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Abstract— Skin diseases are among the most common health issues in domestic cats. However, access to
veterinarians is often limited, especially in low-resource settings. Automated image-based detection offers a
fast and affordable alternative for early intervention. This paper presents a lightweight approach for diagnosing
feline skin diseases using EfficientNetV2 optimized for low-resource devices. A balanced custom dataset
consisting of 720 images across nine classes, namely Healthy, Mild/Severe Ringworm, Mild/Severe Acne,
Mild/Severe Flea, and Mild/Severe Scabies, was compiled from Kaggle, Roboflow, and Google Images, ensuring
ethical use of publicly available data. The images were augmented through rotations (0°, 90°, 180°, 270°) and
horizontal flips, resulting in 5,760 images, to enhance model generalization. Five CNN architectures were
benchmarked: DenseNet121, MobileNetV2, MobileNetV3, EfficientNetBO, and EfficientNetV2B0. Training was
conducted with grid searches over batch sizes {64, 32, 16, 8} and learning rates {le-3, 5e-4, 2e-4, 1e-4, 5e-5} for
up to 300 epochs, and with the Adam optimizer and Reduce-LR-on-Plateau (decay factor 0.5). Early stopping
(patience = 10) was used to mitigate overfitting. The best model was selected based on highest validation
accuracy. The experiments were conducted on an Intel Xeon 6 CPU (2.2 GHz, 2 vCPUs) in Google Colab without
GPU to simulate low-resource deployment. EfficientNetV2BO achieved the best performance with 99.62%
validation accuracy and 99.79% test accuracy, with an average inference latency of 78 ms/frame. Compared
to previous studies focusing on heavyweight models or conventional ML using handcrafted features, this work
highlights the feasibility of deploying an accurate real-time diagnostic pipeline on edge devices.
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Deep Learning architectures like EfficientNetV2 [5]. Early
studies focused on establishing the feasibility of diagnosis
using symptom-based expert systems, employing methods such
as Certainty Factor [6], [7], Naive Bayes [8], [9], and Support
Vector Machine (SVM) [10]. While traditional classifiers like

I. INTRODUCTION

Feline dermatological disorders are among the most
frequently reported medical problems in domestic cats. Studies
have shown that dermatological cases account for

approximately 13-15% of all feline veterinary consultations [1],
[2]. Parasites and bacterial infections are the most common
causes for up to 55% of infectious skin diseases in cats [2].
These conditions not only cause discomfort and secondary
infections but can also pose zoonotic risks to humans [3],
underscoring the need for early and accurate diagnosis.

However, dermatological assessment in cats typically
requires specialized equipment and expert visual inspection,
which may not be available in low-resource environments or
for individual pet owners. This diagnostic gap highlights the
need for automated, accessible, and computationally efficient
image-based systems that can assist in identifying feline skin
diseases in real-time. Early and accurate diagnosis of these skin
ailments is crucial to prevent progression, alleviate discomfort,
and avoid secondary infections. Recent advances in Machine
Learning and Deep Learning have enabled automated image-
based diagnosis [4], offering rapid, non-invasive screening that
can be deployed even in remote areas with minimal
infrastructure.

The research landscape for automated feline skin disease
diagnosis has undergone a significant evolution, establishing
clear trends that justify the necessity of modern, lightweight

SVM achieved remarkably high numerical accuracy (up to
98.75%) based on textual symptom input, this approach was
constrained by the need for expert knowledge encoding and the
inherent user error in symptom identification [11].
Furthermore, while methods like Fuzzy Sugeno provided
crucial actionable intelligence (disease severity percentage)
[12], they remained reliant on subjective symptom scoring.

The field pivoted with the introduction of image-based
diagnosis using Deep Learning, recognizing that human
diagnosis is primarily visual. Papers began implementing
Convolutional Neural Networks (CNNs) for image
classification and object detection algorithms like YOLOVS for
real-time localization of disease areas [13], [14]. This shift
satisfied the demand for a more intuitive user interface and
confirmed the necessity of mobile application deployment [13],
[15].

However, this transition introduced a crucial trade-off.
Deep learning models are computationally expensive [16].
While full-size CNNs are powerful, their complex calculations
necessitate  high computational power, making them
challenging to deploy on resource-constrained mobile devices
for real-time use [16]. This bottleneck was addressed in
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Figure 1. Example images from each diagnostic class (a) Healthy (b) Mild Ringworm (c) Severe Ringworm (d) Mild Acne (e) Severe Acne
(f) Mild Flea (g) Severe Flea (h) Mild Scabies, and (i) Severe Scabies

subsequent work by exploring techniques like 8-bit
quantization via TensorFlow Lite, which successfully reduced
model size by 74.7% while maintaining high accuracy, thus
ensuring practicality on smartphones [16]. Additionally, the use
of hybrid models, such such as CNN combined with Random
Forest, was explored to improve stability and generalization
over standalone CNNs by leveraging robust traditional
classifiers [17].

The selection of EfficientNetV2 is a strategic response to
the combined findings of all sixteen papers, addressing the
limitations of prior methods while embracing the best of the
latest advancements. EfficientNetV2, as a Deep Learning
architecture, overcomes the fundamental constraint of
symptom-based models (SVM, Naive Bayes, CF) by utilizing
image data for diagnosis. It bypasses the need for the user to
accurately select subjective symptoms, which was a persistent
source of error in the traditional ML systems [11].

While earlier papers used basic CNN architectures [13],
these are known to be computationally heavy and resource-
intensive, requiring specialized optimization techniques like
the 8-bit quantization to be deployable on mobile devices [16].
EfficientNetV2, by design, employs a highly effective
compound scaling method and incorporates advanced features
(like MBConv and Fused-MBConv) that make it lightweight
and efficient out-of-the-box. This inherent efficiency is a direct
advantage over the older, non-optimized CNN models.

EfficientNetV2 is designed for excellent performance on
complex visual tasks. The ability to use a pre-trained model
(transfer learning) allows the system to leverage features
learned from massive datasets like ImageNet. It drastically
reduces the training time and data requirements for the
relatively smaller domain of cat skin diseases. This is a
significant advantage over training a complex hybrid model
(CNN + Random Forest) from scratch, which requires two
separate stages of training and optimization [17].

While recent frameworks such as YOLO v8 [14] and CNN
+ RF hybrids [17] demonstrate strong accuracy, they demand
substantial GPU resources and high-resolution datasets.
Transformer-based lightweight models such as MobileViT [18]
and Mobile-Former [19] deliver competitive accuracy, but
often require complex token-mixing operations, larger
parameter counts, and hardware acceleration (GPU/TPU) not
universally available on edge devices. EfficientNetV2 was
therefore selected in this study because it achieves an optimal
accuracy-efficiency trade-off through progressive compound
scaling and fused-MBConv layers.

Compared to previous CNNs and quantized networks [15],
EfficientNetV2 offers smaller model size and faster
convergence, enabling training on limited datasets, superior
parameter efficiency, built-in regularization and gradient
stability, and simpler pipeline than transformer-based models
(MobileViT). Thus, EfficientNetV2 bridges the gap between
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TABLE I. NUMBER OF IMAGES PER DIAGNOSTIC CLASS ALLOCATED TO TRAINING, VALIDATION, AND TESTING SETS AFTER AUGMENTATION

. Ringworm Acne Flea Scabies
Split  Healthy Mild Severe Mild Severe Mild Severe Mild Severe Total %
Train 480 480 480 480 480 480 480 480 480 4320 75.0
Val 80 80 80 80 80 80 80 80 80 720 12.5
Test 80 80 80 80 80 80 80 80 80 720 12.5
Total 640 640 640 640 640 640 640 640 640 5760 100

classical lightweight CNNs and modern hybrid vision models.
It offers high precision with manageable computational cost,
making it particularly suitable for edge-based veterinary
diagnostic applications where power and memory are limited.

This study leveraged EfficientNetV2B0, a lightweight
architecture designed for faster convergence and improved
parameter efficiency, as the backbone for cat skin disease

diagnosis on low-resource devices. By fine-tuning
EfficientNetV2B0 alongside comparative  baselines
(DenseNet121, MobileNetV2, MobileNetV3, and

EfficientNetB0) on an augmented dataset of nine skin condition
classes, this study aims to demonstrate a balanced solution that
achieves high diagnostic accuracy while maintaining sub-
100 ms CPU inference times.

The remainder of this paper is organized as follows:
Section II details the dataset preparation and model training
methodology. SectionIII presents experimental results and
discussion. Section IV concludes with insights.

II. METHOD

This section details the end-to-end approach employed for
feline skin disease diagnosis, from image collection and
preprocessing through model selection, training procedures,
and performance evaluation. First, this section describes how
the dataset was assembled and augmented to ensure robustness
across varied lesion presentations. Next, the five CNN
architectures benchmarked in this work are introduced,
highlighting their design motivations for lightweight, low-
latency inference. The fine-tuning strategy is then outlined,
including optimizer settings, learning rate scheduling, and
hyperparameter search. Finally, the metrics and benchmarking
protocol used to assess each model’s diagnostic accuracy and
CPU inference speed are specified, reflecting real-world
deployment constraints.

A. Dataset and Preprocessing

Feline skin images were collected from Kaggle, Roboflow,
and Google Images using class-specific search queries covering
nine diagnostic categories: Healthy, Severe Ringworm, Mild
Ringworm, Severe Acne, Mild Acne, Severe Flea, Mild Flea,
Severe Scabies, and Mild Scabies. An initial set of 80 raw
images per class (720 in total) was manually curated to ensure
diversity in lighting, pose, background, fur color, and lesion
appearance. Although this sample size is modest, it provides a
balanced foundation for model comparison while allowing
computational feasibility for extensive hyperparameter
exploration. To reduce overfitting risk inherent to limited
datasets, a systematic augmentation pipeline was applied to
expand image diversity and improve generalization.

Each raw image underwent four rotations (0°, 90°, 180°,
270°) and horizontal flipping for each rotated variant. It results
in a total data size of 640 samples per class (5,760 images in
total). More complex augmentation methods, such as
brightness and contrast adjustment, random cropping, or

scaling, were intentionally excluded to maintain a manageable
dataset size that facilitates efficient hyperparameter tuning and
cross-model  benchmarking. The chosen  geometric
transformations provide sufficient variation in spatial
orientation and texture without substantially inflating the
computational load or training time. It makes the dataset
suitable for systematic architecture comparison on limited
hardware resources.

All images were resized to 224x224 pixels, the canonical
input resolution for modern CNN architectures. This size was
selected to maintain compatibility with pretrained ImageNet
[20] weights while minimizing computational overhead for
deployment on low-resource hardware. Image intensities were
normalized to the [0, 1] range to match the input requirements
of modern CNN backbones.

Dataset partitioning followed a stratified random split at the
class level using a fixed random seed (seed = 42) to ensure
reproducibility and preserve class balance across subsets. Each
class was divided into 480 training, 80 validation, and 80
testing samples, corresponding to 75%, 12.5%, and 12.5% ratio
respectively. The final data splits are summarized in Table I and
representative samples from each class are illustrated in
Figure 1. TableI provides the exact counts used for training,
validation, and testing per class. Figure 1 demonstrates visual
variability and highlights common challenges such as varying
backgrounds.

B. Model Architectures

Five convolutional neural network (CNN) architectures
were selected to evaluate the trade-off between accuracy and
computational cost on edge hardware. CNN-based models
remain a dominant choice for mobile-scale image classification
due to their mature optimization kernels and consistently low
inference latency on commodity CPUs.

1. DenseNetl21, a densely connected architecture that
concatenates feature maps from all preceding layers to
encourage feature reuse and mitigate vanishing gradients
[21]. Its parameter efficiency makes it a popular choice for
medical image tasks.

2. MobileNetV2, employs inverted residual blocks and linear
bottlenecks to reduce memory footprint and multiply-
accumulate (MAC) operations, targeting mobile and
embedded applications [22].

3. MobileNetV3, builds upon MobileNetV2 by incorporating
network architecture search (NAS), optimized modules and
lightweight attention (“squeeze-and-excite”) blocks for
further latency reduction [23].

4. EfficientNetB0, utilizes a compound scaling method to
uniformly scale depth, width, and resolution, achieving
state-of-the-art accuracy with fewer parameters [24].

5. EfficientNetV2B0, an evolution of EfficientNet that
improves training speed via fused MBConv layers and
optimized scaling, delivering faster convergence and lower
inference latency [5].
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TABLE II. CLASSIFICATION ACCURACY OF CNN ARCHITECTURES ON VALIDATION AND TEST DATASET

No. Model Val. Acc. Test. Acc.  Avg. Ace.
1 EfficientNetV2BO0 99.62% 99.79%  99.71%
2 EfficientNetBO 99.62% 99.78%  99.70%
3  DenseNetl21 99.81% 99.44%  99.63%
4 MobileNetV2 99.43% 99.38%  99.40%
5 MobileNetV3 12.35% 8.79% 10.57%
TABLE III. ToP FOUR CNN ARCHITECTURES SIZE COMPARISON
No. Model Param. Size FLOPS Latency
1 EfficientNetV2B0 59M 22.64 MB 14G 78 ms/frame
2 MobileNetV2 22M 8.68 MB 0.6 G 80 ms/frame
3 EfficientNetBO 40M 1551 MB 0.8G 140 ms/frame
4  DenseNetl21 7.0M 2690 MB 5.7G 190 ms/frame
Although Vision Transformers (e.g., MobileViT) and
hybrid CNN-Transformer architectures have recently gained 200 -
popularity, their self-attention mechanisms typically incur &
higher computational overhead and memory pressure on CPU- % 150 -
only environments. Existing mobile-oriented transformer &
variants often depend on optimized GPU or NPU acceleration € 100 -
to realize advertised efficiency gains, which are not =
consistently available on low-resource edge devices targeted in % 50 -
this work. 3
The selected architectures therefore align with the research 0 -

gap identified earlier: designing and benchmarking
classification models that remain accurate, computationally
efficient, and practical for deployment on CPU-constrained
edge hardware. By spanning a spectrum from highly compact
(MobileNet variants) to moderately deep but still efficient
(DenseNet, EfficientNet families), this evaluation enables a
comprehensive comparison under identical training and
inference constraints.

C. Fine-Tuning Strategy

All models were initialized with ImageNet-pretrained
weights and fine-tuned on the cat skin disease dataset. Data
augmentation was performed offline (pregenerated) prior to
training to ensure consistent image variations across
experimental runs and to facilitate reproducibility. The Adam
optimizer [25] was employed for its adaptive learning rate
capabilities, with B1=10.9, B2=0.999, ¢ = le-7, no weight decay,
and exponential moving average (EMA) momentum = 0.99. A
Reduce-LR-on-Plateau scheduler monitored validation loss and
reduced the learning rate by a factor of 0.5 upon stagnation for
five consecutive epochs, preventing oscillations around
suboptimal minima.

The models were trained using Sparse Categorical Cross-
Entropy loss, the standard objective for multiclass image
classification. Validation performance was monitored on a
stratified hold-out validation set (12.5% of total data), as
described in the Data and Preprocessing subsection. No k-fold
cross-validation was used to keep training computationally
tractable during extensive model and hyperparameter
benchmarking. Early stopping that monitors validation loss
with a patience of 10 epochs and minimum delta of 0 was
employed to halt training when validation performance ceased
improving, preventing overfitting and unnecessary training
time and computation.

A grid search was conducted over batch sizes {64, 32, 16,
8} and initial learning rates {le-3, 5e-4, 2e-4, 1e-4, 5e-5} for

Model

m EfficientNetV2B0 m EfficientNetB0O
DenseNet121 B MobileNetV2

Figure 2. Bar chart showing average per-frame CPU inference latency (in
milliseconds) for each model evaluated

each architecture to identify optimal hyperparameters. Each
configuration was trained for up to 300 epochs and halted by
early stopping, with the best checkpoint determined by the
highest validation accuracy. Additional regularizations were
handled implicitly through data augmentation, adding batch
normalization layer and dropout layer with rate of 0.2, and early
stopping. Training was performed on an NVIDIA T4 GPU with
16 GB memory.

D. Evaluation Metrics and Inference Benchmarking

Model performance was assessed using classification
accuracy on both validation and held-out test sets. Accuracy
was computed as the number of correctly classified samples
divided by the total sample count per split. Inference latency
was measured on an Intel Xeon 6 CPU (2.2 GHz, 2 vCPUs) of
Google Colab without GPU acceleration to simulate low-
resource deployment. Each model processed 720 frames of
testing data in inference mode, and average per-frame latency
(in milliseconds) was recorded. This CPU-based performance
benchmarking aims to simulate a constrained computing
environment that represents edge devices. The combination of
accuracy and latency metrics provides a holistic view of each
model’s suitability for on-device cat skin disease diagnosis.

III. RESULTS AND DISCUSSION
This section presents the quantitative outcomes of the
experiments and the analysis of the implications. The
classification performance of each model on both validation
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Figure 3. Scatter plot illustrating the trade-off between test accuracy (%) and average CPU inference latency (ms/frame) for the evaluated models.

and test sets is first examined, then inference latency on a CPU
is evaluated to assess real-world deployment feasibility.
Comparative analyses highlight trade-offs between accuracy
and computational efficiency, guiding model selection for low-
resource devices.

A. Classification Performance

The validation and test accuracies for all five architectures
are summarized in Table II. Four of the five models achieved
exceptionally high accuracies (> 99 %) on both splits,
indicating that the augmentation strategy and fine-tuning
protocol successfully captured discriminative features across
nine dermatological categories. EfficientNetV2B0 and
EfficientNetBO delivered near-identical test performance
(99.79 % vs. 99.78 %), consistent with their shared compound-
scaling design. DenseNet121 achieved the highest validation
accuracy (99.81 %) but exhibited a noticeable decline on the
test set (99.44 %), suggesting mild overfitting despite early
stopping and dynamic learning-rate adjustments. In contrast,
MobileNetV2 performed slightly worse overall but maintained
strong generalization (99.38 % test accuracy), reflecting the
effectiveness of its inverted-residual bottlenecks under
constrained computational budgets.

A key architectural insight emerges when comparing these
models. EfficientNetV2BO0 benefits from fused MBConv layers,
which simplify depthwise-separable operations into more
CPU-friendly fused convolutions, accelerating both training
and inference. EfficientNetBO lacks this optimization, which
likely contributes to its slower inference despite comparable
accuracy. DenseNet121’°s dense connectivity enhances gradient
flow but significantly increases feature-map concatenations,
leading to higher memory access costs, an effect amplified on
CPU-only execution.

In stark contrast, MobileNetV3 failed to generalize,
yielding only 12.35 % validation and 8.79 % test accuracy. This
dramatic underperformance likely stems from architectural
incompatibility with specific dataset characteristics of this
study or suboptimal hyperparameter convergence during fine-
tuning. Its lightweight “NAS optimized” modules, while
beneficial for certain mobile vision tasks, may insufficiently
capture the complex texture and color variations present in
dermatological images. Further hyperparameter exploration or
custom module adaptation might be required to salvage
MobileNetV3 for this domain.

Overall, EfficientNetV2BO0 strikes the best balance between
high accuracy and model robustness. Its marginal accuracy
gains over EfficientNetBO and MobileNetV2, coupled with

more stable validation-test consistency than DenseNetl21,
position it as the preferred backbone for cat skin disease
classification under resource constraints.

B. Inference Latency on CPU

Inference times, measured on an Intel Xeon 6 CPU
(2.2 GHz, 2 vCPUs) of Google Colab for 720 frames of testing
data, are plotted in Figure 2. EfficientNetV2BO0 processes each
image in 78 ms, slightly faster than MobileNetV2’s 80 ms,
demonstrating its optimized fused MBConv layers and
effective compound scaling. MobileNetV2, despite its
inverted-residual design, trails by only 2 ms/frame, confirming
its continued relevance as a lightweight backbone. In contrast,
EfficientNetB0’s 140 ms/frame  and  DenseNetl21’s
190 ms/frame latencies reveal substantial computational
overhead, with DenseNet121 nearly tripling the inference time
of EfficientNetV2B0.

These results underscore that, on typical CPU hardware,
only EfficientNetV2B0 and MobileNetV2 achieve near-real-
time throughput (=12-13 fps), whereas EfficientNetBO and
DenseNet121 fall below 10 fps; rendering them less suitable for
interactive or on-device applications without further
optimization. EfficientNetV2B0’s sub-80ms latency thus
remains the best balance of speed and accuracy for low-
resource deployment.

Crucially, sub-100 ms per frame performance ensures that
even with modest processing budgets, such as Raspberry Pi or
mid-range smartphones, the model may deliver over 10 fps,
enabling instantaneous feedback. This capability transforms the
diagnostic pipeline from a batch-oriented analysis into an
interactive tool for veterinarians and pet owners.

C. Trade-off Analysis and Practical Implications

Balancing accuracy and latency are vital for deployment on
low-resource devices. Figure3 schematically illustrates this
trade-off. While DenseNet121 slightly edges out in validation
accuracy, its doubled inference time relative to
EfficientNetV2B0 undermines its practicality in time-sensitive
or energy-constrained settings. Conversely, MobileNetV3,
despite its minimal parameters, fails to meet basic accuracy
requirements, highlighting that extreme compression without
domain-specific adaptation can be counterproductive.

EfficientNetV2B0 emerges as the optimal compromise,
delivering near-peak accuracy with minimal latency. Its
efficient scaling strategy preserves high-resolution feature
sensitivity, which is valuable for subtle dermatological patterns,
while maintaining low inference cost. MobileNetV2 remains a
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strong candidate for devices with tighter memory budgets due
to its smaller parameter count despite slightly lower accuracy.

In future work, extending evaluation to other hardware
platforms (e.g., ARM-based processors) and integrating
quantization techniques could further enhance efficiency.
Additionally, exploring lightweight attention mechanisms or
knowledge-distillation  strategies may unlock further
performance gains without compromising speed. Nonetheless,
current results of this study establish EfficientNetV2B0 as a
compelling solution for rapid, accurate cat skin disease
diagnosis in low-resource environments.

IV. CONCLUSION

In this work, EfficientNetV2B0 was evaluated for the
classification of nine feline dermatological conditions under
edge-device constraints. When fine-tuned on an augmented
dataset, EfficientNetV2B0 achieved a test accuracy of 99.79 %
while sustaining sub-100 ms per-frame inference latency on a
standard CPU-only environment. Through comprehensive
evaluations against established architectures (DenseNetl121,
MobileNetV2, MobileNetV3, and EfficientNetBO0),
EfficientNetV2B0 consistently occupied the Pareto-optimal
frontier, balancing representational capacity and computational
efficiency. The systematic augmentation pipeline and
hyperparameter grid search ensured model robustness across
varied lighting, pose, and lesion presentations, addressing
common challenges in veterinary dermatological imaging.
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