

Jurnal Pendidikan IPA Indonesia

https://journal.unnes.ac.id/journals/jpii

CONTEXTUAL LEARNING WITH MEGAPODIUS REINWARDT ECOTOURISM: A SUSTAINABLE EDUCATION APPROACH AND ITS IMPACT ON STUDENTS' SCIENCE PROCESS SKILLS

M. Yamin¹, A. W. Jufri¹, Jamaluddin¹, M. T. Borhan², B. S. W. Hardianti¹

¹Biology Education Study Program, Faculty of Teacher Training and Education, Universitas Mataram, Indonesia ²Biology Study Program, Faculty of Science and Mathematics, Universitas Pendidikan Sultan Idris, Malaysia

DOI: 10.15294/jpii.v14i4.31292

Accepted: July 28th, 2025. Approved: December 22nd, 2025. Published: December 22nd, 2025

ABSTRACT

This study examines the potential of Megapodius reinwardt as an ecotourism attraction and learning resource, as well as the implications of ecotourism-based contextual teaching and learning (CTL) on students' science process skills. The approach employed was a mixed-methods design in both the experimental and control classes. Science process skills data were collected through observation and written pre-tests and post-tests in both groups. Data analysis was conducted both quantitatively and descriptively, as well as qualitatively. Quantitative analysis was conducted on ecological indices, resource use, and the implications of CTL on science process skill. The seven groups of experimental students identified 14-16 characteristics of M. reinwardt, including eight unique aspects: nests in the form of mounds of soil mixed with litter, built cooperatively, used collectively, repeatedly, large eggs, buried in the ground, do not incubate their eggs, and do not raise young. Four environmental factors have a big effect on how many M. reinwardt there are: how far away they are from the river channel, what kind of trash they are in, how bright the light is, and how dense the vegetation is. The N-gain analysis of post-test scores between the experimental and control classes, employing the Mann-Whitney Test, produced an Asymp Sig value of 0.00 ≤ 0.05, signifying a substantial enhancement in students' science process skills within the experimental class. Ecotourism-based CTL has beneficial and substantial effects on students' scientific process skills while concurrently facilitating the achievement of the Sustainable Development Goals (SDGs) through community empowerment, economic enhancement, environmental preservation, and the advancement of sustainable education.

© 2025 Science Education Study Program FMIPA UNNES Semarang

Keywords: contextual learning; conservation; ecotourism; sustainable

INTRODUCTION

There are big changes happening in many areas of human life today. Therefore, learning is necessary to teach theoretical ideas and help people understand them in a way that links them to real-life situations. However, the delivery is still theoretical and doesn't give any context, which makes it hard for students to understand and appreciate local resources. One way to learn

about *M. reinwardt* is to see ecotourism as a real way to learn and a resource. Students develop their comprehension of the world through engagement with the environment, experiences, and social interactions (Mohammed & Kinyó, 2020). The Contextual Teaching and Learning (CTL) method helps students connect what they learn with real-life situations, which helps them understand biological concepts better and in a more meaningful way. This is because they learn in a relevant, interesting, and fun way (Kolb, 2014; Eticha et al., 2024; Okeke et al., 2025). Field exp-

loration activities can improve students' comprehension of local environmental issues and their significance to the environmental biology curriculum (Yani et al., 2021). Learning experiences that take place in the environment help people learn how to observe, measure, classify, make hypotheses, interpret data, and solve scientific problems (Liu et al., 2024). These abilities, known as science process skills, are the building blocks of scientific knowledge.

Science process skills are important for success because they enhance competitive advantage and productivity, and overcome problems and boredom (Al-Thani & Ahmad, 2025). Science process skills are necessary for achievement in the 21st century (Nabhan & Habók, 2025). Contextual Teaching and Learning (CTL) is a way to learn that gives a variety of these skills. This approach has demonstrated efficacy in enhancing scientific process skills and correlating instructional content with real-world contexts (Kadmayana et al., 2021). Students in the experimental class learned concepts much better than those in the control class, which used an environment-based learning approach (Arisma et al., 2024).

Ecotourism provides genuine educational experiences and serves as an effective medium and resource for learning, fostering environmental awareness and concern while augmenting the understanding of biological concepts (Aswita et al., 2018; King et al., 2024). Jeronen et al. (2016) say that learning outside makes students more motivated and helps them do better in school. Students can learn more and become better readers by observing birds in the wild. For instance, they can learn to tell the difference between 60% more bird species and 46% more about how to collect and analyze data. Lema and Dewi (2023) also said that making an e-module about biodiversity in protected areas greatly improves students' learning and their understanding of why it is important to protect the environment. Mashfufah et al. (2018) underscored the significance of environmental literacy for future biology educators in tackling sustainable ecological issues. Ecotourism is a type of learning that takes place outside. Birdwatching ecotourism is a popular activity for tourists these days (Schwoerer & Dawson, 2022; Pintassilgo et al., 2023; Ocampo-Peñuela et al., 2025).

Birdwatching is a popular activity for many people, including students and future biology teachers, who help protect birds by doing field studies that include ecotourism. Ecotourism is a way to protect the environment and manage resources in a way that will last (Luong, 2025).

Ecotourism also helps protect many other species. Using resources through ecotourism is in line with conservation goals to improve the economic and educational benefits of communities (Shah & Ramesh, R., 2022; Bricker & Snyman, 2023). Ecotourism seeks to foster community empowerment, stimulate economic growth, preserve the environment, and improve educational outcomes (Guerrero-Moreno et al., 2024; Wiyono et al., 2023; Kumar et al., 2023). Birdwatching is considered the most scientific of all sports and the most sporty of scientific activities (Janeczko et al., 2021; Randler, 2022; Lundquist et al., 2025). Mangrove ecotourism plays a significant role as an educational and learning tool (Lestari et al., 2020; Verawati & Idrus, 2023). The development of ecotourism as a support for contextual learning can foster environmental awareness among students (Kopnina et al., 2022; Powell et al., 2023; Stern et al., 2025).

M. reinwardt is an interesting bird as an ecotourism object because it has unique characteristics (Yamin et al., 2024; Ahlquist et al., 2020; Harris et al., 2014). Birds are among the animals that exhibit high uniqueness in ecology, science, tourism, and culture (Jayalath et al., 2023). The uniqueness of birds is highly appealing as a subject of study and a tourist attraction (Ivanova et al., 2022; Kunchamboo & Little, 2023). Biodiversity can function as both a medium and a source of biological education (Echeverria et al., 2021; Niemiller et al., 2021). Ecotourism can foster creativity among teachers and students (Sigit et al., 2023; Napitupulu et al., 2025). Studying unique species improves students' understanding of specific adaptations and complex ecological interactions, increases their ecological literacy and conservation awareness, and helps them develop their observational and scientific process skills. Ecotourism that focuses on birdwatching could be a new way to teach biology. This method should help students learn more about biology, get better at doing science, get them more interested in learning, and make them care more about the environment.

This research is imperative as biology educators are pivotal in ensuring that future generations are conscious of and accountable for global environmental challenges such as climate change, pollution, and biodiversity loss. This job fits with the goal of meeting the Sustainable Development Goals (SDGs), especially SDG 4 (Quality Education), SDG 13 (Climate Action), and SDG 15 (Life on Land). These goals show how important education is for teaching people about the environment and how to live in a way that is good

for the planet. The ecotourism-based learning approach centered on M. reinwardt offers a genuine educational experience through direct engagement with the natural environment. This handson experience helps students learn more about how people and the environment are connected in a scientific way (Mohammed & Kinyó, 2020). The integration of CTL improves this process by connecting theory and practice and encouraging critical, argumentative, and creative thinking skills that are important for skills needed in the 21st century. (Kolb, 2014; Novianti, 2022). This kind of learning in the environment also helps with science process skills (SPS), which include observing, measuring, classifying, and solving scientific problems. These skills are the foundation for developing scientific literacy for sustainability and for making meaningful contributions to ecosystem preservation and increasing awareness of ecological issues (Yani et al., 2021; Liu et al., 2024).

The strategic significance of this study within the overarching global sustainability agenda underscores its substantial contribution to the advancement of science education, particularly concerning biodiversity conservation and sustainable development (Oliveira et al., 2025; Hügel & Davies, 2024). The integration of local species into an ecotourism-focused educational model aligns with the UNESCO Education for Sustainable Development (ESD) framework, as it fosters environmental literacy, cultivates sustainability-oriented attitudes, and encourages tangible conservation practices (UNESCO, 2020; Chen et al., 2025). This field-based instructional method corresponds with modern 21st-century science education frameworks that prioritize critical thinking, inquiry-driven learning, collaborative problem-solving, and direct engagement with genuine ecological contexts (Yemini et al., 2025; Fu & Komatsu, 2024). The study contributes to the international discourse on out-of-class learning in biodiverse tropical environments, which are underrepresented in global literature despite their ecological importance. This research illustrates how local ecological assets can be utilized to enhance conservation-focused educational practices and to more effectively amalgamate local ecological knowledge with globally acknowledged sustainability frameworks (Huang et al., 2023). It offers an analytically robust framework for connecting place-based education with the global necessities of environmental stewardship and sustainable development.

Past studies into contextual learning indicate that biological concepts are often imparted through laboratory or artificial simulations. This study seeks to evaluate the efficacy of genuine ecotourism-oriented biology education focused on M. reinwardt in delivering authentic, conservation-oriented learning experiences. The research specifically examines its potential to augment students' motivation and engagement, as well as to fortify their proficiency in scientific process skills, biological conceptual understanding, and essential competencies relevant to 21st-century education. This sets it apart from similar studies in the following ways: it is real, it combines conservation and education, it gets students directly involved in educational ecotourism, it uses local resources to boost motivation, and it helps students learn more about science process skills and biological concepts. This method fits with the educational goals of the 21st century, which want students to learn by doing, working together, and actively. Consequently, this research is significant for cultivating science process skills, promoting innovative biology education pertinent to the local context, and enhancing comprehension of biological cognitive concepts.

METHODS

This research employs a mixed-methods framework, specifically the Concurrent Embedded Strategy model, which combines qualitative and quantitative methodologies with varying emphases, implemented either sequentially, nonsequentially, or concurrently (Azhari et al., 2023; Creswell & Guetterman, 2024). The quantitative method evaluates the impact of ecotourism-oriented contextual learning on students' understanding of biological concepts. The qualitative method is utilized to examine students' experiences and understanding of the characteristics of *M. reinwardt*.

The last step in the interpretation process brought together the results of both quantitative and qualitative research to show how ecotourism-based contextual learning changed how students understood biology concepts. This was done by comparing test scores, observations, presentations, and reports. The four steps in this model are: (1) getting ready, (2) putting it into action, (3) evaluating and analyzing, and (4) interpreting. Table 1 shows the different stages of learning.

Table 1. Stages of Ecotourism *M. reinwardt* Based Learning Activities

Stage	Learning Activity	Description	Output		
1. Preparation	Identifying topics and objectives	Determining biology topics and learning outcomes based on the characteristics of <i>M. reinwardt</i>			
	Preparing tools	Designing contextual lesson plans, test instruments, and observation sheets	Validated learning tools and instruments		
	Location coordination	Collaborating with the Gunung Tunak Nature Reserve management	SIMAKSI & activity schedule		
2. Implementation	Pre-test	Giving pre-tests to the experimental and control classes	Students' understanding and initial Science process skills		
	Learning intervention	The experimental class undertook an ecotourism project, while the control class used conventional methods.			
	Post-test	Giving post-treatment tests to the experimental and control classes	Students' understanding and final Science Process Skills		
	Questionnaire completion	Students in the experimental class completed perception questionnaires.	Learning perception data		
3. Evaluation and Analysis	Quantitative analysis	N-Gain and <i>Mann-Whitney</i> statistical tests were used to compare pre-test and post-test results, using H', E, D, X2, and ANOVA analyses for resource use.	_		
	Qualitative analysis	Analysis of observational data on daily activities, reproduction, threats, and predators.			
	Reports, presentations, and discussions	Integration of quantitative and qualitative data	Comprehensive conclusions on the effectiveness of the method		
4. Interpretation	Analysis of statistical test results and qualitative analysis	Interpreting analysis results to understand the effectiveness of the learning approach			
	Data integration and reporting	Combining analysis results and sharing findings with stakeholders	Report, presentation, and discussion outcomes		

The participants in this study consisted of 55 students, divided into an experimental class (28 students) and a control class (27 students). The experimental class was divided into seven groups, each consisting of four students. The experimental class employed contextual learning through ecotourism, whereas the control class utilized conventional learning methods, including lectures and discussions. Contextual learning through ecotourism was applied to the discussion of the ecology and reproduction of *M. reinwardt*. The learning activities were conducted twice, each lasting 180 minutes. Both classes were given a pre-test before the learning and a post-test after.

In the first week of the experimental class, the students learned about the biotic and abiotic parts of *M. reinwardt*'s natural habitat by explo-

ring and identifying them. We wrote down the species, number of individuals, canopy height, and stem diameter of all the plants in each sample plot. The Shannon-Wiener Species Diversity Index (H'), Species Abundance Index (E), and Density (D) were used to look at the data, as Sorenssen (Brower et al. 1998) said to do. In the second week, the experimental class looked at the nest and the area around it. Each group used a GPS, a meter, an altimeter, an anemometer, a hygrometer, a pH meter, a thermometer, a lux meter, a camera, an insect net, a questionnaire, a map, and a notebook to gather information. We used the Chi-square test (χ 2) to see how people were using resources over time, and ANOVA to see how living and non-living things affected the presence of *M. reinwardt*.

A quantitative assessment of the nine indicators of students' scientific process skills and their conceptual comprehension of the bioecological traits of *M. reinwardt* was performed via a post-test featuring 25 integrated multiple-choice questions. The test items were subjected to expert validation by three specialists in ecology, science education, and scientific literacy. The validators were granted full autonomy to provide evaluative judgments, annotations, and constructive recommendations to improve the instrument's quality. Based on their collective evaluation, all experts concluded that the instrument was appropriate for use and required only minor revisions.

The scores were analyzed using the N-Gain and Mann-Whitney tests because the data were not normally distributed or homogeneous (Artacho et al., 2021; Knief & Forstmeier, 2021). Furthermore, assessments were taken from reports, presentations, and discussions of field visit results. The results of applying ecotourism-based CTL to students' science process skills and understanding of biology concepts were evaluated by examining the increase in pre-test and post-test scores. The increase in scores was expressed as Normalized Gain (N-gain) using the Hake (1999) equation. N-Gain scores were grouped into three categories as presented in Table 2.

Table 2. Category of N-Gain Score

Score Range	Conversion (%)	Category
g< 0.3	g < 30	Low
$0.7 < g \ge 0.3$	$70 < g \ge 30$	Moderate
g≥ 0.7	$g \ge 70$	High

RESULTS AND DISCUSSION

The science process skills aspects measured in the *M. reinwardt* ecotourism-based CTL include nine indicators, as presented in Table 3. The establishment is the result of an operational simplification of the SPS framework formulated by Padilla and AAAS. Although both frameworks include a broader list of basic and integrated skills, these nine indicators were chosen because they fully represent the core of the scientific process, from data collection to concluding (Ceran & Ateş, 2020; Idris et al., 2022). In addition, these

indicators are more relevant and easier to apply in the context of learning and assessment in schools, as they are measurable, non-overlapping, and reflect a systematic scientific thinking flow. This simplification also makes it easier for teachers and educational researchers to develop observation instruments, assessment rubrics, and data analysis without losing the essence of the science process skills they aim to develop (Artayasa et al., 2023). More than 50% of students performed well in science process skills, specifically in observing (71%) and measuring and classifying (54%).

Table 3. Observation of Science Process Skills of Prospective Biology Teachers in 2025

No	Indicator of Caianas Duagos Chille	∑ Student. Score							
110	Indicator of Science Process Skills -	1	2	3					
1	Observing	5 (18%)	3 (11%)	20 (71%)					
2	Measuring	5 (18%)	8 (28%)	15 (54%)					
3	Identifying	4 (14%)	11 (39%)	13 (46%)					
4	Classifying	4 (14%)	9 (32%)	15 (54%)					
5	Tabulating	5 (18%)	14 (50%)	9 (32%)					
6	Connecting	12 (43%)	10 (36%)	6 (21%)					
7	Predicting	9 (32%)	10 (36%)	9 (32%)					
8	Explaining	6 (21%)	10 (36%)	12 (43%)					
9	Concluding	13 (46%)	10 (36%)	5 (18%)					
	Total Score	63	85	104					
	Average	7 (25%)	9.4 (34%)	12 (41%)					

Source: Researchers' Data 2025

Six science process skills were performed well by 18% - 46% of students: identifying (46%), explaining (43%), tabulating and predicting (32%), connecting (21%), and concluding (18%). These results are not significantly different from those reported by Agustina et al. (2023), which are as follows: predicting (31%), graphing (28%), interpreting (56%), and concluding (31%). Students' skills in understanding investigative methods leading to scientific knowledge and in organizing, analyzing, and interpreting quantitative data were 59.54% (Khamhaengpol et al., 2021). Overall, the science process skills of prospective biology teachers at the Faculty of Teacher Training and Education, Universitas Mataram, were categorized as follows: 41% in the good category, 34% in the moderate category, and 25% in the low category.

Areif et al. (2018) reported 12 habitat components that influence M. reinwardt: altitude, distance from river channels, distance from roads, slope, soil acidity, canopy cover, light intensity, temperature, humidity, soil texture, and the number of predators. Vegetation was overlooked, as its characteristics significantly influence the presence and activity of birds in the Megapodiidae family (Radley et al., 2024). Based on vegetation observations by students, groups I, II, III, IV, V, VI, and VII recorded 13, 12, 8, 9, 10, 9, and 10 species, respectively. Identification and classification of vegetation from the seven student groups yielded 21 vegetation species in the Gunung Tunak Nature Reserve. The vegetation communities within each student group varied in terms of the number and type of vegetation, as presented in Table 4.

Table 4. Number of Species, Species Diversity Index (H'), Evenness Index (E), Density (K), and Dominant Species in the *M. reinwardt* Nest Mound area in the Tunak Mount Nature Reserve in 2025

Group	Group I		Ш	IV	V	VI	VII	
Number of Species	13	12	8	9	10	9	10	
H' Index 2.47		2.23	1.98	1.98	2.20	1.98	2.20	
E Index	E Index 0.96		0.95	0.90	0.90 0.96		0.96	
Density (D)	Density (D) 84		240	192	344	396	58	
Community	Tamarindus indica, Chromolaena odo- rata, Margarithria indica	ovata, Pro-	Bambusa blumeana	Bambusa blumeana	Bambusa blumeana	Bambusa blumeana	Dalbergia latifo- lia, Chromolaena Odorata	

Source: Research Team Survey 2025

The seven student groups reported 21 vegetation species. Group I reported the highest vegetation species diversity, with 13 species and an H' of 2.47, while the lowest group was Group III, with eight species and an H' of 1.98. The vegetation species diversity index describes the services provided by its community, such as food sources, play areas, rest areas, and animal shelter (Syukur et al., 2023). If the H' value is 1, it means low species diversity, perhaps there are only a few or only one species; if the H' value ≥ 1 , it means high species diversity (Krebs et al., 1989). According to van Balen (1999), a value of $H' \le 2$ indicates low species diversity, while a value of H'≥ 2 indicates high species diversity. Based on these two criteria, the vegetation species diversity

index in the seven Megapodius nest mound areas in the Gunung Tunak Nature Reserve is classified as moderate. In other words, the vegetation community in the Gunung Tunak Nature Reserve is a relatively stable ecosystem.

Based on the student groups' exploration of environmental components in the nest area and its surroundings, group I recorded 14 aspects, group II 16, group III 15, group IV 14, group V 16, group VI 15, and group VII 15. The number of environmental aspects observed by the seven student groups consisted of 16 components from the seven nesting areas of *M. reinwardt*. The results of the analysis of *M. reinwardt*'s tendency to select these components are presented in Table 5.

Table 5. Environmental Component Preference Test of *M. reinwardt* Nesting Area in Tunak Mount Nature Reserve in 2025

Nest	Y	X ₁	\mathbf{X}_{2}	$\mathbf{X}_{_{3}}$	X ₄	X_5	X ₆	X,	X ₈	X_9	X ₁₀	X ₁₁	X ₁₂	\mathbf{X}_{13}	\mathbf{X}_{14}	X ₁₅	X ₁₆
	7	575	45	0	20	200	-	75	-	6.8	440	-	8	67	240	28	1
II	0	790	100	0	20	170	80	75	43	6.7	150	-	9	69	292	28	3
III	7	745	85	15	36	500	-	40	50	7.0	460	32	13	70	84	29	-
IV	10	1025	163	20	15	25	-	50	-	6.8	240	37	10	71	344	29	-
V	5	490	125	0	25	1000	60	40	3	7.0	455	-	12	69	108	30	2
VI	7	1285	200	15	7	100	35	25	-	6.8	1160	70	10	-	78	31	1
VII	12	740	175	0	15	10	50	50	40	6.8	900	-	9	74	396	29	-
Σ	38	5650	893	50	138	2005	225	355	136	47.9	3805	139	71	420	1542	204	7
Mean	6.8	807	128	7.14	19.4	286	56	50.7	34	6.8	543.57	35	10	70	816	29	0.85
Chi- X²	2.29	0.87	0.43	2.00	0.86	0.00	2.29	0.04	0.74	2.00	0.00	2.00	86	0.74	0.00	1.57	1.57 ^b
df	4	4	3	2	4	6	4	3	5	2	6	2	4	5	6	2	3

Description:

Y = active hole; X_1 : nest diameter (cm); X_2 : mound height; X_3 : slope; X_4 : altitude (asl); X_5 : distance from river channel (meters); X_6 : canopy cover (%); X_7 : litter composition; X_8 : distance from road (meters); X_5 : soil acidity (PH); X_{10} : light intensity (lux); X_{11} : soil texture; X_{12} : number of vegetation species; X_{13} : humidity (%); X_{14} : vegetation density; X_{15} : temperature (°C); X_{16} = number of predators

The seven student groups' ecological observations of *M. reinwardt* yielded data on diverse ecological aspects. Overall, the students identified 17 relevant ecological aspects. Of these, 12 ecological aspects were consistently observed by all seven groups: number of active nests, nest diameter, mound height, slope, elevation, distance from river channels, canopy cover, litter composition, distance from roads, soil acidity, light intensity, and soil texture. Five additional aspects were noted exclusively by particular groups: vegetation species, vegetation density, temperature, and predator count. There were 14 ecological aspects that two groups found, 15 that three groups found, and 16 that two groups found (Table 5). Students' observations often miss a lot of important details. Four groups didn't pay attention to the texture of the soil. Three groups didn't pay attention to the number of predators, the distance from roads, or the canopy cover. Only one group missed the humidity. The number of ecological aspects noted indicates variations in field experience, observational methodologies, focal points, sensitivity, and the profundity of ecological analysis. This result is consistent with earlier studies highlighting the significance of observational skills in ecotourism education (Huang et al., 2023). Active participation in contextual learning experiences, such as ecotourism, can improve students' critical thinking and ecological observation abilities (Falk & Dierking, 2018; Ardoin et al., 2020). These results highlight the necessity of implementing an ecotourism-oriented methodology in biology education. Students can directly investigate the complexity and ecological dynamics of species like M. reinwardt through genuine field experiences. Project-based science learning greatly boosts students' creativity (Artayasa et al., 2024).

The test of the effect of the sixteen variable factors on the presence of M. reinwardt, using multiple linear regression analysis with the stepwise method at $\alpha = 0.05$ for each F value at a significance level of $p \le 0.05$. This means that the sixteen independent variables (X1-X16) collectively have a significant effect on the frequency of occurrence of M. reinwardt in each selected area (Table 6).

Table 6. Regression Analysis: The Effect of Abiotic Components on the Presence of *M. reinwardt*

Model	Sum of Squares	df	Mean Square	\mathbf{F}	Sig.
Regression	86.857	6	14.476		·b
Residual	.000	0			
Total	86.857	6			

Using Chi-X2 analysis to test the tendency of variable factor selection toward nesting areas again, we found that *M. reinwardt* preferred four factors: distance from the river channel, litter

composition, light intensity, and vegetation density. Six factors have been identified as influencing *M. reinwardt's* nesting site selection: light intensity, proximity to the river channel, canopy

cover, vegetation density, humidity, and plant litter composition (Arief et al., 2018; Yamin et al., 2024).

Based on the literature review, presentations, and student discussions about what makes the *M. reinwardt* bird special, two groups came up with nine unique traits. The M. reinwardt bird's nest is a mound of soil and plant litter that is 807 cm wide and 128 cm tall on average. Everyone works together to build the nest. There are 5 to 12 parents who share each nest mound for years. The eggs are pretty big and are buried in the ground. The M. reinwardt bird does not sit on eggs or care for its young. Five groups of students found six different things about the bird (points 1–6). This result is in line with earlier studies that showed M. reinwardt nests are made of soil mounds and do not hatch their eggs (Ritchison, 2023; Neilly et al., 2021). It looks like the M. reinwardt nest at the study site is in pretty good shape. There are no signs of predatory disturbance, especially by people. The average temperature is 29°C, but it can drop to 19°C or rise to 31°C. The average humidity in the air is 68%, but it can be anywhere from 58% to 74%. The light level in the nesting area varies from 150 Lux to 1160 Lux (Table 5).

The research team made ecotourism rules to teach people about M. reinwardt's ecology, how it adapts, and how it breeds. The first is conservation, which teaches students why it's important to protect natural habitats and native species like the Megapodius. It also helps with managing and protecting the environment. Ting and Cheng (2017) say that a clear explanation of ecotourism can help students learn more about environmental problems and how they feel about them. The second thing is learning. Spending time in nature can help students learn more about how *M. reinwardt* interacts with its environment and the culture around it. Ecotourism that is based in communities helps people learn more about conservation (Masud et al., 2017). Ecotourism packages need to fit in with people's daily lives and culture in order to be useful (Kurniawan et al., 2022). The third is getting the people in the area involved, which helps keep the economy and resources strong. People in the area who go ecotourism feel more responsible for taking care of the environment (Gumede & Nazama, 2020; Sobhani et al., 2022). Ecotourism also improves the lives of locals in terms of money and social life (Eshun & Tichaawa, 2019; Kunjuraman et al., 2022). It also protects the environment by, for example, properly disposing of trash, using resources wisely, and keeping the number of visitors low. For ecotourism destinations to last over time, people need to be aware of the environment (Chan & Saikim, 2022).

The results of the pre-test analysis of students' science process skills in the experimental and control classes showed an average score of 42 in the experimental class and 41.7 in the control class. Both are classified as lacking (Table 7). One cause of low science process skills is the use of non-contextual learning techniques (Hartono et al., 2023). This existing condition suggests that students' abilities before learning still need improvement. Furthermore, to determine the difference in initial abilities between the two classes, an N-Gain difference test was conducted using the Mann-Whitney test, as the two samples were not normally distributed and the sample sizes differed. The result obtained an Asymp Sig value of 0.948. If the Asymp Sig value is less than or equal to 0.05, it indicates a statistically significant difference in science process skills between students in the experimental and control classes (Senisum et al., 2022; Kassaye et al., 2025). Based on these criteria, students' initial science process skills in the experimental and control classes are not significantly different before the ecotourism-based contextual learning process. In full, the results of the pre-test, post-test, and N-Gain analysis of the experimental class and control class are presented in Table 7.

Table 7. Pre-test, Post-test, and N-Gain Analysis of Science Process Skills of Prospective Biology Teachers in 2025

Experimental Class							Control Class					
	Pre-test	Post- test	g	N-gain (%)	Category	Pre- test	Post- test	g	N-gain (%)	Category		
Mean	42	79.4	37.4	65.54	Moderate	41.7	61.2	21.2	38.21	Low		
Min	19	55	17	44.44	-	28	34	5	4.35	-		
Max	63	92	54	92.98	-	60	85	50	68	-		
ID	29	29	-	-	-	27	27	-	-	-		

Mann-Whitney Pre-test Asymp. Sig. 0.948

Mann-Whitney Post-test Asymp. Sig. 0.000

N-Gain % Category: ≥ 75 highly effective; 56-75 effective; 40-55 less effective; <40 ineffective (Hake, 1999).

Source: Research Team 2025

The average N-gain of the control class was 38.21, classified as low, with a distribution across three categories: effective (26%), less effective (30%), and ineffective (44%). The average N-gain of the experimental class was 65.54%, classified as medium, spread across three categories: highly effective (38%), effective (34.5%), and less effective (27.5%). There was none in the ineffective category. The improvement in students' science process skills scores through practical learning was, on average, in the medium category (Supasorn et al., 2022). The scores and analysis of the pre-test and post-test of students' science process skills in the experimental and control classes are presented in full in Table 7.

The average post-test score for the experimental class was 79.4, and for the control class, 61.2. The results of the N-gain difference test for the post-test between the experimental and control classes using the Mann-Whitney Test showed an Asymp Sig value of $0.00 \le 0.05$. These results indicate a significant difference in science process skills between the experimental and control classes. In other words, there was a significant increase in students' science process skills after the learning. The comparison between pre-test and post-test scores provides a quantitative picture of the impact of the learning implemented. Humorous and relaxed learning outside the classroom improves cognitive and affective learning outcomes (Ngai et al., 2025; Stahlhut et al., 2025). The big jump in post-test scores shows that the students were really engaged in learning and were able to get better at the science process skills. These findings suggest that a context-based biology learning approach that links content to realworld situations via ecotourism can enhance concept retention and foster critical thinking and the application of knowledge among students. This finding aligns with Hardianti and Wusqo (2020), who reported that more than half of the students (69.23%) achieved the scientific literacy standard, and a substantial majority (93.7%) agreed that the experimental model was advantageous and expressed a willingness to apply it in future Education that includes hands-on endeavors. experience with ecotourism activities has a big effect on people's attitudes, motivation, and behaviors that help protect the environment (Liu et al., 2024; Duong & Ngo, 2025). Mangrove ecotourism that is based on education helps students learn more about how ecosystems work and how many different kinds of life there are (Surjanti et al., 2020).

CTL enhances students' Science Process Skills (SPS) by establishing explicit connections between real-world contexts and scientific con-

cepts. This makes it easier for students to ask questions, work together, think about what they learned, and use what they learned in new situations (Picardal & Sanchez, 2022; Melesse et al., 2025). CTL does not treat science as just a collection of facts; instead, it treats it as a methodical way to find out more about things. Through its pedagogical mechanisms, CTL intentionally cultivates core scientific skills, including observation, measurement, analytical reasoning, evaluative judgment, and scientific inference (Demelash et al., 2023). Context-based learning further motivates students to interact directly with genuine phenomena, perform measurements and experiments, recognize and regulate variables, analyze and interpret empirical data, and assess methodologies and experimental results (Ngozi, 2021). As a result, the entire range of Science Process Skills is thoroughly developed and integrated. This study provides three primary contributions. First, it empirically shows that using the natural environment as a real laboratory for ecotourismbased CTL instruction improves students' SPS. Second, it theoretically strengthens and expands the conceptual underpinnings of CTL and inquiry-based learning by positing that ecotourism environments can facilitate significant learning and enhance scientific comprehension. Third, it has real-world effects on teachers and schools by pushing for the use of local environmental resources, the creation of field-based teaching materials, and the building of relationships with managers of conservation areas. The findings collectively enhance initiatives aimed at bolstering ecological literacy and cultivating 21st-century competencies.

CONCLUSION

This study effectively illustrated that M. reinwardt's ecotourism-oriented Contextual Teaching and Learning (CTL) yielded positive and significant effects on the Science Process Skills (SPS) of aspiring biology teacher students across all SPS indicators, encompassing observing, measuring, identifying, classifying, tabulating, interpreting, predicting, explaining, and concluding. This method not only improves SPS, but it also promotes ecological awareness, scientific attitudes, and a sense of social responsibility for protecting the environment. This method not only makes education better, but it also protects biodiversity and gives power to local communities. Overall, this model helps reach Sustainable Development Goals (SDGs) 4, 8, and 15 by promoting sustainable education, strengthening ecotourism, and protecting biodiversity.

ACKNOWLEDGMENTS

We would like to thank the Institute for Research and Community Service of Universitas Mataram for providing research funding under Agreement Number 3059/UN18.L1/PP/2025.

REFERENCES

- Ahlquist, J., & Lightner, J. K. (2020). More Clearly Delineating, Characterizing, and Inferring the Natural History of Baramins—Part II: Evaluating Diversity, with Application to the Order Galliformes (Class: Aves). Creation Research Society Quarterly, 57(1).
- Al-Thani, N. J., & Ahmad, Z. (2025). Learning through "Research Cognitive Theory": A new framework for developing 21st century research skills in secondary school students. *Heliyon*, 11(2).
- Ardoin, N. M., Bowers, A. W., & Gaillard, E. (2020). Environmental education outcomes for conservation: A systematic review. *Biological conservation*, 241, 108224.
- Areif, H., Hikmat, A., Hernowo, J., & Hermawan, D. R. (2018). Preferensi Habitat Burung Gosong Kaki Merah (Megapodius Reindwardt) Di Taman Wisata Alam Gunung Tunak, Kabupaten Lombok Tengah, Provinsi Nusa Tenggara Barat. Media Konservasi, 23(3).
- Arisma, N., Septiani, R., Husna, A. R., Rifa'i, A., & Erika, F. (2024). Literature review penerapan pembelajaran sains berbasis lingkungan untuk meningkatkan sikap peduli lingkungan siswa. *INKUIRI: Jurnal Pendidikan IPA*, 13(1), 53-63
- Artayasa, I. P., Rosyidi, M. A., Kechik, M. A., & Yustiqvar, M. (2024). The impact of biopreneurship project-based science learning on students' entrepreneurial creativity. *Jurnal Pendidikan IPA Indonesia*, 13(3).
- Artayasa, I. P., Muhlis, M., Merta, I. W., Sukarso, A. A., & Hadiprayitno, G. (2023). Open inquiry practicum: An effective strategy for enhancing science process skills of prospective biology teachers. *Jurnal Penelitian Pendidikan IPA*, *9*(3), 1352-1359.
- Artacho, E., Sola-Martínez, T., Romero Rodríguez, J. M., Duque-González, M., & Gómez García, G. (2021). Teachers' perceptions of digital competence at the lifelong learning stage. *Heliyon*, 7, e07513.
- Aswita, D., Suryadarma, I. G. P., & Suyanto, S. (2018). Local wisdom of Sabang island society (aceh, Indonesia) in building ecological intelligence to support sustainable tourism. Geojournal of tourism and geosites, 22 (2), 393–402. Sustainable Development, Tadbir Magazine, 13(4), 421-350.
- Azhari, D. S., Afif, Z., Kustati, M., & Sepriyanti, N. (2023). Penelitian mixed method research untuk disertasi. *Innovative: Journal Of Social Science*

- Research, 3(2), 8010-8025.
- Bricker, K. S., & Snyman, S. (2023). Ecotourism models: identifying contributions to conservation and community. *Frontiers in Sustainable Tourism*, 2, 1232666.
- Brower, J. E., Zar, J. H., & Von Ende, C. N. (1998). *Field and laboratory methods for general ecology* (Vol. 4, pp. 25-51). Boston: WCB McGraw-Hill.
- Chan, J. K. L., & Saikim, F. H. (2022). Exploring the ecotourism service experience framework using the dimensions of motivation, expectation and ecotourism experience. *Tourism and Hospitality Research*, 22(4), 425-443.
- Chen, C., Shahbaz, P., & Haq, S. U. (2025). Transforming students' green behavior through environmental education: the impact of institutional practices and policies. Frontiers in Psychology, 15, 1499781.
- Ceran, S. A., & Ates, S. (2020). Measuring science process skills with different test formats: A research from the perspective of cognitive styles. *Journal of Education in Science Environ*ment and Health, 6(3), 220-230
- Creswell, J. W., & Guetterman, T. C. (2024). Educational research: Planning, conducting, and evaluating quantitative and qualitative research. Pearson. One Lake Street, Upper Saddle River, New Jersey 07458.
- Demelash, M., Belachew, W., & Andargie, D. (2023). Context-based approach in chemistry education: a systematic review. *African Journal of Chemical Education*, 13(3), 163-201.
- Duong, K. D., & Ngo, T. Q. (2025). Do ecotourism, green construction, environmental education, and sustainable behaviour lead to sustainable development? A mediation-moderation approach. *Environment, Development and Sustainability*, 27(7), 16015-16032.
- Echeverria, A., Ariz, I., Moreno, J., Peralta, J., & Gonzalez, E. M. (2021). Learning plant biodiversity in nature: The use of the citizen–science platform iNaturalist as a collaborative tool in secondary education. *Sustainability*, *13*(2), 735.
- Eshun, G., & Tichaawa, T. M. (2019). Reconsidering participation for local community well-being in ecotourism in Ghana. *Geo Journal of Tourism and Geosites*, 27(4), 1184-1200.
- Eticha, M. D., Hunde, A. B., & Ketema, T. (2024). Designing a context-driven problem-solving method with metacognitive scaffolding experience intervention for biology instruction. *Journal of Science Education and Technology*, 33(6), 811-822.
- Falk, J. H., & Dierking, L. D. (2018). *Learning from museums*. Rowman & Littlefield.
- Fu, S. P., & Komatsu, H. (2024). Evaluating the impact of place-based education: Insights from a river environmental program in Taiwan. *Journal of International Cooperation in Education*, 26(2), 153-170.
- Guerrero-Moreno, M. A., & Oliveira-Junior, J. M. B. (2024). Approaches, trends, and gaps in community-based ecotourism research: a bibliomet-

- ric analysis of publications between 2002 and 2022. Sustainability, 16(7), 2639.
- Gumede, T. K., & Nzama, A. T. (2020). Enhancing community participation in ecotourism through a local community participation improvement model. *African Journal of Hospitality, Tourism and Leisure*, 9(5), 1252-1272.
- Hake, R. R. (1999). Analyzing Change/Gain Score. Indiana: Indiana University.
- Harris R. B, Birks SM, Leach AD. (2014). Incubator birds: biogeographical origins and evolution of underground nesting in megapodes (Galliformes: Megapodiidae). Journal of Biogeography. 41(11), 2045-2056
- Hardianti, R. D., & Wusqo, I. U. (2020, June). Fostering students' scientific literacy and communication through the development of collaborative-guided inquiry handbook of green chemistry experiments. In *Journal of Physics: Conference Series* (Vol. 1567, No. 2, p. 022059). IOP Publishing.
- Hartono, A., Djulia, E., Hasruddin, H., & Jayanti, U. N. A. D. (2023). Biology students' science literacy level on genetic concepts. *Journal Pendidikan IPA Indonesia*, 12 (1), 146-152.
- Huang, C. C., Li, S. P., Chan, Y. K., Hsieh, M. Y., & Lai, J. C. M. (2023). Empirical research on the sustainable development of ecotourism with environmental concept. Sustainability, 15(3), 10307
- Hügel, S., & Davies, A. R. (2024). Expanding adaptive capacity: Innovations in education for place-based climate change adaptation planning. *Geoforum*, 150, 103978.
- Idris, N., Talib, O., & Razali, F. (2022). Strategies in mastering science process skills in science experiments: A systematic literature review. *Jurnal Pendidikan IPA Indonesia*, 11(1), 155-170.
- Ivanova, S., Prosekov, A., & Kaledin, A. (2022). Is ecotourism an opportunity for large wild animals to thrive. *Sustainability*, *14*(5), 2718.
- Janeczko, E., Łukowski, A., Bielinis, E., Woźnicka, M., Janeczko, K., & Korcz, N. (2021). "Not just a hobby, but a lifestyle": Characteristics, preferences and self-perception of individuals with different levels of involvement in birdwatching. *Plos one*, *16*(7), e0255359.
- Jayalath, T. A., Lloyd-Smith, P., & Becker, M. (2023). Biodiversity benefits of birdwatching using citizen science data and individualized recreational demand models. *Environmental and Resource Economics*, 86(1), 83-107.
- Jeronen, E., Palmberg, I., & Yli-Panula, E. (2016). Teaching methods in biology education and sustainability education including outdoor education for promoting sustainability a literature review. *Education Sciences*, 7(1), 1.
- Kadmayana, K., Halim, A., Mustafa, M., & Ilyas, S. (2021). Impact of contextual teaching learning model to science process skills and scientific attitudes of students. *Jurnal Penelitian Pendidikan IPA*, 7(3), 375.

- Kassaye, M. T., Damtie, D., Melesse, S., & Yemata, G. (2025). Effect of using science process skills-integrated inquiry-based approach on grade nine students' cell biology academic achievement. *Discover Education*, 4(1), 1-19.
- Khamhaengpol, A., Sriprom, M., & Chuamchaitrakool, P. (2021). Development of STEAM activity on nanotechnology to determine basic science process skills and engineering design process for high school students. *Thinking Skills* and Creativity, 39, 100796.
- King, H., Beazley, H., Barclay, L., & Miller, A. (2024). Re-imagining child-nature relationships in ecotourism: children's conservation awareness through nature play and nature-based learning. Children's Geographies, 22(4), 497-512.
- Knief, U., & Forstmeier, W. (2021). Violating the normality assumption may be the lesser of two evils. *Behavior research methods*, 53(6), 2576-2590.
- Kolb, D. A. (2014). Experiential learning: Experience as the source of learning and development. FT press.
- Kopnina, H., Muhammad, N. Z., & Olaleru, F. (2022). Exploring attitudes to biodiversity conservation and Half-Earth vision in Nigeria: A preliminary study of community attitudes to conservation in Yankari Game Reserve. *Biological Conservation*, 272, 109645.
- Kumar, S., Hasija, N., Kumar, V., & Sageena, G. (2023). Ecotourism: a Holistic assessment of environmental and socioeconomic effects towards sustainable development. *Current World Environment*, 18(2), 589.
- Kunchamboo, V., & Little, V. (2023). Four ecotourism archetypes: expressing symbolic desires. *Journal of Ecotourism*, 22(4), 502-517.
- Kurniawan, A., Maryani, E., & Andari, R. (2022). Packaging of nature and cultural conservation activities through ecotourism titled festival. *Jhss* (*Journal of Humanities and Social Studies*), 6(2), 137-141.
- Krebs, J. R., Sherry, D. F., Healy, S. D., Perry, V. H., & Vaccarino, A. L. (1989). Hippocampal specialization of food-storing birds. *Proceedings of the National Academy of Sciences*, 86 (4), 1388-1392.
- Kunjuraman, V., Hussin, R., & Aziz, R. C. (2022). Community-based ecotourism as a social transformation tool for rural community: A victory or a quagmire?. *Journal of Outdoor Recreation and Tourism*, 39, 100524.
- Lema, Y., & Dewi, N. K. (2023). Development of Biodiversity E-Module in Kelimutu National Park Area to Improve Learning Outcomes of High School Students. *Journal of Biology Education*, 12(1), 1-8.
- Lestari, H., Setiawan, W., & Siskandar, R. (2020). Science literacy ability of elementary students through nature of science-based learning with the utilization of the ministry of education and culture's" Learning House". *Jurnal Penelitian Pendidikan IPA*, 6(2), 215-220.
- Liu, J., Yuan, L., Li, M., Li, S. J., Sun, Y., & Yuan,

- J. (2024). Ecological experiential learning and tourists' pro-environmental behavior intentions: The mediating roles of awe and nature connection. *Heliyon*, 10(1).
- Lundquist, E., Peterson, J., Truong, M. X., Gumucio, G., & van der Wal, R. (2025). Birdwatching in the digital age: how technologies shape relationships to birds. *BioScience*, biaf047.
- Luong, T. B. (2025). The role of place attachment in the relationship between ecotourism motivation, nature-based destination image, and ecotourism intention: A case study of South Cat Tien National Park, Vietnam. *International Journal of Geoheritage and Parks*, 3(1), 31-43.
- Mashfufah, A., Nurkamto, J., Sajidan, S., & Wiranto, W. (2018). Environmental literacy among biology pre-service teachers: A pilot study. In AIP Conference Proceedings (Vol. 2014, No. 1). AIP Publishing.
- Masud, M. M., Aldakhil, A. M., Nassani, A. A., & Azam, M. N. (2017). Community-based ecotourism management for sustainable development of marine protected areas in Malaysia. Ocean & coastal management, 136, 104-112.
- Melesse, D., Menkir, S., Yemata, G., & Seifu, A. (2025). Effect of context-based instructional approach on students' science process skills acquisition in environmental concepts. *Education Inquiry*, 1-17.
- Mohammed, S. H., & Kinyó, L. (2020). The role of constructivism in the enhancement of social studies education. Journal of critical reviews, 7(7), 249-256.
- Nabhan, S., & Habók, A. (2025). The Digital literacy academic writing scale: Exploratory factor analysis. *SAGE Open*, *15*(1), 21582440241311709.
- Napitupulu, N. D., Zaky, M., Septianti, A., & Talokon, R. C. A. (2025). Improving Environmental Literacy and Creative Thinking Skills Through Earth and Space Science Integrated Eco-Pedagogy (ESS-EcoP) Module. *Jurnal Penelitian Pendidikan IPA*, 11(1), 734-741.
- Neilly, H., Cale, P., & Eldridge, D. (2021). Incubation mound-building by megapodes creates novel, high-resource patches in a semi-arid woodland.
- Ngai, C. S. B., Singh, R. G., Huang, Y., Ho, J. W. Y., Khong, M. L., Chan, E., & Koon, A. C. (2025). Development of a systematic humor pedagogical framework to enhance student learning outcomes across different disciplines in Hong Kong. *International Journal of Educational Re*search Open, 8, 100438.
- Ngozi, P. O. (2021). Enhancing Science Process Skills Acquisition in Chemistry among Secondary School Students through Context-Based Learning. *Science Education International*, 32(4), 323-330
- Niemiller, K. D. K., Davis, M. A., & Niemiller, M. L. (2021). Addressing 'biodiversity naivety' through project-based learning using iNaturalist. *Journal for Nature Conservation*, 64, 126070.
- Novianti, N. (2024). Negotiating the complexity of

- critical literacy in an Indonesian EFL Teacher Education Program (Doctoral dissertation, University of Tasmania).
- Ocampo-Peñuela, N., de Alfaro, S., Neate-Clegg, M. H., de Alfaro, L., Bjegovic, K., & Winton, R. S. (2025). Human development, societal stability and bird capital predict global tourist eBirding activity. *People and Nature*, 7(10), 2486-2499.
- Okeke, U. K., & Ramaila, S. (2025). Decolonizing secondary school science education through contextualized instruction: An exploration of the nature of science, adaptive expertise, instructional implications and pedagogical frameworks for knowledge integration. Social Sciences & Humanities Open, 11, 101614.
- Oliveira, A. P., Paramés, A., Bajanca, A., & Martinez-Perez, C. (2025). Higher education students' biodiversity knowledge. *Education Sciences*, 15(4), 499.
- Picardal, M. T., & Sanchez, J. M. P. (2022). Effectiveness of contextualization in science instruction to enhance science literacy in the Philippines: A meta-analysis. *International Journal of Learning, Teaching and Educational Research, 21*(1), 140–156.
- Pintassilgo, P., Pinto, P., Costa, A., Matias, A., & Guimarães, M. H. (2023). Environmental attitudes and behaviour of birdwatchers: a missing link. *Tourism Recreation Research*, 48(3), 399-418.
- Powell, R. B., Stern, M. J., & Frensley, B. T. (2023). Which approaches are associated with better outcomes? Evidence from a national study of environmental education field trip programs for adolescent youth in the United States. *Environmental Education Research*, 29(3), 331-356.
- Radley, P. M., Camp, R. J., Amidon, F. A., Marshall, A. P., Gorresen, P. M., & Kessler, C. (2024). The status and conservation needs of the Micronesian Megapode (Megapodius laperouse laperouse) across the Mariana archipelago. *Pacific Conservation Biology*, 30(6).
- Randler, C. (2022). Motivations and specialization of birders are differently related to engagement in citizen science projects of different complexity. *Behavioral Sciences*, *12*(10), 395.
- Ritchison, G. (2023). Avian Reproduction: Nests and nest sites. In a class of their own: A Detailed examination of avian forms and functions (pp. 2177-2284). Cham: Springer International Publishing.
- Schwoerer, T., & Dawson, N. G. (2022). Small sight— Big might: Economic impact of bird tourism shows opportunities for rural communities and biodiversity conservation. *PloS one*, *17*(7), e0268594
- Senisum, M., Susilo, H., Suwono, H., & Ibrohim. (2022). GIReSiMCo: A learning model to scaffold students' science process skills and biology cognitive learning outcomes. *Education Scienc*es, 12(4), 228.
- Shah, H., & Ramesh, R. (2022). Development-aligned mangrove conservation strategy for enhanced

- blue economy: A successful model from Gujarat, India. Estuarine, Coastal and Shelf Science, 274, 107929.
- Sigit, D. V., Ristanto, R. H., Nurrismawati, A., Komala, R., Prastowo, P., & Katili, A. S. (2023). Ecoliteracy's contribution to creative thinking: A study of senior high school students. Journal of Turkish Science Education, 20(2), 356–368.
- Sobhani, P., Esmaeilzadeh, H., Sadeghi, S. M. M., Wolf, I. D., & Deljouei, A. (2022). Relationship analysis of local community participation in sustainable ecotourism development in protected areas, Iran. *Land*, 11(10), 1871.
- Supasorn, S., Wuttisela, K., Moonsarn, A., Khajornklin, P., Jarujamrus, P., & Chairam, S. (2022). Grade-11 students' conceptual understanding of chemical reaction rate from learning by using the small-scale experiments. *Jurnal Pendidikan IPA Indonesia*, 11(3), 433-448.
- Surjanti, J., Soejoto, A., & Seno, D. N. (2020). Mangrove forest ecotourism: Participatory ecological learning and sustainability of students' behavior through self-efficacy and self-concept. Social Sciences & Humanities Open, 2(1), 100009.
- Stahlhut, M., Amholt, T. T., Barfod, K., Mikkelsen, S., Mall, C., Elsborg, P., & Bølling, M. (2025). Education outside the classroom for children with neuro developmental disorders in special needs education settings A scoping review. *International Journal of Educational Research*, 132, 102649.
- Stern, M. J., Powell, R. B., Frensley, B. T., Anderson, K. C., Kiewra, L., Pownall, M., ... & Thorpe, E. G. (2025). Principles for better environmental education field trips for early adolescent youth in the United States: an empirical study. *Environmental Education Research*, 1-24.
- Syukur, A., Zulkifli, L., & Mahrus, H. (2023). Mangrove ecosystem provisioning services for the sustainability and diversity of bird species in

- the coastal region of Lombok Island, Indonesia. *Biodiversitas Journal of Biological Diversity*, 24(3).
- Ting, D. H., & Cheng, C. F. C. (2017). Developing proenvironmental behaviour: Ecotourism fieldtrip and experiences. *International Journal of Sustain*ability in Higher Education, 18(7), 1212-1229.
- United Nations Educational, Scientific and Cultural Organization (UNESCO). (2020). Education for sustainable development: A roadmap.
- Van Balen, S. B., Nijman, V., & Sözer, R. (1999). Distribution and conservation of the Javan Hawk-eagle Spizaetus bartelsi. *Bird Conservation International*, 9(4), 333-349.
- Verawati, N. N. S. P., & Al Idrus, A. (2023). Mangrove ecotourism as an education and learning facility. *Bioscientist: Jurnal Ilmiah Biologi*, 11(2), 1409-1419
- Wiyono, S. H., Subianto, A., & Nuhman, N. (2023). Sustainable Ecotourism Development and Community Empowerment: A Case Study of the Center for Environmental Education in Seloliman Village, Indonesia. Society, 11(2), 310-328.
- Yamin, M., Jufri, A. W., Hakim, A., Gunawan, G., Rahmat, J., & Sukarso, A. A. (2024). Nest characteristics, distribution, and preferences of Megapodius reinwardt as the basis for its conservation on Lombok Island, West Nusa Tenggara, Indonesia. *Biodiversitas Journal of Biologi*cal Diversity, 25 (5).
- Yani, A., Amin, M., Rohman, F., Suarsini, E., & Rijal, M. (2021). Pre-service biology teacher's perception on local environment problems as contextual learning resources. *International Journal of Evaluation and Research in Education*, 10(3), 768-780.
- Yemini, M., Engel, L., & Ben Simon, A. (2025). Place-based education—a systematic review of literature. *Educational Review*, 77(2), 640-660.