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Abstract— Skin diseases are among the most common health issues in domestic cats. However, access to 
veterinarians is often limited, especially in low-resource settings. Automated image-based detection offers a 
fast and affordable alternative for early intervention. This paper presents a lightweight approach for diagnosing 
feline skin diseases using EfficientNetV2 optimized for low-resource devices. A balanced custom dataset 

consisting of 720 images across nine classes, namely Healthy, Mild/Severe Ringworm, Mild/Severe Acne, 
Mild/Severe Flea, and Mild/Severe Scabies, was compiled from Kaggle, Roboflow, and Google Images, ensuring 
ethical use of publicly available data. The images were augmented through rotations (0°, 90°, 180°, 270°) and 
horizontal flips, resulting in 5,760 images, to enhance model generalization. Five CNN architectures were 
benchmarked: DenseNet121, MobileNetV2, MobileNetV3, EfficientNetB0, and EfficientNetV2B0. Training was 
conducted with grid searches over batch sizes {64, 32, 16, 8} and learning rates {1e-3, 5e-4, 2e-4, 1e-4, 5e-5} for 
up to 300 epochs, and with the Adam optimizer and Reduce-LR-on-Plateau (decay factor 0.5). Early stopping 
(patience = 10) was used to mitigate overfitting. The best model was selected based on highest validation 
accuracy. The experiments were conducted on an Intel Xeon 6 CPU (2.2 GHz, 2 vCPUs) in Google Colab without 
GPU to simulate low-resource deployment. EfficientNetV2B0 achieved the best performance with 99.62% 
validation accuracy and 99.79% test accuracy, with an average inference latency of 78 ms/frame. Compared 
to previous studies focusing on heavyweight models or conventional ML using handcrafted features, this work 
highlights the feasibility of deploying an accurate real-time diagnostic pipeline on edge devices. 
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I. INTRODUCTION 

Feline dermatological disorders are among the most 

frequently reported medical problems in domestic cats. Studies 

have shown that dermatological cases account for 

approximately 13-15% of all feline veterinary consultations [1], 

[2]. Parasites and bacterial infections are the most common 

causes for up to 55% of infectious skin diseases in cats [2]. 

These conditions not only cause discomfort and secondary 

infections but can also pose zoonotic risks to humans [3], 

underscoring the need for early and accurate diagnosis. 

However, dermatological assessment in cats typically 

requires specialized equipment and expert visual inspection, 

which may not be available in low-resource environments or 

for individual pet owners. This diagnostic gap highlights the 

need for automated, accessible, and computationally efficient 

image-based systems that can assist in identifying feline skin 

diseases in real-time. Early and accurate diagnosis of these skin 

ailments is crucial to prevent progression, alleviate discomfort, 

and avoid secondary infections. Recent advances in Machine 

Learning and Deep Learning have enabled automated image-

based diagnosis [4], offering rapid, non-invasive screening that 

can be deployed even in remote areas with minimal 

infrastructure. 

The research landscape for automated feline skin disease 

diagnosis has undergone a significant evolution, establishing 

clear trends that justify the necessity of modern, lightweight 

Deep Learning architectures like EfficientNetV2 [5]. Early 

studies focused on establishing the feasibility of diagnosis 

using symptom-based expert systems, employing methods such 

as Certainty Factor [6], [7], Naïve Bayes [8], [9], and Support 

Vector Machine (SVM) [10]. While traditional classifiers like 

SVM achieved remarkably high numerical accuracy (up to 

98.75%) based on textual symptom input, this approach was 

constrained by the need for expert knowledge encoding and the 

inherent user error in symptom identification [11]. 

Furthermore, while methods like Fuzzy Sugeno provided 

crucial actionable intelligence (disease severity percentage) 

[12], they remained reliant on subjective symptom scoring. 

The field pivoted with the introduction of image-based 

diagnosis using Deep Learning, recognizing that human 

diagnosis is primarily visual. Papers began implementing 

Convolutional Neural Networks (CNNs) for image 

classification and object detection algorithms like YOLOv8 for 

real-time localization of disease areas [13], [14]. This shift 

satisfied the demand for a more intuitive user interface and 

confirmed the necessity of mobile application deployment [13], 

[15]. 

However, this transition introduced a crucial trade-off. 

Deep learning models are computationally expensive [16]. 

While full-size CNNs are powerful, their complex calculations 

necessitate high computational power, making them 

challenging to deploy on resource-constrained mobile devices 

for real-time use [16]. This bottleneck was addressed in 
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subsequent work by exploring techniques like 8-bit 

quantization via TensorFlow Lite, which successfully reduced 

model size by 74.7% while maintaining high accuracy, thus 

ensuring practicality on smartphones [16]. Additionally, the use 

of hybrid models, such such as CNN combined with Random 

Forest, was explored to improve stability and generalization 

over standalone CNNs by leveraging robust traditional 

classifiers [17]. 

The selection of EfficientNetV2 is a strategic response to 

the combined findings of all sixteen papers, addressing the 

limitations of prior methods while embracing the best of the 

latest advancements. EfficientNetV2, as a Deep Learning 

architecture, overcomes the fundamental constraint of 

symptom-based models (SVM, Naïve Bayes, CF) by utilizing 

image data for diagnosis. It bypasses the need for the user to 

accurately select subjective symptoms, which was a persistent 

source of error in the traditional ML systems [11]. 

While earlier papers used basic CNN architectures [13], 

these are known to be computationally heavy and resource-

intensive, requiring specialized optimization techniques like 

the 8-bit quantization to be deployable on mobile devices [16]. 

EfficientNetV2, by design, employs a highly effective 

compound scaling method and incorporates advanced features 

(like MBConv and Fused-MBConv) that make it lightweight 

and efficient out-of-the-box. This inherent efficiency is a direct 

advantage over the older, non-optimized CNN models. 

EfficientNetV2 is designed for excellent performance on 

complex visual tasks. The ability to use a pre-trained model 

(transfer learning) allows the system to leverage features 

learned from massive datasets like ImageNet. It drastically 

reduces the training time and data requirements for the 

relatively smaller domain of cat skin diseases. This is a 

significant advantage over training a complex hybrid model 

(CNN + Random Forest) from scratch, which requires two 

separate stages of training and optimization [17]. 

While recent frameworks such as YOLO v8 [14] and CNN 

+ RF hybrids [17] demonstrate strong accuracy, they demand 

substantial GPU resources and high-resolution datasets. 

Transformer-based lightweight models such as MobileViT [18] 

and Mobile-Former [19] deliver competitive accuracy, but 

often require complex token-mixing operations, larger 

parameter counts, and hardware acceleration (GPU/TPU) not 

universally available on edge devices. EfficientNetV2 was 

therefore selected in this study because it achieves an optimal 

accuracy-efficiency trade-off through progressive compound 

scaling and fused-MBConv layers. 

Compared to previous CNNs and quantized networks [15], 

EfficientNetV2 offers smaller model size and faster 

convergence, enabling training on limited datasets, superior 

parameter efficiency, built-in regularization and gradient 

stability, and simpler pipeline than transformer-based models 

(MobileViT). Thus, EfficientNetV2 bridges the gap between 
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Figure 1. Example images from each diagnostic class (a) Healthy (b) Mild Ringworm (c) Severe Ringworm (d) Mild Acne (e) Severe Acne 
(f) Mild Flea (g) Severe Flea (h) Mild Scabies, and (i) Severe Scabies 
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classical lightweight CNNs and modern hybrid vision models. 

It offers high precision with manageable computational cost, 

making it particularly suitable for edge-based veterinary 

diagnostic applications where power and memory are limited. 

This study leveraged EfficientNetV2B0, a lightweight 

architecture designed for faster convergence and improved 

parameter efficiency, as the backbone for cat skin disease 

diagnosis on low-resource devices. By fine-tuning 

EfficientNetV2B0 alongside comparative baselines 

(DenseNet121, MobileNetV2, MobileNetV3, and 

EfficientNetB0) on an augmented dataset of nine skin condition 

classes, this study aims to demonstrate a balanced solution that 

achieves high diagnostic accuracy while maintaining sub-

100 ms CPU inference times. 

The remainder of this paper is organized as follows: 

Section II details the dataset preparation and model training 

methodology. Section III presents experimental results and 

discussion. Section IV concludes with insights. 

II. METHOD 

This section details the end-to-end approach employed for 

feline skin disease diagnosis, from image collection and 

preprocessing through model selection, training procedures, 

and performance evaluation. First, this section describes how 

the dataset was assembled and augmented to ensure robustness 

across varied lesion presentations. Next, the five CNN 

architectures benchmarked in this work are introduced, 

highlighting their design motivations for lightweight, low-

latency inference. The fine-tuning strategy is then outlined, 

including optimizer settings, learning rate scheduling, and 

hyperparameter search. Finally, the metrics and benchmarking 

protocol used to assess each model’s diagnostic accuracy and 

CPU inference speed are specified, reflecting real-world 

deployment constraints. 

A. Dataset and Preprocessing 

Feline skin images were collected from Kaggle, Roboflow, 

and Google Images using class-specific search queries covering 

nine diagnostic categories: Healthy, Severe Ringworm, Mild 

Ringworm, Severe Acne, Mild Acne, Severe Flea, Mild Flea, 

Severe Scabies, and Mild Scabies. An initial set of 80 raw 

images per class (720 in total) was manually curated to ensure 

diversity in lighting, pose, background, fur color, and lesion 

appearance. Although this sample size is modest, it provides a 

balanced foundation for model comparison while allowing 

computational feasibility for extensive hyperparameter 

exploration. To reduce overfitting risk inherent to limited 

datasets, a systematic augmentation pipeline was applied to 

expand image diversity and improve generalization. 

Each raw image underwent four rotations (0°, 90°, 180°, 

270°) and horizontal flipping for each rotated variant. It results 

in a total data size of 640 samples per class (5,760 images in 

total). More complex augmentation methods, such as 

brightness and contrast adjustment, random cropping, or 

scaling, were intentionally excluded to maintain a manageable 

dataset size that facilitates efficient hyperparameter tuning and 

cross-model benchmarking. The chosen geometric 

transformations provide sufficient variation in spatial 

orientation and texture without substantially inflating the 

computational load or training time. It makes the dataset 

suitable for systematic architecture comparison on limited 

hardware resources. 

All images were resized to 224x224 pixels, the canonical 

input resolution for modern CNN architectures. This size was 

selected to maintain compatibility with pretrained ImageNet 

[20] weights while minimizing computational overhead for 

deployment on low-resource hardware. Image intensities were 

normalized to the [0, 1] range to match the input requirements 

of modern CNN backbones. 

Dataset partitioning followed a stratified random split at the 

class level using a fixed random seed (seed = 42) to ensure 

reproducibility and preserve class balance across subsets. Each 

class was divided into 480 training, 80 validation, and 80 

testing samples, corresponding to 75%, 12.5%, and 12.5% ratio 

respectively. The final data splits are summarized in Table I and 

representative samples from each class are illustrated in 

Figure 1. Table I provides the exact counts used for training, 

validation, and testing per class. Figure 1 demonstrates visual 

variability and highlights common challenges such as varying 

backgrounds. 

B. Model Architectures 

Five convolutional neural network (CNN) architectures 

were selected to evaluate the trade-off between accuracy and 

computational cost on edge hardware. CNN-based models 

remain a dominant choice for mobile-scale image classification 

due to their mature optimization kernels and consistently low 

inference latency on commodity CPUs. 

1. DenseNet121, a densely connected architecture that 

concatenates feature maps from all preceding layers to 

encourage feature reuse and mitigate vanishing gradients 

[21]. Its parameter efficiency makes it a popular choice for 

medical image tasks. 

2. MobileNetV2, employs inverted residual blocks and linear 

bottlenecks to reduce memory footprint and multiply-

accumulate (MAC) operations, targeting mobile and 

embedded applications [22]. 

3. MobileNetV3, builds upon MobileNetV2 by incorporating 

network architecture search (NAS), optimized modules and 

lightweight attention (“squeeze-and-excite”) blocks for 

further latency reduction [23]. 

4. EfficientNetB0, utilizes a compound scaling method to 

uniformly scale depth, width, and resolution, achieving 

state-of-the-art accuracy with fewer parameters [24]. 

5. EfficientNetV2B0, an evolution of EfficientNet that 

improves training speed via fused MBConv layers and 

optimized scaling, delivering faster convergence and lower 

inference latency [5]. 

TABLE I. NUMBER OF IMAGES PER DIAGNOSTIC CLASS ALLOCATED TO TRAINING, VALIDATION, AND TESTING SETS AFTER AUGMENTATION 
 

Split Healthy 
Ringworm Acne Flea Scabies 

Total % 
Mild Severe Mild Severe Mild Severe Mild Severe 

Train 480 480 480 480 480 480 480 480 480 4320 75.0 

Val 80 80 80 80 80 80 80 80 80 720 12.5 

Test 80 80 80 80 80 80 80 80 80 720 12.5 

Total 640 640 640 640 640 640 640 640 640 5760 100 
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Although Vision Transformers (e.g., MobileViT) and 

hybrid CNN-Transformer architectures have recently gained 

popularity, their self-attention mechanisms typically incur 

higher computational overhead and memory pressure on CPU-

only environments. Existing mobile-oriented transformer 

variants often depend on optimized GPU or NPU acceleration 

to realize advertised efficiency gains, which are not 

consistently available on low-resource edge devices targeted in 

this work. 

The selected architectures therefore align with the research 

gap identified earlier: designing and benchmarking 

classification models that remain accurate, computationally 

efficient, and practical for deployment on CPU-constrained 

edge hardware. By spanning a spectrum from highly compact 

(MobileNet variants) to moderately deep but still efficient 

(DenseNet, EfficientNet families), this evaluation enables a 

comprehensive comparison under identical training and 

inference constraints. 

C. Fine-Tuning Strategy 

All models were initialized with ImageNet-pretrained 

weights and fine-tuned on the cat skin disease dataset. Data 

augmentation was performed offline (pregenerated) prior to 

training to ensure consistent image variations across 

experimental runs and to facilitate reproducibility. The Adam 

optimizer [25] was employed for its adaptive learning rate 

capabilities, with β₁ = 0.9, β₂ = 0.999, ε = 1e-7, no weight decay, 

and exponential moving average (EMA) momentum = 0.99. A 

Reduce-LR-on-Plateau scheduler monitored validation loss and 

reduced the learning rate by a factor of 0.5 upon stagnation for 

five consecutive epochs, preventing oscillations around 

suboptimal minima. 

The models were trained using Sparse Categorical Cross-

Entropy loss, the standard objective for multiclass image 

classification. Validation performance was monitored on a 

stratified hold-out validation set (12.5% of total data), as 

described in the Data and Preprocessing subsection. No k-fold 

cross-validation was used to keep training computationally 

tractable during extensive model and hyperparameter 

benchmarking. Early stopping that monitors validation loss 

with a patience of 10 epochs and minimum delta of 0 was 

employed to halt training when validation performance ceased 

improving, preventing overfitting and unnecessary training 

time and computation. 

A grid search was conducted over batch sizes {64, 32, 16, 

8} and initial learning rates {1e-3, 5e-4, 2e-4, 1e-4, 5e-5} for 

each architecture to identify optimal hyperparameters. Each 

configuration was trained for up to 300 epochs and halted by 

early stopping, with the best checkpoint determined by the 

highest validation accuracy. Additional regularizations were 

handled implicitly through data augmentation, adding batch 

normalization layer and dropout layer with rate of 0.2, and early 

stopping. Training was performed on an NVIDIA T4 GPU with 

16 GB memory. 

D. Evaluation Metrics and Inference Benchmarking 

Model performance was assessed using classification 

accuracy on both validation and held-out test sets. Accuracy 

was computed as the number of correctly classified samples 

divided by the total sample count per split. Inference latency 

was measured on an Intel Xeon 6 CPU (2.2 GHz, 2 vCPUs) of 

Google Colab without GPU acceleration to simulate low-

resource deployment. Each model processed 720 frames of 

testing data in inference mode, and average per-frame latency 

(in milliseconds) was recorded. This CPU-based performance 

benchmarking aims to simulate a constrained computing 

environment that represents edge devices. The combination of 

accuracy and latency metrics provides a holistic view of each 

model’s suitability for on-device cat skin disease diagnosis. 

III. RESULTS AND DISCUSSION 

This section presents the quantitative outcomes of the 

experiments and the analysis of the implications. The 

classification performance of each model on both validation 

 

Figure 2. Bar chart showing average per-frame CPU inference latency (in 
milliseconds) for each model evaluated 
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TABLE II. CLASSIFICATION ACCURACY OF CNN ARCHITECTURES ON VALIDATION AND TEST DATASET 

 

No. Model Val. Acc. Test. Acc. Avg. Acc. 

1 EfficientNetV2B0 99.62% 99.79% 99.71% 

2 EfficientNetB0 99.62% 99.78% 99.70% 

3 DenseNet121 99.81% 99.44% 99.63% 

4 MobileNetV2 99.43% 99.38% 99.40% 

5 MobileNetV3 12.35% 8.79% 10.57% 

 
TABLE III. TOP FOUR CNN ARCHITECTURES SIZE COMPARISON 

 

No. Model Param. Size FLOPS Latency 

1 EfficientNetV2B0 5.9 M 22.64 MB 1.4 G 78 ms/frame 

2 MobileNetV2 2.2 M 8.68 MB 0.6 G 80 ms/frame 

3 EfficientNetB0 4.0 M 15.51 MB 0.8 G 140 ms/frame 

4 DenseNet121 7.0 M 26.90 MB 5.7 G 190 ms/frame 

 

L
at

en
cy

 (
m

s/
fr

am
e)

 

Model 



Jurnal Teknik Elektro Vol. xx No. xx 20xx 49 

and test sets is first examined, then inference latency on a CPU 

is evaluated to assess real-world deployment feasibility. 

Comparative analyses highlight trade-offs between accuracy 

and computational efficiency, guiding model selection for low-

resource devices. 

A. Classification Performance 

The validation and test accuracies for all five architectures 

are summarized in Table II. Four of the five models achieved 

exceptionally high accuracies (> 99 %) on both splits, 

indicating that the augmentation strategy and fine-tuning 

protocol successfully captured discriminative features across 

nine dermatological categories. EfficientNetV2B0 and 

EfficientNetB0 delivered near-identical test performance 

(99.79 % vs. 99.78 %), consistent with their shared compound-

scaling design. DenseNet121 achieved the highest validation 

accuracy (99.81 %) but exhibited a noticeable decline on the 

test set (99.44 %), suggesting mild overfitting despite early 

stopping and dynamic learning-rate adjustments. In contrast, 

MobileNetV2 performed slightly worse overall but maintained 

strong generalization (99.38 % test accuracy), reflecting the 

effectiveness of its inverted-residual bottlenecks under 

constrained computational budgets. 

A key architectural insight emerges when comparing these 

models. EfficientNetV2B0 benefits from fused MBConv layers, 

which simplify depthwise-separable operations into more 

CPU-friendly fused convolutions, accelerating both training 

and inference. EfficientNetB0 lacks this optimization, which 

likely contributes to its slower inference despite comparable 

accuracy. DenseNet121’s dense connectivity enhances gradient 

flow but significantly increases feature-map concatenations, 

leading to higher memory access costs, an effect amplified on 

CPU-only execution. 

In stark contrast, MobileNetV3 failed to generalize, 

yielding only 12.35 % validation and 8.79 % test accuracy. This 

dramatic underperformance likely stems from architectural 

incompatibility with specific dataset characteristics of this 

study or suboptimal hyperparameter convergence during fine-

tuning. Its lightweight “NAS optimized” modules, while 

beneficial for certain mobile vision tasks, may insufficiently 

capture the complex texture and color variations present in 

dermatological images. Further hyperparameter exploration or 

custom module adaptation might be required to salvage 

MobileNetV3 for this domain. 

Overall, EfficientNetV2B0 strikes the best balance between 

high accuracy and model robustness. Its marginal accuracy 

gains over EfficientNetB0 and MobileNetV2, coupled with 

more stable validation-test consistency than DenseNet121, 

position it as the preferred backbone for cat skin disease 

classification under resource constraints. 

B. Inference Latency on CPU 

Inference times, measured on an Intel Xeon 6 CPU 

(2.2 GHz, 2 vCPUs) of Google Colab for 720 frames of testing 

data, are plotted in Figure 2. EfficientNetV2B0 processes each 

image in 78 ms, slightly faster than MobileNetV2’s 80 ms, 

demonstrating its optimized fused MBConv layers and 

effective compound scaling. MobileNetV2, despite its 

inverted-residual design, trails by only 2 ms/frame, confirming 

its continued relevance as a lightweight backbone. In contrast, 

EfficientNetB0’s 140 ms/frame and DenseNet121’s 

190 ms/frame latencies reveal substantial computational 

overhead, with DenseNet121 nearly tripling the inference time 

of EfficientNetV2B0. 

These results underscore that, on typical CPU hardware, 

only EfficientNetV2B0 and MobileNetV2 achieve near-real-

time throughput (≈12-13 fps), whereas EfficientNetB0 and 

DenseNet121 fall below 10 fps; rendering them less suitable for 

interactive or on-device applications without further 

optimization. EfficientNetV2B0’s sub-80 ms latency thus 

remains the best balance of speed and accuracy for low-

resource deployment. 

Crucially, sub-100 ms per frame performance ensures that 

even with modest processing budgets, such as Raspberry Pi or 

mid-range smartphones, the model may deliver over 10 fps, 

enabling instantaneous feedback. This capability transforms the 

diagnostic pipeline from a batch-oriented analysis into an 

interactive tool for veterinarians and pet owners. 

C. Trade-off Analysis and Practical Implications 

Balancing accuracy and latency are vital for deployment on 

low-resource devices. Figure 3 schematically illustrates this 

trade-off. While DenseNet121 slightly edges out in validation 

accuracy, its doubled inference time relative to 

EfficientNetV2B0 undermines its practicality in time-sensitive 

or energy-constrained settings. Conversely, MobileNetV3, 

despite its minimal parameters, fails to meet basic accuracy 

requirements, highlighting that extreme compression without 

domain-specific adaptation can be counterproductive. 

EfficientNetV2B0 emerges as the optimal compromise, 

delivering near-peak accuracy with minimal latency. Its 

efficient scaling strategy preserves high-resolution feature 

sensitivity, which is valuable for subtle dermatological patterns, 

while maintaining low inference cost. MobileNetV2 remains a 

 

Figure 3. Scatter plot illustrating the trade-off between test accuracy (%) and average CPU inference latency (ms/frame) for the evaluated models.  
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strong candidate for devices with tighter memory budgets due 

to its smaller parameter count despite slightly lower accuracy. 

In future work, extending evaluation to other hardware 

platforms (e.g., ARM-based processors) and integrating 

quantization techniques could further enhance efficiency. 

Additionally, exploring lightweight attention mechanisms or 

knowledge-distillation strategies may unlock further 

performance gains without compromising speed. Nonetheless, 

current results of this study establish EfficientNetV2B0 as a 

compelling solution for rapid, accurate cat skin disease 

diagnosis in low-resource environments. 

IV. CONCLUSION 

In this work, EfficientNetV2B0 was evaluated for the 

classification of nine feline dermatological conditions under 

edge-device constraints. When fine-tuned on an augmented 

dataset, EfficientNetV2B0 achieved a test accuracy of 99.79 % 

while sustaining sub-100 ms per-frame inference latency on a 

standard CPU-only environment. Through comprehensive 

evaluations against established architectures (DenseNet121, 

MobileNetV2, MobileNetV3, and EfficientNetB0), 

EfficientNetV2B0 consistently occupied the Pareto-optimal 

frontier, balancing representational capacity and computational 

efficiency. The systematic augmentation pipeline and 

hyperparameter grid search ensured model robustness across 

varied lighting, pose, and lesion presentations, addressing 

common challenges in veterinary dermatological imaging. 
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