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Abstract— Bali experienced a widespread blackout in May 2025 that disrupted economic and social activities
across the island, revealing weaknesses in electricity demand forecasting and system resilience. This study
evaluates the performance of a Hybrid Nonlinear Autoregressive with Exogenous Inputs-Conjugate Gradient
(NARX-CG) model as an advanced electricity forecast. The dataset covers the 2018-2023 period and includes
six variables: electricity energy, connected capacity, number of customers, tariffs, Gross Regional Domestic
Product (GRDP), and population, aligned with the national electricity planning framework. The NARX-CG
model was developed using a 6-12-6-1 network architecture and trained with tansig transfer function.
Forecasting performance was evaluated using Mean Squared Error (MSE) and Mean Absolute Percentage Error
(MAPE) metrics. Results show that the NARX-CG model achieved an MSE of 0.09853 and an average MAPE of
8.12%, outperforming conventional projections with a MAPE of 28.48%. Yearly evaluations show consistent
model stability, with the lowest MAPE values of 1.93% and 5.86% in 2023 and 2022, respectively. The
NARX-CG model effectively captures nonlinear temporal dependencies, enhances predictive accuracy, and
contributes to improved power system reliability and resilience, providing valuable insights for adaptive

energy planning following the 2025 Bali blackout.
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I. INTRODUCTION

Bali was plunged into darkness in early May 2025 when a
widespread blackout halted activities across the island,
disrupting one of the world’s most prominent tourist
destinations [1]. The blackout began on May 2, 2025, and
quickly spread on X social media under the hashtag “Bali
Blackout” as the crisis gained nationwide attention [2].
Government authorities confirmed that the outage stemmed
from disturbances in the undersea transmission cable linking
Java and Bali, which caused a total shutdown lasting until the
evening [3]. Although the primary trigger was a technical
failure in the transmission infrastructure, the severity and
duration of the blackout raised concerns regarding the
adequacy of system reserves and operational preparedness.
This condition is closely linked to electricity demand
forecasting accuracy, because inaccurate projections can lead
to insufficient reserve margins, inappropriate generation
scheduling, and poor contingency planning, thereby
amplifying the impact of technical faults that would otherwise
be manageable. Therefore, questions remain as to whether
forecasting weaknesses contributed to the scale of the
disruption, particularly as the National Electricity Utility
(PLN) prepares long-term supply plans using the Rencana
Usaha Penyediaan Tenaga Listrik (RUPTL) document [4].
However, the forecasting approach within RUPTL still relies
heavily on linear regression, which is increasingly inadequate
to capture the complexities and dynamics of modern energy
demand [5].

Although RUPTL serves as the central guideline for
electricity system planning, significant forecast errors have
been observed in practice. For example, in North Sumatra
Province, forecast errors in electricity consumption

consistently exceeded 10% between 2018 and 2023. In 2018,
actual consumption reached 10,445.02 GWh compared to the
forecasted 11,500 GWh, resulting in a 10.10% error [4], [6].
The following year, the error rose to 11.95%, with actual
consumption at 10,943.86 GWh and a forecast of 12,252 GWh
[4], [7]. By 2020, forecast inaccuracies escalated to 21.45%,
where actual usage stood at 11,192.85 GWh compared to the
forecast of 13,594 GWh [4], [8]. The trend persisted into 2021
with an error of 25.38% [4], [9], followed by 31.59% in 2022
[4], [10], and peaked in 2023 with an error of 36.92%, where
actual demand was 12,472.84 GWh against the forecast of
17,078 GWh [4], [11]. These consistent deviations highlight
the limitations of existing methods.

Comparable inaccuracies have also been recorded in Java,
particularly within DKI Jakarta, where forecast errors
similarly exceeded 10% during the 2018-2023 period. In 2018,
the actual demand was 32,779.20 GWh, while the forecast
projected 36,444 GWh, producing an error of 11.18% [4], [6].
By 2019, the discrepancy increased to 11.74%, with actual
consumption of 34,107.98 GWh compared to the forecasted
38,111 GWh [4], [7]. The gap widened further in 2020, with a
23.80% error [4], [8], followed by 28.01% in 2021 [4], [9].
Although the percentage slightly declined to 27.25% in 2022,
accuracy remained insufficient [4], [10]. In 2023, the error
was still high at 24.87%, with actual demand of 36,992.35
GWh against a forecast of 46,194 GWh [4], [11]. Similar or
higher errors were also found in West Kalimantan, where
deviations consistently exceeded 30% across the period [4]-
[11], and in South Sulawesi, where errors surpassed 16%
annually, with peaks of 31.56% in 2020 [4], [8].

These national-scale forecast deviations are relevant to the
Bali because RUPTL adopts a unified planning methodology
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that applies the same forecasting framework across all
regional systems [4]-[8]. Thus, the persistent errors observed
in multiple provinces reflect systemic weaknesses in the
national forecasting model rather than isolated regional
failures. Since Bali’s electricity demand planning and reserve
margin allocation are also based on RUPTL projections,
similar inaccuracies may occur within the Bali system and
could weaken operational resilience when facing unexpected
disturbances such as the May 2025 blackout. Therefore,
evaluating forecasting performance in Bali becomes critical to
preventing the amplification of technical failures through
inadequate demand prediction and reserve planning.

As technology advances, neural networks have emerged as
a superior alternative for data analysis and forecasting because
of their ability to mimic the structure and function of the
human brain [12]. Neural networks consist of layers of
interconnected artificial neurons, where each neuron processes
and transmits information [13]. Among various neural
network methods, the nonlinear autoregressive model with
exogenous inputs (NARX) has demonstrated particularly
strong forecasting performance. For instance, studies reported
mean square error (MSE) values as low as 0.0521, 0.0040, and
0.0006 in solar radiation prediction [14]. In photovoltaic
power output forecasting, the normalized root mean square
error (nRMSE) reached just 1.98% [15]. Furthermore, NARX
achieved a performance accuracy of 94% in predicting wind
speed for wind energy generation [16], while another study
reported an MSE of 0.0666 in wind speed forecasting
applications [17].

The strength of the NARX model lies in its role as a
dynamic surrogate model designed to approximate complex
system behavior and capture temporal dependencies within
real systems. In many engineering applications including
power system stability forecasting, the future value of a
variable cannot be determined solely from its present state but
is influenced by historical patterns and external disturbances
[18]. A deterministic system evolves over time, where the
future output y(t + 1) depends not only on past outputs
y(@),y(t—1),..,y(t —n, + 1) but also on lagged external
inputs u(t), u(t —1),...,u(t —n, + 1) [19]. This algorithm
NARX to predict y(t + 1) by combining autoregressive terms
with delayed exogenous variables, while accounting for a
stochastic residual component e(t) [20]. The regressor vector
@(t) is constructed by stacking these delayed endogenous and
exogenous terms, forming a design matrix ¥ that represents
the system’s dependencies [21]. Unlike traditional linear
regression, where models often fail to capture nonlinear
dynamics, this structure provides flexibility to handle dynamic
systems even when data are limited or costly to obtain. Model
parameters ¢ are optimized by minimizing the discrepancy
between observed values Ygp and predicted responses Wgpc,
shows that the estimated coefficients represent the system as
accurately as possible [22]. Given Bali’s vulnerability to
large-scale system disturbances, a forecasting model capable
of responding to nonlinear and rapidly changing demand
patterns is needed to enhance reserve allocation and
operational decision-making. Therefore, the adoption of
NARX is expected to provide more accurate demand
predictions and strengthen system reliability, especially
reducing the risk of widespread blackouts in the future.

In surrogate modeling, the coefficient vector ¢ may
represent weights in polynomials or neural networks, and its
estimation can be carried out using least-squares minimization
or regularization techniques. When the formulation is linear-
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in-parameters, coefficients can be obtained through analytical
optimization methods, while more advanced approaches such
as LASSO [23]. Although various neural network-based
forecasting approaches such as Backpropagation, Recurrent
Neural Networks have been widely applied in time-series
prediction, their performance often declines when facing
highly volatile demand patterns and complex nonlinear
dependencies. In contrast, NARX explicitly incorporates
historical demand y(t) and delayed exogenous inputs u(t), to
capture nonlinear fluctuations more effectively and produce
interpretable yet accurate forecasting results. The study aims
to investigate additional factors influencing electricity demand
and to demonstrate how accurate demand forecasting can be
achieved using the NARX method optimized via the
Conjugate Gradient algorithm. Forecasting results obtained
with NARX are compared against those produced under
PLN’s RUPTL framework to evaluate the relative
performance of both approaches.

II. METHOD

A. NARX Model Proposed Algorithm: Bali Blackout Case

Deterministic dynamical system M evolves along the time
domain T . Its evolution is influenced by external signals
Xpai(t) € RS, consisting of electricity energy, connected
capacity, number of customers, electricity tariff, GRDP, and
population. With an initial condition vector S , the
corresponding system output, i.e., actual electricity
consumption of Bali Yz,;;(t) € R, at each instant t € T is
written as (1) [24].

Ypaii(t) = M(Xpau(T < 1), ) (M

The notation Xg,;; (T < t) highlights that the outcome at
time t reflects the influence of all six input variables up to that
moment. For clarity, the term f is omitted unless explicitly
required. An approximate representation of the true dynamics
can be introduced through a surrogate model M, written as (2)
[25].

Yoa1i(t) = M(Xpau (T < t),B) = M(Xpau(T < t),8) (2)

Such a surrogate is often built using nonlinear
autoregressive models with exogenous inputs (NARX).
Within this framework, the system behavior is described at
discrete time instants {0, 6¢, ..., (N — 1)4t}, and the upcoming
response of Bali’s electricity consumption is approximated
using a combination of past outputs and external inputs,
written as (3) [24].

Voai(t + 6t) = M(Xpau(T < t +
6t), Ypuu (T < t+ 6t);¢) + €(t) 3)

where €(t) ~ N(0,0,) denotes a zero-mean residual with
variance g,. The mapping M is assumed to be parametric and
defined by a finite parameter vector c¢. Training this model
requires estimating ¢ from a collection of input-output
trajectories (X z(;Zli'YB(?u) , called realizations. The entire
collection is referred to as the experimental design (ED),
shown in (4) [24].

_ @ ® ()] @® _ ®
D= {(XBali’YBali)' XBali € RNX6‘ YBali - M(XBali) €
RN, i = 1""'NED} (4)
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The size of the experimental design is usually modest,
because obtaining each realization may involve -costly
simulation or experimentation. Equation (3) can be restated in
a more explicit form as (5) [24].

Vo (t +6t) = M(Ppai(t + 8);0),  Ppau(t) € R™ (5)

where the regressor vector ¢4, (t) is given by (6) [26]:

®pai(t) = {Ypaii(t = 6t), ..., Ypaui (t —
n,6t), X1 (t), X1 (t — 6t), ..., X (t — Ny 6t)} (6)
with X; = electricity energy, X, = connected capacity, X3 =
number of customers, X, = electricity tariff, X = GRDP, and
X = population. By collecting all regressor vectors ¢ggq;;(t)
across time steps, the design matrix ®z,;; € RV*" is formed.
The outputs are arranged into vector Yg,;; € RY, written as (7
[24].

¢Bali(t0)
Ppaii(to + 6t)

-¢Bali((1\; - 1)6t)

Ypaii (to)
Ypaii(to + 6¢)

Dpa; =

O]

Ypau =

Vet (N — 1)80)

Even though the dataset originates from time-series
observations, the pairs {¢Pgq;i (t), Ypaui (t)} do not necessarily
need to preserve temporal order. Consequently, for i =

1,...,Ngp , the matrices CIJI(;i” and vectors YB(;)” can be
combined to construct (8) [24].
@ 1
q)Bali YBali
Dpp = (N ) Yep = (N ) (®)
cI)Ball':iD YBalIfD

The goal is to obtain a predictive model M described by
parameters ¢, estimated solely from the available ED. The
parameter vector is identified by minimizing a loss function L,
which quantifies the mismatch between observed outputs and
predicted responses, as (9) [24].

¢ = argmin L(Yep, (®5p; ) ©)

A common set of surrogate models M involves the use of
neural networks, where the parameter vector ¢ contains the
weights and biases. Among these, models expressed in a
linear form with respect to their parameters are often

emphasized, since the optimization reduces to least-squares as
(10) [24].

(10)

With the definition Wgp = G (Pgp), the parameter vector ¢
can be obtained analytically through ordinary least squares
(OLS), written as (11) [24].

¢ = argmcin | Yep — G(®Pgp)c I3

¢ = (Yep¥ep) " WepYep (11)

Enhanced regression schemes such as LASSO can be used,
which introduce an [*-norm penalty alongside a regularization
factor y, shown in (12) [24].
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This study applies conjugate gradient (CG) optimization to
adjust step size without requiring second-order derivatives,
reducing computational cost. The CG update is implemented
as (13)-(14) [27].

¢ = argmin || Ypp = Wgpc Z+ylcly

YD = @0 4 yO 4 c® (13)
wD = O 4 yB(:'l)” n® (14)

where the training direction at iteration (i + 1), denoted as
y @D

Bali > ’ )
the previous direction YB(;)”, and the conjugate parameter ¢(¥).
The parameter update is given by the weights w® and w(+b),

while n® is the learning rate.

is computed by summing the current gradient v(+1),

B. Dataset

The dataset used in this study includes secondary data
collected from various official sources covering the period
from 2018 to 2023 in Bali Province. The six-year range is
selected because consistent and category-matched data for all
required variables are only available for this period. Earlier
datasets do not contain complete or uniform records across all
forecasting parameters, which is unsuitable for developing a
comparable multivariate forecasting model. Since time-series
forecasting requires data with consistent structure and
synchronized variables, using incomplete or mismatched
categories would introduce bias and reduce model reliability.
Therefore, the 2018-2023 dataset represents the most valid
and methodologically feasible time window for analysis.

The variables are electricity energy (GWh), connected
capacity (MVA), number of customers, electricity tariff
(Rp/kWh), Gross Regional Domestic Product (GRDP in
billion Rp), and population (persons). These align with the
variables used in PLN’s Rencana Usaha Penyediaan Tenaga
Listrik (RUPTL) [2], [6]-[11].

The electricity tariff varied, ranging from Rp 877.83/kWh
in 2018 to Rp 1,333.12/kWh in 2023. There were significant
increases in 2019 and 2022 that may have affected
consumption behavior. The Gross Regional Domestic Product
(GRDP) showed dynamic trends, rising from Rp 233,636.77
billion in 2018 to Rp 274,358.18 billion in 2023. The
population gradually increased from 4,309,200 persons in
2018 to 4,404,260 persons in 2023. Figure 1. shows input data
in this research.

The target data for model training represents actual
electricity energy consumption in Bali Province for 2018-
2023 and corresponds with the input variables mentioned
above [6]-[11], [28], [29]. To validate comparisons, RUPTL
projection data were used as reference targets [4].

C. Performance Evaluation

The network is configured with six input variables,
structured as a 6-12-6-1 network. The selection of this
configuration is based on the 2N heuristic rule, where N
represents the number of input neurons. With six input
variables (N = 6), the recommended number of neurons in the
hidden layer ranges around 2N = 12, which provides an
optimal balance between learning capacity and model
generalization. Prior studies have demonstrated that applying
the 2N rule produces improved convergence and minimizes
underfitting and overfitting in forecasting applications,
particularly within nonlinear multivariate datasets [33]. The
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Figure 1. Comparison Actual Data, RUPTL, and NARX Conjugate Gradient

dataset is simulated and processed in MATLAB. Prior to
training, the input data are normalized to the range (-1, 1)
using the hyperbolic tangent sigmoid (tansig) transfer function,
as expressed in (15) [31].

Xp—-min (Xp)

Xn = (15)

" max (Xp)—min (Xp)
The forecasting simulation output will be evaluated using
MSE, as expressed in (16) [31].

1 ~
MSE = 2 S, (¥; — 7,)? (16)

where, MSE is the Mean Square Error, n is the number of data

points, Y, is the actual data, and }’/\t is the forecasted data.

The data is denormalized to return it to the actual values
using (17) [32].

X =0.5.(Xn+ 1). (max(Xp)) — min (Xp)) + min (Xp)

where X represents the real data that has been denormalized,
and Xn is the normalized data. The maximum value of the
original real data is denoted as max{Xp}, while the minimum
value is represented by min{Xp}

Then, the MAPE between the NARX-CG algorithm and
the RUPTL is calculated for comparison using (18) [33].

Yt-Yt

MAPE = % | 1.100% (18)

where n represents the total number of data points, Yt denotes
the actual data values, and Yt signifies the forecasted values.
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III. RESULTS AND DISCUSSION

The simulation was performed using the NARX Conjugate
Gradient model based on (1)-(15). The Mean Squared Error
(MSE) for Bali Province was calculated using (16), as shows
in Table 1. The output data of the NARX Conjugate Gradient
network were denormalized to obtain the predicted electricity
consumption in actual units (GWh) wusing (17). The
denormalized output was then used to calculate the Mean
Absolute Percentage Error (MAPE) for the NARX-CG
according (18). The results in Table I shows that the NARX
Conjugate Gradient model provides varying degrees of
accuracy across the 2018-2023.

To evaluate the relative performance, the MAPE of the
NARX-CG forecasts was compared with the MAPE of PLN’s
RUPTL projections, which are based on the same input
variables. The comparison allows for assessing which method
provides more accurate electricity consumption forecasting.
The results are presented in Table II.

The MSE for the model is calculated as 0.09853, shows
generally small discrepancy between the normalized target
data and the network output. Specifically, years such as 2018,
2020, 2021, and 2022 shows negligible squared errors. The
largest deviation occurs in 2019, where the squared error
reaches 0.53684, shows that the model experienced a transient
difficulty capturing extreme fluctuations in the target signal.
This anomaly is associated with significant disruptions in
national and regional economic performance leading up to the
COVID-19 pandemic, which began impacting Indonesia at the
end of 2019 and escalated in early 2020. The pre-pandemic
slowdown triggered irregular patterns in electricity demand
due to reduced industrial operations, shifts in business
activities, and early contraction across tourism-dependent
regions such as Bali. Consequently, the instability in
consumption patterns during this transitional period
introduced high variability in the time-series signal, making it
more challenging for the NARX model to learn consistent
temporal relationships, where the output at each time step is
influenced by past inputs and outputs through the regressor
vector D(t) [24]. .

Table II shows the denormalized output of NARX-CG
alongside the RUPTL forecasts and actual -electricity
consumption. The average MAPE of NARX-CG is 8.12%,
significantly lower than the 28.48% observed in RUPTL
forecasts. This discrepancy highlights the good performance
of the NARX-CG model in capturing the nonlinear and
dynamic behavior of electricity demand in Bali Province.
Notably, in years such as 2022 and 2023, NARX-CG achieves
MAPE values of 5.86% and 1.93%, respectively, shows robust
predictive capabilities even in periods with rapidly increasing
consumption. The comparison show the limitations of the
RUPTL method, which relies primarily on linear regression
and fails to capture complex demand dynamics. Consequently,
NARX-CG emerges as a promising approach for more reliable
short-and medium-term load forecasting.

TABLE L. MSE NARX CONJUGATE GRADIENT BALI PROVINCE

Year Target Output Error Squared Error
2018 -0.277680 -0.277620 0.000060 0.000000003600
2019 0.213110 0.945800 0.732690 0.536840000000
2020 -0.709880 -0.709940 -0.000060 0.000000003600
2021 -1.000000 -0.999600 0.000400 0.000000160000
2022 -0.073811 -0.073796 0.000015 0.000000000225
2023 1.000000 0.766950 -0.233050 0.054340000000

MSE 0.098530000000
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TABLE II. COMPARISON MAPE RUPTL AND NARX CONJUGATE GRADIENT BALI PROVINCE

NARX Conjugate

Actual Consumption RUPTL . MAPE RUPTL MAPE NARX CG
. . Gradient
Year Bali Province Forecast Forecast Foroecast Foroecast
(GWh) (GWh) (GWh) (%) (%)
2018 5,302.67 5,866 5682.6 10.62 7.16
2019 5,706.72 6,221 6326.0 9.01 10.87
2020 4,946.86 6,630 5455.2 34.02 10.31
2021 4,708.02 7,105 5302.9 50.91 12.61
2022 5,470.51 7,595 5789.8 38.84 5.86
2023 6,354.53 8,101 6232.0 27.48 1.93
MAPE 28.48 8.12

The errors observed in RUPTL forecasts, as evidenced by
consistently high MAPE values, have practical consequences
for electricity system reliability shows in Figure 1. Historical
deviations exceeding 10% in multiple provinces, including
Bali, suggest that RUPTL’s linear assumptions fail to account
for demand variability driven by population growth, economic
activity, and seasonal patterns. The significant errors in years
such as 2021 and 2022, where MAPE reaches 50.91% and
38.84%, respectively, shows potential risks in power planning.
These inaccuracies may have contributed indirectly to system
disturbances, such as the Bali blackout, by creating
mismatches between supply and anticipated demand. By
contrast, the lower MAPE achieved by NARX-CG shows that
incorporating dynamic inputs and nonlinear modeling can
reduce forecast errors and enhance operational planning.

The basis of the NARX model explains its improved
performance relative to RUPTL. As a deterministic dynamic
system, NARX incorporates both past outputs and delayed
exogenous inputs to predict future electricity consumption, as
shown in equations (1)-(12) [24]. The surrogate model M
approximates the true system dynamics by combining
autoregressive lags with external drivers while accounting for
stochastic residuals. By training the model on an experimental
design (ED) comprising historical input-output trajectories,
the parameter vector ¢ is optimized to minimize forecast
errors, as expressed in (9). The conjugate gradient algorithm
further enhances optimization by efficiently updating network
weights without requiring computationally expensive second-
order derivatives. This combination of nonlinear regression
and gradient-based optimization enables NARX-CG to handle
temporal dependencies and capture fluctuations that
traditional linear methods like RUPTL cannot.

Analyzing the year by year performance of NARX-CG by
Figure 1. reveals that the model is particularly effective in
stabilizing forecasts during periods of demand growth. For
instance, while the MSE table shows large deviations in
normalized 2021, the denormalized output achieves a forecast
within 12.61% MAPE of actual consumption. In contrast,
RUPTL projects consistently overestimate consumption, as
seen in 2020 and 2021, in MAPE exceeding 30% and 50%,
respectively. These observations are consistent with NARX
theory, where the design matrix ® and regressor vector ¢(t)
capture both short-term fluctuations and long-term trends
from past outputs and exogenous variables. Moreover, this
result shows that the NARX-CG model maintains stability
despite variations in data scaling, showing its robustness
under fluctuating demand conditions. The ability of the model
to preserve forecasting accuracy after denormalization
suggests that the learned nonlinear relationships remain
consistent across different data representations. Consequently,
this characteristic supports the suitability of NARX-CG for

long-term electricity demand analysis where structural

changes and demand growth frequently occur.

IV. CONCLUSION

This study shows that the NARX Conjugate Gradient
(NARX-CG) model provides strong performance in
forecasting electricity consumption in Bali Province,
achieving a MAPE of 8.12% and an MSE of 0.09853. By
incorporating past outputs and delayed exogenous inputs, the
model effectively captures nonlinear and time-dependent
demand dynamics, as adaptive responses to consumption
fluctuations and maintaining robust performance during
periods of rapid growth. Furthermore, the inclusion of
variables such as connected capacity, customer numbers,
tariffs, GRDP, and population enhances the model’s ability to
represent complex demand behavior, supporting its
applicability as a reliable tool for electricity planning. Future
research may extend this work through comparative
evaluations with advanced forecasting models such as LSTM
and GRU, multi-step-ahead forecasting, real-time data
integration from SCADA or smart meters, and the
incorporation of probabilistic uncertainty analysis to support
risk-based planning and reserve margin decision-making.
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