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Abstract— Accurate classification of chest X-ray (CXR) images is vital for early detection of thoracic diseases
such as COVID-19, Tuberculosis, and Pneumonia, particularly in regions with limited radiological expertise.
While deep learning has shown promise in CXR interpretation, many existing models rely solely on internal
datasets, risking overfitting and poor generalizability. Furthermore, inadequate tuning of network
architectures may limit robustness across varied imaging conditions. This study presents an externally
validated deep learning framework based on Convolutional Neural Networks (CNNs) for multi-disease CXR
classification. This study compared a baseline CNN with two convolutional layers against a tuned architecture
with three layers across multiple image resolutions (64%x64, 112x112, 224x224). The proposed model employs
transfer learning with a pre-trained CNN, fine-tuned for four-class classification using a softmax output layer.
Training was performed with the Adam optimizer (learning rate: 0.0001, batch size: 32) and categorical cross-
entropy loss, for up to 50 epochs with early stopping. Internal validation showed the tuned model
outperformed the baseline, achieving 0.97 accuracy and an Fl-score of 0.89. External validation confirmed
superior generalizability, with the tuned model attaining an Fl-score of 0.83 and an AUC of 0.97 at 112x112
resolution, compared to the baseline’s F1-score of 0.79 and AUC of 0.94. These results highlight the potential
of optimized CNN architectures as reliable, scalable tools for radiological decision support in resource-limited
healthcare systems. Future work will incorporate explainable AI methods and real-world clinical validation to

ensure safe, interpretable deployment.
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I. INTRODUCTION

The global COVID-19 pandemic has further strained
healthcare systems and highlighted the urgent need for
automated, rapid, and accurate diagnostic tools [1].
Tuberculosis in developing countries such as Indonesia, and
pneumonia, which disproportionately affects both pediatric and
elderly populations, continue to pose significant global public
health challenges [2]. According to the Indonesian Ministry of
Health, Indonesia ranks among the highest-burden countries for
tuberculosis, with an estimated 969,000 new cases in 2022 [3],
while pneumonia remains a leading cause of morbidity and
mortality among children under five and older adults,
especially in rural and underserved regions [4].

Given these circumstances, artificial intelligence (Al),
particularly those based on deep learning (DL), has gained
significant attention for its potential to enhance medical image
interpretation. Medical image processing, when integrated with
Al, enables the automatic extraction of relevant features from
chest X-rays and CT scans, facilitating the classification of
pulmonary diseases. Convolutional Neural Networks (CNNs)
and transfer learning architectures such as VGG, ResNet, and
DenseNet have demonstrated notable success in differentiating
between normal and abnormal lung patterns [5]. A previous
study proposes a robust, multi-step Al pipeline for TB
screening. They begin by applying sophisticated segmentation
networks to isolate lung regions, then use various CNN

architectures to classify segmented CXRs, achieving a top
accuracy of 99.1% [6]. These models can learn hierarchical
representations of lung pathology, effectively distinguishing
between viral infections like COVID-19, bacterial pneumonia,
and mycobacterial infections such as TB.

Previous studies have explored binary or multi-class
classification tasks focusing on subsets of these diseases [7], [8],
[9]. Despite significant advances in medical image analysis,
comprehensive deep learning approaches capable of
simultaneously classifying normal Iungs and accurately
distinguishing among COVID-19, tuberculosis, and pneumonia
remain scarce. Most existing models are disease-specific or
limited to binary or ternary classifications, which restricts their
clinical utility in real-world settings [8], [10]. A unified, multi-
disease classification framework has the potential to
substantially enhance diagnostic accuracy, streamline triage
processes, and alleviate the burden on radiology services,
particularly in low-resource settings or during periods of
heightened demand, such as during pandemics [11].

Many models focus on individual diseases: e.g.,
ResNet-based systems for tuberculosis vs healthy, or VGG16
and DenseNet architectures for pneumonia vs normal, often
evaluated in isolation and without multi-disease comparison
[12], [13]. Although advanced deep learning architectures
involving multiple stages have been proposed to enable
thorough lung disease classification from chest radiographs,
this approach presents several notable limitations. The use of
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sequential classification stages increases model complexity and
significantly extends inference time, making it less practical for
real-time or point-of-care deployment. The pipeline also
demands extensive hyperparameter tuning for each stage,
resulting in longer development cycles and reduced
reproducibility [14].

Despite their potential, the use of deep features for detecting
pulmonary abnormalities such as COVID-19, pneumonia, and
tuberculosis from chest X-rays faces several limitations. Many
datasets suffer from class imbalance, with significantly fewer
COVID-19 or tuberculosis cases compared to normal and
pneumonia, which may bias the model toward majority classes.
In addition, most publicly available datasets are derived from
limited sources and lack diversity in imaging conditions,
patient demographics, and disease severity, thereby reducing
the generalizability of the findings [15]. The extraction of a
large number of deep features, such as those from VGG or
AlexNet, can also introduce redundancy and limit
interpretability, making it difficult to translate model decisions
into clinical insights. Moreover, overlapping radiographic
manifestations among these diseases often lead to clinically
significant misclassifications, such as COVID-19 being
classified as normal or tuberculosis as pneumonia. Another
concern is the frequent reliance on internal validation and
overall accuracy, without sufficient evaluation of sensitivity,
specificity, and external validation, which are essential for
assessing clinical applicability.

The joint diagnosis of pneumonia, COVID-19, and
tuberculosis from chest X-ray images using deep learning faces
several limitations [16]. First, the model was trained and
evaluated using augmented versions of publicly available
Kaggle datasets without independent external validation,
raising concerns about overfitting and dataset bias. Second,
relying solely on augmentation for variability may not
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adequately account for real-world differences in imaging
conditions, equipment, settings, and patient demographics,
limiting generalizability. Third, although the model reported
very high accuracy (98.72%) and recall rates (99.66% for
pneumonia, 98.10% for tuberculosis, and 96.27% for COVID-
19), these results may be overoptimistic without rigorous
testing on independent datasets. Finally, the exclusive
dependence on homogeneous public datasets with limited
clinical diversity in terms of populations, imaging devices, and
geographic  origins further undermines the model’s
applicability to broader and more diverse clinical settings.

A significant research gap remains in the development of
deep learning models capable of simultaneously classifying
normal, COVID-19, tuberculosis, and pneumonia from chest
X-rays. Most existing models focus on one or two diseases and
are limited to binary or ternary classification. Multi-class
models often suffer from reduced accuracy and poor
generalization as class complexity increases. Moreover,
external validation is rarely performed, limiting real-world
applicability; this highlights the need for a robust, generalizable,
and externally validated deep learning framework that can
accurately classify multiple respiratory diseases in diverse
clinical settings. This study contributes to the field by
proposing a unified deep learning framework designed to
address current limitations in chest X-ray classification.

Specifically, the model is capable of simultaneously
distinguishing among normal, COVID-19, tuberculosis, and
pneumonia cases within a four-class classification setting,
offering a more comprehensive diagnostic tool than existing
binary or ternary models. To ensure robustness and
generalizability, the framework is validated using external
datasets and imaging conditions.
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Figure 1. Research design of externally validated deep learning model for multi-disease classification of chest x-rays
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TABLEL  DISTRIBUTION FOR TRAINING, TESTING, AND VALIDATION
Class Training Validation Testing
COVID-19 460 10 106
Normal 1341 8 234
Pneumonia 3875 8 390
Tuberculosis 650 12 41
II. METHOD

The research workflow is depicted in Figure 1. The process
begins with data collection from publicly available databases,
followed by preprocessing to ensure consistency and quality of
the input images. In this study, preprocessing consisted solely
of image resizing to three target resolutions—64x64, 112x112,
and 224x224 pixels—chosen to match the input requirements
of the CNN architectures evaluated while preserving the
original image characteristics. No cropping, rotation, contrast
enhancement, or other image manipulation techniques were
performed. Next, a CNN architecture specifically tailored for
multi-disease classification is developed. The prepared dataset
is then used to train the model, optimizing its parameters for
accurate classification; this is followed by a comprehensive
evaluation phase using standard performance metrics to
quantify accuracy, precision, recall, and Fl-score. Finally,
external validation is performed on an independent dataset to
rigorously assess the model’s generalizability and robustness
across unseen cases, thereby confirming its potential for
deployment in real-world clinical scenarios.

A. Dataset Collection

The dataset used in this study was compiled from three
publicly available sources [17],[18], [19]. Specifically, Dataset
A contributed 5674 chest X-ray images, consisting of 326
COVID-19, 4273 pneumonia, 391 tuberculosis, and 684
normal cases [17]. Dataset B provided 762 images, with
detailed class distribution as follows: 312 tuberculosis and 450
normal cases [18]. Finally, Dataset C contributed 699 images,
including 250 COVID-19 and 449 normal cases [19]. Together,
these sources ensured a balanced and diverse dataset for
training, validation, and testing. The choice of public data was
driven by the need for standardized, well-labeled images to
enable reproducible model development and benchmarking.
The focus on Indonesia is maintained by framing the study’s
relevance to local healthcare challenges—particularly the
shortage of radiology specialists and the potential for Al-based
tools to support diagnosis in resource-limited settings. A total
of 7,135 images were utilized in this study, as detailed in Table
I. Each image was adjusted to a fixed resolution of 64x64,
112x112, and 224%224 pixels, and normalized to standardize
pixel intensity distributions.

B. Model Architecture

The proposed model leverages a transfer learning strategy
built upon a pre-trained CNN architecture, a widely adopted
approach in biomedical imaging [15], [20], [21], [22], [23], The
network was fine-tuned on the training dataset using
convolutional layers with a kernel size of 3, and a softmax
activation function in the output layer to predict probabilities
across the four target classes. To enhance generalization and
mitigate overfitting, dropout and batch normalization layers
were incorporated. Two architectures were evaluated: a
baseline CNN comprising two convolutional layers and a tuned
CNN extended to three convolutional layers. The input image
resolutions explored were 64x64, 112x112, and 224x224
pixels. In the baseline model, the first convolutional layer
utilized 16 filters (160 parameters), followed by a second layer
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with 32 filters (4,640 parameters). The models were trained
using the Adam optimizer (initial learning rate = 0.0001, batch
size = 32) with categorical cross-entropy loss. Training was
conducted over 50 epochs with early stopping based on
validation loss, ensuring convergence while preventing
overfitting. This rigorous design and optimization provide a
robust foundation for accurate multi-disease chest X-ray
classification, balancing model complexity with generalization
capability.

C. Evaluation Metrics

Classification performance was evaluated using several
standard metrics—accuracy, precision, recall (sensitivity), F1-
score, and the area under the receiver operating characteristic
curve (AUC-ROC)—computed individually for each class.
Confusion matrices were also generated to analyze
misclassifications. Results were reported separately for internal
validation and external testing to highlight generalizability. In
classification analysis, True Positives (TP) represent instances
where the model accurately identifies positive cases, while
True Negatives (TN) denote correctly classified negative cases.
Conversely, False Positives (FP) occur when the model
incorrectly labels a negative instance as positive, and False
Negatives (FN) arise when a positive instance is mistakenly
classified as negative. These four metrics form the foundation
for evaluating a model’s performance, serving as the basis for
key performance indicators such as accuracy, precision, recall,
and Fl-score, which are critical in assessing predictive
reliability and generalizability across diverse datasets.

Accuracy (4cc) (1), measures the proportion of correctly
classified samples among all predictions.

TP+ TN

TP+ TN +FP +FN
Precision (Prec) (2), evaluates the proportion of positive
predictions that are correct.

(M

Acc =

TP

TP + FP
Recall (Sens) (3), measures the model’s ability to correctly
identify all positive instances.

TP
TP FN
F1-Score (4) is the harmonic mean of precision and recall,
providing a balanced metric in the presence of class imbalance.

Prec.x Sens 4)

2

Prec =

3)

Sens =

F1-S =2, —
core Prec + Sens

The AUC represents the degree of separability, where a value
closer to 1.0 indicates better performance.

D. External Validation

To assess robustness, the trained model was tested on
external datasets not seen during training or validation.
Performance was evaluated using the same metrics to simulate
deployment in real-world clinical scenarios. This step was
essential to demonstrate the model’s ability to generalize across
diverse populations, image qualities, and disease distributions.

III. RESULTS AND DISCUSSION

To evaluate the effectiveness and generalizability of the
proposed deep learning model for multi-disease classification
of chest X-rays, conducted comprehensive internal training and
external validation across four clinically significant categories:
COVID-19, Tuberculosis, Pneumonia, and Normal. The
model’s performance was assessed using a range of metrics,
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revealing its potential to assist in rapid and accurate diagnosis
across diverse imaging datasets and clinical settings.

A. Classification Performance on Internal Dataset

The proposed deep learning model demonstrated robust
classification performance on the internal dataset, effectively
distinguishing between COVID-19, Tuberculosis, Pneumonia,
and Normal cases, as reflected by consistently high accuracy,
sensitivity, specificity, and F1-scores across all classes. The
baseline CNN model with two convolutional layers was trained
for 50 epochs using input image dimensions of 64 x 64, 112 x
112, and 224 x 224 pixels. Table II shows that across all
configurations, the model consistently achieved a high training
accuracy of 0.99, indicating effective feature learning.
However, validation performance varied with input resolution.
At 64 x 64, the validation accuracy reached only 0.78,
suggesting limited generalization at lower resolutions. In
contrast, 112 x 112 yielded the highest validation accuracy of
0.97, followed by 0.94 for 224 x 224. Notably, the lowest
training loss of 0.68 was observed with the 224 x 224 input,
highlighting its advantage in minimizing classification errors
during training despite a slight drop in validation performance
compared to 112 x 112.

In this study, the CNN model was further optimized by
tuning its architecture to include three convolutional layers,
aiming to enhance classification performance across different
image resolutions [24]. The tuned model demonstrated notable
improvements at each resolution. For a 64 x 64 input, the best
performance was achieved at epoch 11, with a training accuracy
of 0.97 and a validation accuracy of 0.84. For a 112 x 112, the
optimal result occurred at epoch 15, yielding a training
accuracy of 0.98 and validation accuracy of 0.89. At 224 x 224,
the model reached its peak performance at epoch 14, with a
training accuracy of 0.99 and an impressive validation accuracy
0f 0.97. Compared to the untuned model, these results represent
an improvement of up to 3% in validation accuracy,
underscoring the effectiveness of architectural tuning in
enhancing generalization and predictive performance, as shown
in Table III.

Table IV presents a comparison of training times between
the baseline CNN and the tuned CNN models across varying
image resolutions. The fastest training time was recorded for
the tuned CNN using 64 x 64 images at 11 epochs, completing
in 572.54 seconds. In contrast, the longest training time
occurred with 224 x 224 images over 50 epochs, taking 5074.51
seconds. Notably, the optimal model in terms of both training
and validation accuracy was achieved with 224 x 224 images
at the 14th epoch, requiring 1332.13 seconds of training time,
demonstrating a favorable balance between performance and
computational efficiency.

TABLE II. THE RESULT OF TESTING THE 2 LAYER CNN MODEL ON THE
INTERNAL DATASET
Dimensions Epoch Accuracy Loss
(pixels) Train Validation Train
64 x 64 50 0.99 0.78 0.94
112x 112 50 0.99 0.97 1.30
224 x 224 50 0.99 0.94 0.68
TABLE III. THE RESULT OF TESTING THE TUNED CNN MODEL ON THE
INTERNAL DATASET
Accurac .
Epoch Train Valigation Loss Train
11 "best epoch"  0.97 0.84 13.91
15 "best epoch"  0.98 0.89 7.37
14 "best epoch"  0.99 0.97 3.22
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A comparative analysis of the Receiver Operating
Characteristic (ROC) curves reveals a clear performance
advantage of the tuned CNN model over the baseline CNN. The
tuned model, which incorporates an additional convolutional
layer and optimized training parameters, consistently achieved
higher Area Under the Curve (AUC) scores across all image
resolutions, indicating improved discriminative capability and
reduced classification errors. In contrast, the untuned CNN
showed lower ROC performance, particularly at lower image
resolutions, suggesting limited generalization. These findings
demonstrate the effectiveness of architectural tuning in
enhancing the model’s sensitivity and specificity, thereby
improving overall diagnostic reliability, as shown in Figure 2
for the CNN model and Figure 3 for the tuned CNN model.

B. External Validation Performance

To assess the generalizability and real-world applicability
of the proposed deep learning model, external validation was
conducted using an independent chest X-ray dataset not seen
during training. This evaluation serves as a critical benchmark
for determining the model’s robustness across diverse imaging
sources and patient populations. The external validation results
provide insight into the model’s capacity to maintain high
diagnostic performance when applied beyond the development
dataset, thereby demonstrating its potential for clinical
deployment in multi-disease classification tasks involving
COVID-19, Tuberculosis, Pneumonia, and Normal cases.

Table V summarizes the external validation outcomes of the
tuned CNN model. At an image resolution of 64 x 64, the model
reached an accuracy of 0.89, an F1-score of 0.63, and an AUC
of 0.94. When the resolution was increased to 112 x 112, the
model delivered its best overall performance, achieving an
accuracy of 0.90. At 224 x 224 resolution, the accuracy was
0.88.

Table VI further confirms these findings by presenting
additional external validation results. At 64 x 64 resolution, the
tuned CNN obtained an accuracy of 0.87, an F1-score of 0.69,
and an AUC of 0.95. The 112 x 112 resolution yielded the most
favorable outcomes, with an accuracy of 0.90, an F1-score of
0.83, and an AUC of 0.97—representing the highest
performance across all tested configurations. At 224 x 224
resolution, the model attained an accuracy of 0.88, an F1-score
of 0.77, and an AUC of 0.96. These results underscore the
superior generalization and discriminative ability of the tuned
CNN, particularly at the 112 x 112 resolution, highlighting its
robustness for clinical application [25], [26].

A clear and systematic comparison between the baseline
CNN and the tuned CNN models is now presented across the
three evaluated input resolutions (64x64, 112x112, and
224x224 pixels) as shown in Figure 4 and Figure 5. The
baseline CNN achieved an accuracy of 0.90, sensitivity of 0.81,
specificity of 0.91, precision of 0.83, F1-score of 0.79, and an
AUC of 0.94. In contrast, the tuned CNN model demonstrated
superior performance with an accuracy of 0.90, sensitivity of
0.84, specificity of 0.92, precision of 0.85, F1-score of 0.83,
and an AUC of 0.97.

While overall accuracy remained comparable, the tuned
CNN exhibited notable gains in sensitivity, precision, F1-score,
and especially AUC, reflecting a more balanced and clinically
reliable classification performance. These improvements
underscore not only the effectiveness of architectural
optimization but also the robustness of the tuned model across
multiple evaluation dimensions, thereby reinforcing the study’s
methodological and translational contributions.
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TABLE IV. THE COMPARISON OF TRAINING TIME FOR CNN AND CNN

TUNED MODELS
Models Dimensions Epoch Time Training (s)
CNN 64 x 64 50 2595.26
112x 112 50 2777.02
224 x 224 50 5074.51
CNN-Tuning 64 x 64 11 572.54
112x 112 15 834.30
224 x 224 14 1332.13
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The confusion matrix for the baseline CNN model under
external data validation is presented in Figure 6. A single
COVID-19 case was classified as Normal, reflecting an area
where the model could be improved to ensure greater
robustness in clinical application. Additionally, five
Pneumonia cases were misclassified as Normal, potentially
undermining clinical decision-making. These
misclassifications highlight the limitations of the untuned
model in accurately distinguishing between pathologies with
overlapping radiographic features, underscoring the need for
further optimization to enhance diagnostic reliability.

The confusion matrix for the tuned CNN model under
external data validation is illustrated in Figure 7. Despite
overall improved performance, the matrix reveals critical
misclassification trends. Specifically, two COVID-19 cases
were incorrectly classified as Normal, which could pose serious
risks in real-world clinical settings where early detection is
essential. Moreover, seven Pneumonia cases were also
misclassified as Normal, indicating residual challenges in
differentiating between subtle radiographic features of disease
and healthy lung appearances. These findings emphasize that,
while tuning improves overall metrics, further refinement is
necessary to reduce false negatives in high-risk categories.

TABLE V. THE RESULT OF TESTING THE CNN MODEL ON THE EXTERNAL DATASET

Dimension Class Testing
Accuracy Sensitivity  Specificity F1-Score Precision AUC
64 x 64 Covid-19 0.96 0.89 0.97 0.86 0.87 0.99
Normal 0.80 0.38 0.98 0.93 0.54 0.90
Pneumonia 0.82 0.98 0.65 0.74 0.84 0.89
TB 0.98 0.95 0.98 0.79 0.86 0.99
Average 0.89 0.80 0.90 0.83 0.78 0.94
112x 112 Covid-19 0.97 0.87 0.98 0.93 0.90 0.99
Normal 0.82 0.44 0.98 0.94 0.60 0.88
Pneumonia 0.84 0.98 0.69 0.76 0.86 0.91
TB 0.97 0.95 0.97 0.67 0.78 0.99
Average 0.90 0.81 0.91 0.83 0.79 0.94
224 x 224 Covid-19 0.97 0.84 0.99 0.98 0.91 0.99
Normal 0.79 0.32 0.99 0.96 0.48 0.86
Pneumonia 0.80 0.99 0.60 0.72 0.83 0.89
TB 0.96 0.97 0.96 0.63 0.76 0.99
Average 0.88 0.78 0.89 0.82 0.75 0.93

TABLE VI. THE RESULT OF TESTING THE TUNED CNN MODEL ON THE EXTERNAL DATASET

Dimension Class Testing
Accuracy Sensitivity Specificity F1-Score Precision AUC
64 x 64 Covid-19 0.95 0.73 0.99 0.82 0.95 0.99
Normal 0.78 0.32 0.98 0.47 0.89 0.89
Pneumonia 0.81 0.98 0.64 0.84 0.74 0.94
TB 0.93 0.95 0.93 0.61 0.45 0.98
Average 0.87 0.75 0.89 0.69 0.76 0.95
112x 112 Covid-19 0.97 0.89 0.98 0.90 0.90 0.99
Normal 0.85 0.55 0.98 0.70 0.93 0.93
Pneumonia 0.86 0.97 0.75 0.88 0.8 0.95
TB 0.93 0.95 0.98 0.84 0.76 0.99
Average 0.90 0.84 0.92 0.83 0.85 0.97
224 x 224 Covid-19 0.97 0.85 0.99 0.91 0.98 0.99
Normal 0.79 0.33 0.99 0.49 0.96 0.91
Pneumonia 0.79 0.99 0.58 0.83 0.71 0.95
TB 0.98 0.97 0.98 0.86 0.76 0.99
Average 0.88 0.79 0.89 0.77 0.85 0.96
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C. Comparative Analysis

A direct comparison between the tuned and untuned CNN
models highlights the impact of architectural optimization on
classification performance. While both models demonstrated
comparable accuracy during external validation—ranging from
0.87 to 0.90—the tuned CNN consistently outperformed the
baseline in terms of F1-score and AUC, particularly at the 112
x 112 resolution, where it achieved an F1-score of 0.83 and an
AUC of 0.97. When compared to prior works, the advantages
of the tuned CNN become clearer. For example, previous
studies utilizing AlexNet, VGG-16, and VGG-19 for
pneumonia classification reported an accuracy of 94.1% [27].
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However, this performance was achieved through the
combination of 300 deep features, which may have introduced
redundancy and limited interpretability—an issue that this
study streamlined architecture aims to overcome by reducing
unnecessary feature overlap while maintaining high
performance. Similarly, another study employing MobileNet
V2 for multi-label classification of 14 lung diseases achieved
an overall accuracy of 90% and an AUC of 0.810, but suffered
from a markedly low sensitivity of 45.3% [28]. This low
sensitivity underscores the challenge of effectively identifying
positive cases, especially in clinically critical contexts. By
contrast, the tuned CNN demonstrates a more balanced
performance across metrics—including accuracy, sensitivity,
specificity, precision, F1-score, and AUC—indicating not only
stronger detection capability but also greater clinical reliability.

The findings of this study have important clinical
implications, demonstrating that the tuned CNN model offers
improved  diagnostic  performance for multi-disease
classification of chest X-rays, particularly in detecting COVID-
19, Tuberculosis, and Pneumonia, with potential application in
resource-limited settings where radiological expertise is scarce.
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Nevertheless, several limitations should be acknowledged.
First, the external validation dataset may not fully capture the
diversity of imaging conditions, patient demographics, and
healthcare settings, which could affect the generalizability of
the model. Second, class imbalance across categories,
particularly with fewer samples for certain diseases, may have
influenced model training and performance. Third, the risks
associated with misclassification remain a concern, especially
false negatives in high-risk categories such as COVID-19 and
Tuberculosis, where delayed or missed diagnoses could have
significant clinical consequences.

These challenges underscore the need for further
optimization and validation. Future research should focus on
addressing class imbalance through data augmentation or re-
sampling techniques, enhancing model robustness via
advanced architectures such as attention mechanisms or hybrid
models, and expanding datasets to encompass broader
populations and imaging conditions.  Additionally,
incorporating explainable Al will be critical for improving
transparency and clinical trust, while prospective validation in
real-world clinical workflows will be essential to ensure safe
and effective deployment.

IV. CONCLUSION

In conclusion, this study presents a rigorously optimized
deep learning model for accurate multi-disease classification of
chest X-rays, capable of distinguishing COVID-19,
Tuberculosis, Pneumonia, and Normal cases. Comparative
analysis between the baseline (non-tuned) and tuned CNN
models demonstrated that adding a third convolutional layer
and optimizing training epochs significantly improved
classification performance. In internal validation, the tuned
model achieved higher accuracy (up to 0.97) and F1-scores
compared to the baseline (0.94), particularly with 224x224
input resolution. External validation confirmed these
improvements, with the tuned model attaining an F1-score of
0.83 and an AUC 0of 0.97 at 112x112 resolution, outperforming
the baseline’s 0.79 and 0.94, respectively. However, this study
has several limitations. First, it relies on publicly available
datasets, which may not fully represent the imaging variability
and patient demographics of Indonesian clinical settings.
Second, preprocessing was limited to image resizing, without
enhancement or artifact correction, which may affect
performance under suboptimal imaging conditions. Third, the
absence of multi-center, real-world clinical validation limits the
direct applicability of the findings. Future work will address
these gaps by incorporating diverse datasets from Indonesian
healthcare facilities, exploring advanced preprocessing and
augmentation techniques, integrating explainable AI methods
to improve interpretability, and conducting prospective clinical
evaluations to ensure safe, reliable deployment in real-world
environments.
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