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Abstract— Accurate classification of chest X-ray (CXR) images is vital for early detection of thoracic diseases 
such as COVID-19, Tuberculosis, and Pneumonia, particularly in regions with limited radiological expertise. 
While deep learning has shown promise in CXR interpretation, many existing models rely solely on internal 
datasets, risking overfitting and poor generalizability. Furthermore, inadequate tuning of network 

architectures may limit robustness across varied imaging conditions. This study presents an externally 
validated deep learning framework based on Convolutional Neural Networks (CNNs) for multi-disease CXR 

classification. This study compared a baseline CNN with two convolutional layers against a tuned architecture 
with three layers across multiple image resolutions (64×64, 112×112, 224×224). The proposed model employs 
transfer learning with a pre-trained CNN, fine-tuned for four-class classification using a softmax output layer. 
Training was performed with the Adam optimizer (learning rate: 0.0001, batch size: 32) and categorical cross-
entropy loss, for up to 50 epochs with early stopping. Internal validation showed the tuned model 
outperformed the baseline, achieving 0.97 accuracy and an F1-score of 0.89. External validation confirmed 
superior generalizability, with the tuned model attaining an F1-score of 0.83 and an AUC of 0.97 at 112×112 
resolution, compared to the baseline’s F1-score of 0.79 and AUC of 0.94. These results highlight the potential 
of optimized CNN architectures as reliable, scalable tools for radiological decision support in resource-limited 
healthcare systems. Future work will incorporate explainable AI methods and real-world clinical validation to 
ensure safe, interpretable deployment. 
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I. INTRODUCTION 

The global COVID-19 pandemic has further strained 

healthcare systems and highlighted the urgent need for 

automated, rapid, and accurate diagnostic tools [1].  

Tuberculosis in developing countries such as Indonesia, and 

pneumonia, which disproportionately affects both pediatric and 

elderly populations, continue to pose significant global public 

health challenges [2]. According to the Indonesian Ministry of 

Health, Indonesia ranks among the highest-burden countries for 

tuberculosis, with an estimated 969,000 new cases in 2022 [3], 

while pneumonia remains a leading cause of morbidity and 

mortality among children under five and older adults, 

especially in rural and underserved regions [4]. 

Given these circumstances, artificial intelligence (AI), 

particularly those based on deep learning (DL), has gained 

significant attention for its potential to enhance medical image 

interpretation. Medical image processing, when integrated with 

AI, enables the automatic extraction of relevant features from 

chest X-rays and CT scans, facilitating the classification of 

pulmonary diseases. Convolutional Neural Networks (CNNs) 

and transfer learning architectures such as VGG, ResNet, and 

DenseNet have demonstrated notable success in differentiating 

between normal and abnormal lung patterns [5]. A previous 

study proposes a robust, multi-step AI pipeline for TB 

screening. They begin by applying sophisticated segmentation 

networks to isolate lung regions, then use various CNN 

architectures to classify segmented CXRs, achieving a top 

accuracy of 99.1% [6]. These models can learn hierarchical 

representations of lung pathology, effectively distinguishing 

between viral infections like COVID-19, bacterial pneumonia, 

and mycobacterial infections such as TB. 

Previous studies have explored binary or multi-class 

classification tasks focusing on subsets of these diseases [7], [8], 

[9]. Despite significant advances in medical image analysis, 

comprehensive deep learning approaches capable of 

simultaneously classifying normal lungs and accurately 

distinguishing among COVID-19, tuberculosis, and pneumonia 

remain scarce. Most existing models are disease-specific or 

limited to binary or ternary classifications, which restricts their 

clinical utility in real-world settings [8], [10]. A unified, multi-

disease classification framework has the potential to 

substantially enhance diagnostic accuracy, streamline triage 

processes, and alleviate the burden on radiology services, 

particularly in low-resource settings or during periods of 

heightened demand, such as during pandemics [11]. 

Many models focus on individual diseases: e.g., 

ResNet-based systems for tuberculosis vs healthy, or VGG16 

and DenseNet architectures for pneumonia vs normal, often 

evaluated in isolation and without multi-disease comparison 

[12], [13]. Although advanced deep learning architectures 

involving multiple stages have been proposed to enable 

thorough lung disease classification from chest radiographs, 

this approach presents several notable limitations. The use of 
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sequential classification stages increases model complexity and 

significantly extends inference time, making it less practical for 

real-time or point-of-care deployment. The pipeline also 

demands extensive hyperparameter tuning for each stage, 

resulting in longer development cycles and reduced 

reproducibility [14]. 

Despite their potential, the use of deep features for detecting 

pulmonary abnormalities such as COVID-19, pneumonia, and 

tuberculosis from chest X-rays faces several limitations. Many 

datasets suffer from class imbalance, with significantly fewer 

COVID-19 or tuberculosis cases compared to normal and 

pneumonia, which may bias the model toward majority classes. 

In addition, most publicly available datasets are derived from 

limited sources and lack diversity in imaging conditions, 

patient demographics, and disease severity, thereby reducing 

the generalizability of the findings [15]. The extraction of a 

large number of deep features, such as those from VGG or 

AlexNet, can also introduce redundancy and limit 

interpretability, making it difficult to translate model decisions 

into clinical insights. Moreover, overlapping radiographic 

manifestations among these diseases often lead to clinically 

significant misclassifications, such as COVID-19 being 

classified as normal or tuberculosis as pneumonia. Another 

concern is the frequent reliance on internal validation and 

overall accuracy, without sufficient evaluation of sensitivity, 

specificity, and external validation, which are essential for 

assessing clinical applicability. 

The joint diagnosis of pneumonia, COVID-19, and 

tuberculosis from chest X-ray images using deep learning faces 

several limitations [16]. First, the model was trained and 

evaluated using augmented versions of publicly available 

Kaggle datasets without independent external validation, 

raising concerns about overfitting and dataset bias. Second, 

relying solely on augmentation for variability may not 

adequately account for real-world differences in imaging 

conditions, equipment, settings, and patient demographics, 

limiting generalizability. Third, although the model reported 

very high accuracy (98.72%) and recall rates (99.66% for 

pneumonia, 98.10% for tuberculosis, and 96.27% for COVID-

19), these results may be overoptimistic without rigorous 

testing on independent datasets. Finally, the exclusive 

dependence on homogeneous public datasets with limited 

clinical diversity in terms of populations, imaging devices, and 

geographic origins further undermines the model’s 

applicability to broader and more diverse clinical settings. 

A significant research gap remains in the development of 

deep learning models capable of simultaneously classifying 

normal, COVID-19, tuberculosis, and pneumonia from chest 

X-rays. Most existing models focus on one or two diseases and 

are limited to binary or ternary classification. Multi-class 

models often suffer from reduced accuracy and poor 

generalization as class complexity increases. Moreover, 

external validation is rarely performed, limiting real-world 

applicability; this highlights the need for a robust, generalizable, 

and externally validated deep learning framework that can 

accurately classify multiple respiratory diseases in diverse 

clinical settings. This study contributes to the field by 

proposing a unified deep learning framework designed to 

address current limitations in chest X-ray classification. 

Specifically, the model is capable of simultaneously 

distinguishing among normal, COVID-19, tuberculosis, and 

pneumonia cases within a four-class classification setting, 

offering a more comprehensive diagnostic tool than existing 

binary or ternary models. To ensure robustness and 

generalizability, the framework is validated using external 

datasets and imaging conditions. 

 

 

Figure 1.  Research design of externally validated deep learning model for multi-disease classification of chest x-rays 
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TABLE I.   DISTRIBUTION FOR TRAINING, TESTING, AND VALIDATION 

Class Training Validation Testing 

COVID-19 460 10 106 

Normal 1341 8 234 

Pneumonia 3875 8 390 

Tuberculosis 650 12 41 

II. METHOD 

The research workflow is depicted in Figure 1. The process 

begins with data collection from publicly available databases, 

followed by preprocessing to ensure consistency and quality of 

the input images. In this study, preprocessing consisted solely 

of image resizing to three target resolutions—64×64, 112×112, 

and 224×224 pixels—chosen to match the input requirements 

of the CNN architectures evaluated while preserving the 

original image characteristics. No cropping, rotation, contrast 

enhancement, or other image manipulation techniques were 

performed. Next, a CNN architecture specifically tailored for 

multi-disease classification is developed. The prepared dataset 

is then used to train the model, optimizing its parameters for 

accurate classification; this is followed by a comprehensive 

evaluation phase using standard performance metrics to 

quantify accuracy, precision, recall, and F1-score. Finally, 

external validation is performed on an independent dataset to 

rigorously assess the model’s generalizability and robustness 

across unseen cases, thereby confirming its potential for 

deployment in real-world clinical scenarios. 

A. Dataset Collection  

The dataset used in this study was compiled from three 

publicly available sources [17],[18], [19]. Specifically, Dataset 

A contributed 5674 chest X-ray images, consisting of 326 

COVID-19, 4273  pneumonia, 391 tuberculosis, and 684 

normal cases [17]. Dataset B provided 762 images, with 

detailed class distribution as follows: 312 tuberculosis and 450 

normal cases [18]. Finally, Dataset C contributed 699 images, 

including  250 COVID-19 and 449 normal cases [19]. Together, 

these sources ensured a balanced and diverse dataset for 

training, validation, and testing. The choice of public data was 

driven by the need for standardized, well-labeled images to 

enable reproducible model development and benchmarking. 

The focus on Indonesia is maintained by framing the study’s 

relevance to local healthcare challenges—particularly the 

shortage of radiology specialists and the potential for AI-based 

tools to support diagnosis in resource-limited settings. A total 

of 7,135 images were utilized in this study, as detailed in Table 

I. Each image was adjusted to a fixed resolution of 64x64, 

112x112, and 224×224 pixels, and normalized to standardize 

pixel intensity distributions.  

B. Model Architecture 

The proposed model leverages a transfer learning strategy 

built upon a pre-trained CNN architecture, a widely adopted 

approach in biomedical imaging [15], [20], [21], [22], [23], The 

network was fine-tuned on the training dataset using 

convolutional layers with a kernel size of 3, and a softmax 

activation function in the output layer to predict probabilities 

across the four target classes. To enhance generalization and 

mitigate overfitting, dropout and batch normalization layers 

were incorporated. Two architectures were evaluated: a 

baseline CNN comprising two convolutional layers and a tuned 

CNN extended to three convolutional layers. The input image 

resolutions explored were 64×64, 112×112, and 224×224 

pixels. In the baseline model, the first convolutional layer 

utilized 16 filters (160 parameters), followed by a second layer 

with 32 filters (4,640 parameters). The models were trained 

using the Adam optimizer (initial learning rate = 0.0001, batch 

size = 32) with categorical cross-entropy loss. Training was 

conducted over 50 epochs with early stopping based on 

validation loss, ensuring convergence while preventing 

overfitting. This rigorous design and optimization provide a 

robust foundation for accurate multi-disease chest X-ray 

classification, balancing model complexity with generalization 

capability. 

C. Evaluation Metrics 

Classification performance was evaluated using several 

standard metrics—accuracy, precision, recall (sensitivity), F1-

score, and the area under the receiver operating characteristic 

curve (AUC-ROC)—computed individually for each class. 

Confusion matrices were also generated to analyze 

misclassifications. Results were reported separately for internal 

validation and external testing to highlight generalizability. In 

classification analysis, True Positives (TP) represent instances 

where the model accurately identifies positive cases, while 

True Negatives (TN) denote correctly classified negative cases. 

Conversely, False Positives (FP) occur when the model 

incorrectly labels a negative instance as positive, and False 

Negatives (FN) arise when a positive instance is mistakenly 

classified as negative. These four metrics form the foundation 

for evaluating a model’s performance, serving as the basis for 

key performance indicators such as accuracy, precision, recall, 

and F1-score, which are critical in assessing predictive 

reliability and generalizability across diverse datasets. 

Accuracy (Acc) (1), measures the proportion of correctly 

classified samples among all predictions. 

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

() 

Precision (Prec) (2), evaluates the proportion of positive 

predictions that are correct. 

𝑃𝑟𝑒𝑐 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

() 

Recall (Sens) (3), measures the model’s ability to correctly 

identify all positive instances. 

𝑆𝑒𝑛𝑠 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

() 

F1-Score (4) is the harmonic mean of precision and recall, 

providing a balanced metric in the presence of class imbalance. 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2.
𝑃𝑟𝑒𝑐. 𝑥 𝑆𝑒𝑛𝑠

𝑃𝑟𝑒𝑐 + 𝑆𝑒𝑛𝑠
 

() 

The AUC represents the degree of separability, where a value 

closer to 1.0 indicates better performance. 

D. External Validation 

To assess robustness, the trained model was tested on 

external datasets not seen during training or validation. 

Performance was evaluated using the same metrics to simulate 

deployment in real-world clinical scenarios. This step was 

essential to demonstrate the model’s ability to generalize across 

diverse populations, image qualities, and disease distributions. 

III. RESULTS AND DISCUSSION  

To evaluate the effectiveness and generalizability of the 

proposed deep learning model for multi-disease classification 

of chest X-rays, conducted comprehensive internal training and 

external validation across four clinically significant categories: 

COVID-19, Tuberculosis, Pneumonia, and Normal. The 

model’s performance was assessed using a range of metrics, 



40 Jurnal Teknik Elektro Vol. 17 No. 2 2025 

revealing its potential to assist in rapid and accurate diagnosis 

across diverse imaging datasets and clinical settings. 

A. Classification Performance on Internal Dataset 

The proposed deep learning model demonstrated robust 

classification performance on the internal dataset, effectively 

distinguishing between COVID-19, Tuberculosis, Pneumonia, 

and Normal cases, as reflected by consistently high accuracy, 

sensitivity, specificity, and F1-scores across all classes. The 

baseline CNN model with two convolutional layers was trained 

for 50 epochs using input image dimensions of 64 × 64, 112 × 

112, and 224 × 224 pixels. Table II shows that across all 

configurations, the model consistently achieved a high training 

accuracy of 0.99, indicating effective feature learning. 

However, validation performance varied with input resolution. 

At 64 × 64, the validation accuracy reached only 0.78, 

suggesting limited generalization at lower resolutions. In 

contrast, 112 × 112 yielded the highest validation accuracy of 

0.97, followed by 0.94 for 224 × 224. Notably, the lowest 

training loss of 0.68 was observed with the 224 × 224 input, 

highlighting its advantage in minimizing classification errors 

during training despite a slight drop in validation performance 

compared to 112 × 112. 

In this study, the CNN model was further optimized by 

tuning its architecture to include three convolutional layers, 

aiming to enhance classification performance across different 

image resolutions [24]. The tuned model demonstrated notable 

improvements at each resolution. For a 64 × 64 input, the best 

performance was achieved at epoch 11, with a training accuracy 

of 0.97 and a validation accuracy of 0.84. For a 112 × 112, the 

optimal result occurred at epoch 15, yielding a training 

accuracy of 0.98 and validation accuracy of 0.89. At 224 × 224, 

the model reached its peak performance at epoch 14, with a 

training accuracy of 0.99 and an impressive validation accuracy 

of 0.97. Compared to the untuned model, these results represent 

an improvement of up to 3% in validation accuracy, 

underscoring the effectiveness of architectural tuning in 

enhancing generalization and predictive performance, as shown 

in Table III. 

Table IV presents a comparison of training times between 

the baseline CNN and the tuned CNN models across varying 

image resolutions. The fastest training time was recorded for 

the tuned CNN using 64 × 64 images at 11 epochs, completing 

in 572.54 seconds. In contrast, the longest training time 

occurred with 224 × 224 images over 50 epochs, taking 5074.51 

seconds. Notably, the optimal model in terms of both training 

and validation accuracy was achieved with 224 × 224 images 

at the 14th epoch, requiring 1332.13 seconds of training time, 

demonstrating a favorable balance between performance and 

computational efficiency. 

TABLE II.   THE RESULT OF TESTING THE 2 LAYER CNN MODEL ON THE 

INTERNAL DATASET 

Dimensions 

(pixels) 
Epoch 

Accuracy Loss 

Train Train Validation 

64 x 64 50 0.99 0.78 0.94 

112 x 112 50 0.99 0.97 1.30 

224 x 224 50 0.99 0.94 0.68 

TABLE III.   THE RESULT OF TESTING THE TUNED CNN MODEL ON THE 

INTERNAL DATASET 

Epoch 
Accuracy 

Loss Train 
Train Validation 

11 "best epoch" 0.97 0.84 13.91 

15 "best epoch" 0.98 0.89 7.37 

14 "best epoch" 0.99 0.97 3.22 

A comparative analysis of the Receiver Operating 

Characteristic (ROC) curves reveals a clear performance 

advantage of the tuned CNN model over the baseline CNN. The 

tuned model, which incorporates an additional convolutional 

layer and optimized training parameters, consistently achieved 

higher Area Under the Curve (AUC) scores across all image 

resolutions, indicating improved discriminative capability and 

reduced classification errors. In contrast, the untuned CNN 

showed lower ROC performance, particularly at lower image 

resolutions, suggesting limited generalization. These findings 

demonstrate the effectiveness of architectural tuning in 

enhancing the model’s sensitivity and specificity, thereby 

improving overall diagnostic reliability, as shown in Figure 2 

for the CNN model and Figure 3 for the tuned CNN model. 

B. External Validation Performance 

To assess the generalizability and real-world applicability 

of the proposed deep learning model, external validation was 

conducted using an independent chest X-ray dataset not seen 

during training. This evaluation serves as a critical benchmark 

for determining the model’s robustness across diverse imaging 

sources and patient populations. The external validation results 

provide insight into the model’s capacity to maintain high 

diagnostic performance when applied beyond the development 

dataset, thereby demonstrating its potential for clinical 

deployment in multi-disease classification tasks involving 

COVID-19, Tuberculosis, Pneumonia, and Normal cases.  

Table V summarizes the external validation outcomes of the 

tuned CNN model. At an image resolution of 64 × 64, the model 

reached an accuracy of 0.89, an F1-score of 0.63, and an AUC 

of 0.94. When the resolution was increased to 112 × 112, the 

model delivered its best overall performance, achieving an 

accuracy of 0.90. At 224 × 224 resolution, the accuracy was 

0.88.  

Table VI further confirms these findings by presenting 

additional external validation results. At 64 × 64 resolution, the 

tuned CNN obtained an accuracy of 0.87, an F1-score of 0.69, 

and an AUC of 0.95. The 112 × 112 resolution yielded the most 

favorable outcomes, with an accuracy of 0.90, an F1-score of 

0.83, and an AUC of 0.97—representing the highest 

performance across all tested configurations. At 224 × 224 

resolution, the model attained an accuracy of 0.88, an F1-score 

of 0.77, and an AUC of 0.96. These results underscore the 

superior generalization and discriminative ability of the tuned 

CNN, particularly at the 112 × 112 resolution, highlighting its 

robustness for clinical application [25], [26]. 

A clear and systematic comparison between the baseline 

CNN and the tuned CNN models is now presented across the 

three evaluated input resolutions (64×64, 112×112, and 

224×224 pixels) as shown in Figure 4 and Figure 5. The 

baseline CNN achieved an accuracy of 0.90, sensitivity of 0.81, 

specificity of 0.91, precision of 0.83, F1-score of 0.79, and an 

AUC of 0.94. In contrast, the tuned CNN model demonstrated 

superior performance with an accuracy of 0.90, sensitivity of 

0.84, specificity of 0.92, precision of 0.85, F1-score of 0.83, 

and an AUC of 0.97.  

While overall accuracy remained comparable, the tuned 

CNN exhibited notable gains in sensitivity, precision, F1-score, 

and especially AUC, reflecting a more balanced and clinically 

reliable classification performance. These improvements 

underscore not only the effectiveness of architectural 

optimization but also the robustness of the tuned model across 

multiple evaluation dimensions, thereby reinforcing the study’s 

methodological and translational contributions. 
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TABLE IV.   THE COMPARISON OF TRAINING TIME FOR CNN AND CNN 

TUNED MODELS 

Models Dimensions Epoch Time Training (s) 

CNN 64 x 64 50 2595.26 

112 x 112 50 2777.02 

224 x 224 50 5074.51 

CNN-Tuning 64 x 64 11 572.54 

112 x 112 15 834.30 

224 x 224 14 1332.13 

 

Figure 2.  The ROC curve of the CNN model 

The confusion matrix for the baseline CNN model under 

external data validation is presented in Figure 6. A single 

COVID-19 case was classified as Normal, reflecting an area 

where the model could be improved to ensure greater 

robustness in clinical application. Additionally, five 

Pneumonia cases were misclassified as Normal, potentially 

undermining clinical decision-making. These 

misclassifications highlight the limitations of the untuned 

model in accurately distinguishing between pathologies with 

overlapping radiographic features, underscoring the need for 

further optimization to enhance diagnostic reliability.  

The confusion matrix for the tuned CNN model under 

external data validation is illustrated in Figure 7. Despite 

overall improved performance, the matrix reveals critical 

misclassification trends. Specifically, two COVID-19 cases 

were incorrectly classified as Normal, which could pose serious 

risks in real-world clinical settings where early detection is 

essential. Moreover, seven Pneumonia cases were also 

misclassified as Normal, indicating residual challenges in 

differentiating between subtle radiographic features of disease 

and healthy lung appearances. These findings emphasize that, 

while tuning improves overall metrics, further refinement is 

necessary to reduce false negatives in high-risk categories.

 

TABLE V.   THE RESULT OF TESTING THE CNN MODEL ON THE EXTERNAL DATASET 

Dimension Class 
Testing 

Accuracy Sensitivity Specificity F1-Score Precision AUC 

64 x 64 Covid-19 0.96 0.89 0.97 0.86 0.87 0.99 

Normal 0.80 0.38 0.98 0.93 0.54 0.90 

Pneumonia 0.82 0.98 0.65 0.74 0.84 0.89 

TB 0.98 0.95 0.98 0.79 0.86 0.99 

Average 0.89 0.80 0.90 0.83 0.78 0.94 

112 x 112 Covid-19 0.97 0.87 0.98 0.93 0.90 0.99 

Normal 0.82 0.44 0.98 0.94 0.60 0.88 

Pneumonia 0.84 0.98 0.69 0.76 0.86 0.91 

TB 0.97 0.95 0.97 0.67 0.78 0.99 

Average 0.90 0.81 0.91 0.83 0.79 0.94 

224 x 224 Covid-19 0.97 0.84 0.99 0.98 0.91 0.99 

Normal 0.79 0.32 0.99 0.96 0.48 0.86 

Pneumonia 0.80 0.99 0.60 0.72 0.83 0.89 

TB 0.96 0.97 0.96 0.63 0.76 0.99 

Average 0.88 0.78 0.89 0.82 0.75 0.93 

 

TABLE VI.   THE RESULT OF TESTING THE TUNED CNN MODEL ON THE EXTERNAL DATASET 

Dimension Class 
Testing 

Accuracy Sensitivity Specificity F1-Score Precision AUC 

64 x 64 Covid-19 0.95 0.73 0.99 0.82 0.95 0.99 

Normal 0.78 0.32 0.98 0.47 0.89 0.89 

Pneumonia 0.81 0.98 0.64 0.84 0.74 0.94 

TB 0.93 0.95 0.93 0.61 0.45 0.98 

Average 0.87 0.75 0.89 0.69 0.76 0.95 

112 x 112 Covid-19 0.97 0.89 0.98 0.90 0.90 0.99 

Normal 0.85 0.55 0.98 0.70 0.93 0.93 

Pneumonia 0.86 0.97 0.75 0.88 0.8 0.95 

TB 0.93 0.95 0.98 0.84 0.76 0.99 

Average 0.90 0.84 0.92 0.83 0.85 0.97 

224 x 224 Covid-19 0.97 0.85 0.99 0.91 0.98 0.99 

Normal 0.79 0.33 0.99 0.49 0.96 0.91 

Pneumonia 0.79 0.99 0.58 0.83 0.71 0.95 

TB 0.98 0.97 0.98 0.86 0.76 0.99 

Average 0.88 0.79 0.89 0.77 0.85 0.96 
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C. Comparative Analysis 

A direct comparison between the tuned and untuned CNN 

models highlights the impact of architectural optimization on 

classification performance. While both models demonstrated 

comparable accuracy during external validation—ranging from 

0.87 to 0.90—the tuned CNN consistently outperformed the 

baseline in terms of F1-score and AUC, particularly at the 112 

× 112 resolution, where it achieved an F1-score of 0.83 and an 

AUC of 0.97. When compared to prior works, the advantages 

of the tuned CNN become clearer. For example, previous 

studies utilizing AlexNet, VGG-16, and VGG-19 for 

pneumonia classification reported an accuracy of 94.1% [27]. 

 

Figure 3.  The ROC curve of the tuned CNN model 

 
Figure 4.  The comparation metrics of the CNN model 

 

Figure 5.  The comparation metrics of the tuned CNN model 

 

Figure 6.  The confusion matrix test result of CNN model on the external 

dataset 

 

 

Figure 7.  The confusion matrix test result of CNN tuned model on the 

external dataset 

 

However, this performance was achieved through the 

combination of 300 deep features, which may have introduced 

redundancy and limited interpretability—an issue that this 

study streamlined architecture aims to overcome by reducing 

unnecessary feature overlap while maintaining high 

performance. Similarly, another study employing MobileNet 

V2 for multi-label classification of 14 lung diseases achieved 

an overall accuracy of 90% and an AUC of 0.810, but suffered 

from a markedly low sensitivity of 45.3% [28]. This low 

sensitivity underscores the challenge of effectively identifying 

positive cases, especially in clinically critical contexts. By 

contrast, the tuned CNN demonstrates a more balanced 

performance across metrics—including accuracy, sensitivity, 

specificity, precision, F1-score, and AUC—indicating not only 

stronger detection capability but also greater clinical reliability. 

The findings of this study have important clinical 

implications, demonstrating that the tuned CNN model offers 

improved diagnostic performance for multi-disease 

classification of chest X-rays, particularly in detecting COVID-

19, Tuberculosis, and Pneumonia, with potential application in 

resource-limited settings where radiological expertise is scarce. 
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Nevertheless, several limitations should be acknowledged. 

First, the external validation dataset may not fully capture the 

diversity of imaging conditions, patient demographics, and 

healthcare settings, which could affect the generalizability of 

the model. Second, class imbalance across categories, 

particularly with fewer samples for certain diseases, may have 

influenced model training and performance. Third, the risks 

associated with misclassification remain a concern, especially 

false negatives in high-risk categories such as COVID-19 and 

Tuberculosis, where delayed or missed diagnoses could have 

significant clinical consequences.  

These challenges underscore the need for further 

optimization and validation. Future research should focus on 

addressing class imbalance through data augmentation or re-

sampling techniques, enhancing model robustness via 

advanced architectures such as attention mechanisms or hybrid 

models, and expanding datasets to encompass broader 

populations and imaging conditions. Additionally, 

incorporating explainable AI will be critical for improving 

transparency and clinical trust, while prospective validation in 

real-world clinical workflows will be essential to ensure safe 

and effective deployment. 

IV. CONCLUSION 

In conclusion, this study presents a rigorously optimized 

deep learning model for accurate multi-disease classification of 

chest X-rays, capable of distinguishing COVID-19, 

Tuberculosis, Pneumonia, and Normal cases. Comparative 

analysis between the baseline (non-tuned) and tuned CNN 

models demonstrated that adding a third convolutional layer 

and optimizing training epochs significantly improved 

classification performance. In internal validation, the tuned 

model achieved higher accuracy (up to 0.97) and F1-scores 

compared to the baseline (0.94), particularly with 224×224 

input resolution. External validation confirmed these 

improvements, with the tuned model attaining an F1-score of 

0.83 and an AUC of 0.97 at 112×112 resolution, outperforming 

the baseline’s 0.79 and 0.94, respectively. However, this study 

has several limitations. First, it relies on publicly available 

datasets, which may not fully represent the imaging variability 

and patient demographics of Indonesian clinical settings. 

Second, preprocessing was limited to image resizing, without 

enhancement or artifact correction, which may affect 

performance under suboptimal imaging conditions. Third, the 

absence of multi-center, real-world clinical validation limits the 

direct applicability of the findings. Future work will address 

these gaps by incorporating diverse datasets from Indonesian 

healthcare facilities, exploring advanced preprocessing and 

augmentation techniques, integrating explainable AI methods 

to improve interpretability, and conducting prospective clinical 

evaluations to ensure safe, reliable deployment in real-world 

environments. 
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