 

MJ/kg, surpassing all other types of raw materials 

in the table, including coffee husk (24.18 MJ/kg), 

durian husk (24.49 MJ/kg), mixed wood waste 

(24.65 MJ/kg), and even olive mill waste (23.0 

MJ/kg). Meanwhile, bio-char from bagasse 

recorded the lowest calorific value, only 11.29 

MJ/kg, indicating relatively low energy quality. 

The high calorific value of Moringa 

oleifera seed bio-char indicates a high fixed carbon 

(FC) content and relatively low volatile matter 

(VM) content, making it highly suitable for use as a 

solid fuel in the form of briquettes, pellets, or blends 

in biomass combustion systems for both household 

and industrial scales. This energy content >25 

MJ/kg approaches the calorific value of low-grade 
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coal, making it a potential substitute for fossil fuels 

in certain applications. Additionally, the high 

calorific value indicates good combustion efficiency 

and can reduce the amount of residue (ash) after the 

combustion process, which is highly beneficial from 

an operational standpoint (Anis et al., 2021; 

Venkatesh et al., 2022). 

 

Table 2. Comparison of the calorific value of 

Moringa oleifera seed bio-char with bio-

char from other biomass sources. 

Bio-char 

Calorific 

Value 

(MJ/kg) 

Reference 

Moringa 

oleifera seeds 

25.04 This research 

Sugarcane 

bagasse 

11.29 (Stegen, 2018) 

Olive mill waste 23.0 (Del Pozo et al., 

2022) 

Coffee husks 24.18 (Del Pozo et al., 

2022) 

Durian peels 24.49 (Manmeen et al., 

2023) 

Mixed wood 

waste 

24.65 (Suresh Babu et 

al., 2024) 

 

Compared to bio-char from other raw 

materials such as agricultural waste or fruit peels, 

Moringa oleifera seed bio-char not only excels 

thermally but also has a more stable structure. The 

combination of high calorific value and dense 

structure reinforces its position as a multifunctional 

bio-char, not only as a fuel but also as a long-term 

carbon storage, filler material in composite 

materials, or slow-decomposing growing medium. 

In contrast, bio-char from bagasse with a 

calorific value of only around 11.29 MJ/kg is less 

ideal for energy applications but can still be utilized 

for other applications such as improving soil cation 

exchange capacity, heavy metal adsorption, or 

organic waste management, where calorific value is 

not the primary parameter (Zafeer et al., 2024). 

Thus, bio-char from Moringa oleifera seeds shows 

overall superiority for renewable energy 

applications and can be a strategic alternative in the 

development of bioenergy based on tropical 

biomass waste. 

Table 3 shows the density of Moringa 

oleifera seed bio-char and its comparison with bio-

char from other biomass. Density is a measurement 

of mass per unit volume of a substance. The greater 

the density of a substance, the greater the mass per 

unit volume. Density serves to determine the 

density of a substance, as each substance has a 

different density. 

 

Table 3.  Comparison of the density of Moringa 

oleifera seed bio-char with bio-char from 

other biomass sources. 

Bio-char 
Density 

(g/cm3) 
Reference 

Moringa 

oleifera seeds 

0.905 This research 

Sugarcane 

bagasse 

0.47 (Singh et al., 2019) 

Rice husk 0.60 (Singh et al., 2019) 

Olive mill 

waste 

0.39 (Del Pozo et al., 

2022) 

 

The density of bio-char is an important 

indicator that reflects the level of density of carbon 

material produced by pyrolysis, and has direct 

implications for the performance of bio-char in 

various applications, including as a solid fuel, 

adsorbent, and soil ameliorant (Li et al., 2023). 

Based on data from pyrolysis at 400°C, bio-char 

from Moringa oleifera seeds has the highest density, 

which is 0.905 g/cm³, far exceeding the density of 

bio-char from rice husk (0.60 g/cm³), bagasse (0.47 

g/cm³), and olive mill waste (0.39 g/cm³). High 

density indicates that the structure of bio-char from 

Moringa oleifera seeds is very dense and compact, 

with a low level of porosity. This characteristic 

makes it very stable and durable against 

decomposition, making it ideal for long-term 

applications such as carbon sequestration in soil 

and as a soil filler or stabilizer. 

In the context of energy, high density 

contributes to a high volumetric calorific value, 

meaning more energy can be generated per unit 

volume of material (Santos et al., 2024). This makes 

Moringa oleifera seed bio-char highly potential as 

an alternative solid fuel, especially in the form of 

briquettes or pellets. Bio-char with high density will 

produce longer and more stable combustion, and is 

easy to package and store due to its smaller volume 

per unit mass. However, low porosity also means 

limited surface area, which may limit the 

effectiveness of this bio-char in applications that 

require high adsorption capacity, such as 

wastewater treatment or as a growing medium 

(Haris et al., 2024). 



 Muhammad Ziddun Ni’am et al. / JBAT 14 (2) (2025) 74 - 81 

 

79 
 

Conversely, bio-char from raw materials 

such as olive waste and bagasse, which have lower 

density, are lighter and more porous, tend to be 

more suitable for adsorption applications or 

improving water and nutrient retention in soil. 

Thus, the density characteristics of bio-char need to 

be carefully considered based on its intended use. 

Bio-char from Moringa oleifera seeds, with its high 

density, is well-suited for applications as a solid 

fuel, long-term carbon storage, and solid structure 

material in construction or environmental fields, 

but is less ideal for applications that require high 

porosity. The choice of bio-char raw material 

should be tailored to the physical properties 

required by its end-use application. 

 

CONCLUSION 

 

The biochar produced from pyrolysis of 

Moringa oleifera seeds at a temperature of 400°C 

exhibits superior properties as a solid fuel. The very 

high fixed carbon content (79.13%) accompanied 

by low volatile matter (5.09%) reflects efficient 

combustion and good thermal stability, making it 

suitable for use in energy systems such as briquettes, 

pellets, and biomass power plants. Although the ash 

content is relatively high (15.78%), this 

characteristic provides an opportunity for utilizing 

bio-char as a soil ameliorant, making it also relevant 

for environmental applications. With a calorific 

value reaching 25.04 MJ/kg, this bio-char surpasses 

most other biomass and approaches the calorific 

value of low-grade coal. This indicates the potential 

of Moringa oleifera seed bio-char as a high-energy 

source that can be a viable alternative to fossil fuels 

in the development of renewable energy. 

Physically, this bio-char has a high density (0.905 

g/cm³), indicating a dense structure that is resistant 

to decomposition, thereby supporting its use for 

long-term carbon storage or as a structural filler 

material. 
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