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Abstract— Bali experienced a widespread blackout in May 2025 that disrupted economic and social activities 
across the island, revealing weaknesses in electricity demand forecasting and system resilience. This study 
evaluates the performance of a Hybrid Nonlinear Autoregressive with Exogenous Inputs-Conjugate Gradient 
(NARX-CG) model as an advanced electricity forecast. The dataset covers the 2018-2023 period and includes 
six variables: electricity energy, connected capacity, number of customers, tariffs, Gross Regional Domestic 
Product (GRDP), and population, aligned with the national electricity planning framework. The NARX-CG 

model was developed using a 6-12-6-1 network architecture and trained with tansig transfer function. 
Forecasting performance was evaluated using Mean Squared Error (MSE) and Mean Absolute Percentage Error 
(MAPE) metrics. Results show that the NARX-CG model achieved an MSE of 0.09853 and an average MAPE of 
8.12%, outperforming conventional projections with a MAPE of 28.48%. Yearly evaluations show consistent 
model stability, with the lowest MAPE values of 1.93% and 5.86% in 2023 and 2022, respectively. The 
NARX-CG model effectively captures nonlinear temporal dependencies, enhances predictive accuracy, and 
contributes to improved power system reliability and resilience, providing valuable insights for adaptive 
energy planning following the 2025 Bali blackout.  
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I. INTRODUCTION 

Bali was plunged into darkness in early May 2025 when a 

widespread blackout halted activities across the island, 

disrupting one of the world’s most prominent tourist 

destinations [1]. The blackout began on May 2, 2025, and 

quickly spread on X social media under the hashtag “Bali 

Blackout” as the crisis gained nationwide attention [2]. 

Government authorities confirmed that the outage stemmed 

from disturbances in the undersea transmission cable linking 

Java and Bali, which caused a total shutdown lasting until the 

evening [3]. Although the primary trigger was a technical 

failure in the transmission infrastructure, the severity and 

duration of the blackout raised concerns regarding the 

adequacy of system reserves and operational preparedness. 

This condition is closely linked to electricity demand 

forecasting accuracy, because inaccurate projections can lead 

to insufficient reserve margins, inappropriate generation 

scheduling, and poor contingency planning, thereby 

amplifying the impact of technical faults that would otherwise 

be manageable. Therefore, questions remain as to whether 

forecasting weaknesses contributed to the scale of the 

disruption, particularly as the National Electricity Utility 

(PLN) prepares long-term supply plans using the Rencana 

Usaha Penyediaan Tenaga Listrik (RUPTL) document [4]. 

However, the forecasting approach within RUPTL still relies 

heavily on linear regression, which is increasingly inadequate 

to capture the complexities and dynamics of modern energy 

demand [5]. 

Although RUPTL serves as the central guideline for 

electricity system planning, significant forecast errors have 

been observed in practice. For example, in North Sumatra 

Province, forecast errors in electricity consumption 

consistently exceeded 10% between 2018 and 2023. In 2018, 

actual consumption reached 10,445.02 GWh compared to the 

forecasted 11,500 GWh, resulting in a 10.10% error [4], [6]. 

The following year, the error rose to 11.95%, with actual 

consumption at 10,943.86 GWh and a forecast of 12,252 GWh 

[4], [7]. By 2020, forecast inaccuracies escalated to 21.45%, 

where actual usage stood at 11,192.85 GWh compared to the 

forecast of 13,594 GWh [4], [8]. The trend persisted into 2021 

with an error of 25.38% [4], [9], followed by 31.59% in 2022 

[4], [10], and peaked in 2023 with an error of 36.92%, where 

actual demand was 12,472.84 GWh against the forecast of 

17,078 GWh [4], [11]. These consistent deviations highlight 

the limitations of existing methods. 

Comparable inaccuracies have also been recorded in Java, 

particularly within DKI Jakarta, where forecast errors 

similarly exceeded 10% during the 2018-2023 period. In 2018, 

the actual demand was 32,779.20 GWh, while the forecast 

projected 36,444 GWh, producing an error of 11.18% [4], [6]. 

By 2019, the discrepancy increased to 11.74%, with actual 

consumption of 34,107.98 GWh compared to the forecasted 

38,111 GWh [4], [7]. The gap widened further in 2020, with a 

23.80% error [4], [8], followed by 28.01% in 2021 [4], [9]. 

Although the percentage slightly declined to 27.25% in 2022, 

accuracy remained insufficient [4], [10]. In 2023, the error 

was still high at 24.87%, with actual demand of 36,992.35 

GWh against a forecast of 46,194 GWh [4], [11]. Similar or 

higher errors were also found in West Kalimantan, where 

deviations consistently exceeded 30% across the period [4]-

[11], and in South Sulawesi, where errors surpassed 16% 

annually, with peaks of 31.56% in 2020 [4], [8]. 

These national-scale forecast deviations are relevant to the 

Bali because RUPTL adopts a unified planning methodology 
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that applies the same forecasting framework across all 

regional systems [4]-[8]. Thus, the persistent errors observed 

in multiple provinces reflect systemic weaknesses in the 

national forecasting model rather than isolated regional 

failures. Since Bali’s electricity demand planning and reserve 

margin allocation are also based on RUPTL projections, 

similar inaccuracies may occur within the Bali system and 

could weaken operational resilience when facing unexpected 

disturbances such as the May 2025 blackout. Therefore, 

evaluating forecasting performance in Bali becomes critical to 

preventing the amplification of technical failures through 

inadequate demand prediction and reserve planning.  

As technology advances, neural networks have emerged as 

a superior alternative for data analysis and forecasting because 

of their ability to mimic the structure and function of the 

human brain [12]. Neural networks consist of layers of 

interconnected artificial neurons, where each neuron processes 

and transmits information [13]. Among various neural 

network methods, the nonlinear autoregressive model with 

exogenous inputs (NARX) has demonstrated particularly 

strong forecasting performance. For instance, studies reported 

mean square error (MSE) values as low as 0.0521, 0.0040, and 

0.0006 in solar radiation prediction [14]. In photovoltaic 

power output forecasting, the normalized root mean square 

error (nRMSE) reached just 1.98% [15]. Furthermore, NARX 

achieved a performance accuracy of 94% in predicting wind 

speed for wind energy generation [16], while another study 

reported an MSE of 0.0666 in wind speed forecasting 

applications [17].  

The strength of the NARX model lies in its role as a 

dynamic surrogate model designed to approximate complex 

system behavior and capture temporal dependencies within 

real systems. In many engineering applications including 

power system stability forecasting, the future value of a 

variable cannot be determined solely from its present state but 

is influenced by historical patterns and external disturbances 

[18]. A deterministic system evolves over time, where the 

future output 𝑦(𝑡 + 1)  depends not only on past outputs 

𝑦(𝑡), 𝑦(𝑡 − 1), … , 𝑦(𝑡 − 𝑛𝑦 + 1) but also on lagged external 

inputs 𝑢(𝑡), 𝑢(𝑡 − 1), … , 𝑢(𝑡 − 𝑛𝑢 + 1)  [19]. This algorithm 

NARX to predict 𝑦(𝑡 + 1) by combining autoregressive terms 

with delayed exogenous variables, while accounting for a 

stochastic residual component 𝑒(𝑡) [20]. The regressor vector 

Φ(𝑡) is constructed by stacking these delayed endogenous and 

exogenous terms, forming a design matrix Ψ that represents 

the system’s dependencies [21]. Unlike traditional linear 

regression, where models often fail to capture nonlinear 

dynamics, this structure provides flexibility to handle dynamic 

systems even when data are limited or costly to obtain. Model 

parameters 𝑐  are optimized by minimizing the discrepancy 

between observed values 𝑌𝐸𝐷  and predicted responses Ψ𝐸𝐷𝑐 , 

shows that the estimated coefficients represent the system as 

accurately as possible [22]. Given Bali’s vulnerability to 

large-scale system disturbances, a forecasting model capable 

of responding to nonlinear and rapidly changing demand 

patterns is needed to enhance reserve allocation and 

operational decision-making. Therefore, the adoption of 

NARX is expected to provide more accurate demand 

predictions and strengthen system reliability, especially 

reducing the risk of widespread blackouts in the future. 

In surrogate modeling, the coefficient vector 𝑐  may 

represent weights in polynomials or neural networks, and its 

estimation can be carried out using least-squares minimization 

or regularization techniques. When the formulation is linear-

in-parameters, coefficients can be obtained through analytical 

optimization methods, while more advanced approaches such 

as LASSO [23]. Although various neural network-based 

forecasting approaches such as Backpropagation, Recurrent 

Neural Networks have been widely applied in time-series 

prediction, their performance often declines when facing 

highly volatile demand patterns and complex nonlinear 

dependencies. In contrast, NARX explicitly incorporates 

historical demand 𝑦(𝑡) and delayed exogenous inputs 𝑢(𝑡), to 

capture nonlinear fluctuations more effectively and produce 

interpretable yet accurate forecasting results. The study aims 

to investigate additional factors influencing electricity demand 

and to demonstrate how accurate demand forecasting can be 

achieved using the NARX method optimized via the 

Conjugate Gradient algorithm. Forecasting results obtained 

with NARX are compared against those produced under 

PLN’s RUPTL framework to evaluate the relative 

performance of both approaches. 

II. METHOD 

A. NARX Model Proposed Algorithm: Bali Blackout Case 

Deterministic dynamical system 𝑀 evolves along the time 

domain 𝑇 . Its evolution is influenced by external signals 

𝑋𝐵𝑎𝑙𝑖(𝑡) ∈ ℝ6 , consisting of electricity energy, connected 

capacity, number of customers, electricity tariff, GRDP, and 

population. With an initial condition vector 𝛽 , the 

corresponding system output, i.e., actual electricity 

consumption of Bali 𝑌𝐵𝑎𝑙𝑖(𝑡) ∈ ℝ , at each instant 𝑡 ∈ 𝑇  is 

written as (1) [24]. 

𝑌𝐵𝑎𝑙𝑖(𝑡) = 𝑀(𝑋𝐵𝑎𝑙𝑖(𝑇 ≤ 𝑡), 𝛽)                     (1) 

The notation 𝑋𝐵𝑎𝑙𝑖(𝑇 ≤ 𝑡) highlights that the outcome at 

time 𝑡 reflects the influence of all six input variables up to that 

moment. For clarity, the term 𝛽  is omitted unless explicitly 

required. An approximate representation of the true dynamics 

can be introduced through a surrogate model 𝑀̂, written as (2) 

[25]. 

𝑌̂𝐵𝑎𝑙𝑖(𝑡) = 𝑀̂(𝑋𝐵𝑎𝑙𝑖(𝑇 ≤ 𝑡), 𝛽) ≈ 𝑀(𝑋𝐵𝑎𝑙𝑖(𝑇 ≤ 𝑡), 𝛽)   (2) 

Such a surrogate is often built using nonlinear 

autoregressive models with exogenous inputs (NARX). 

Within this framework, the system behavior is described at 

discrete time instants {0, 𝛿𝑡, … , (𝑁 − 1)𝛿𝑡}, and the upcoming 

response of Bali’s electricity consumption is approximated 

using a combination of past outputs and external inputs, 

written as (3) [24]. 

𝑌̂𝐵𝑎𝑙𝑖(𝑡 + 𝛿𝑡) = 𝑀̂(𝑋𝐵𝑎𝑙𝑖(𝑇 ≤ 𝑡 +
𝛿𝑡), 𝑌𝐵𝑎𝑙𝑖(𝑇 < 𝑡 + 𝛿𝑡); 𝑐) + 𝜀(𝑡)  (3) 

where 𝜀(𝑡) ∼ 𝑁(0, 𝜎𝜀)  denotes a zero-mean residual with 

variance 𝜎𝜀. The mapping 𝑀̂ is assumed to be parametric and 

defined by a finite parameter vector 𝑐 . Training this model 

requires estimating 𝑐  from a collection of input-output 

trajectories (𝑋𝐵𝑎𝑙𝑖
(𝑖)

, 𝑌𝐵𝑎𝑙𝑖
(𝑖)

) , called realizations. The entire 

collection is referred to as the experimental design (ED), 

shown in (4) [24]. 

𝐷 = {(𝑋𝐵𝑎𝑙𝑖
(𝑖)

, 𝑌𝐵𝑎𝑙𝑖
(𝑖)

), 𝑋𝐵𝑎𝑙𝑖
(𝑖)

∈ ℝ𝑁×6,  𝑌𝐵𝑎𝑙𝑖
(𝑖)

= 𝑀(𝑋𝐵𝑎𝑙𝑖
(𝑖)

) ∈

ℝ𝑁 ,  𝑖 = 1, … , 𝑁𝐸𝐷} (4) 
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The size of the experimental design is usually modest, 

because obtaining each realization may involve costly 

simulation or experimentation. Equation (3) can be restated in 

a more explicit form as (5) [24]. 

𝑌̂𝐵𝑎𝑙𝑖(𝑡 + 𝛿𝑡) = 𝑀̂(𝜙𝐵𝑎𝑙𝑖(𝑡 + 𝛿𝑡); 𝑐), 𝜙𝐵𝑎𝑙𝑖(𝑡) ∈ ℝ𝑛 (5) 

where the regressor vector 𝜙𝐵𝑎𝑙𝑖(𝑡) is given by (6) [26]: 

𝜙𝐵𝑎𝑙𝑖(𝑡) = {𝑌𝐵𝑎𝑙𝑖(𝑡 − 𝛿𝑡), … , 𝑌𝐵𝑎𝑙𝑖(𝑡 −
𝑛𝑦𝛿𝑡), 𝑋1(𝑡), 𝑋1(𝑡 − 𝛿𝑡), … , 𝑋6(𝑡 − 𝑛𝑥6

𝛿𝑡)}  (6) 

with 𝑋1 = electricity energy, 𝑋2 =  connected capacity, 𝑋3 = 

number of customers, 𝑋4 = electricity tariff, 𝑋5 = GRDP, and 

𝑋6 = population. By collecting all regressor vectors 𝜙𝐵𝑎𝑙𝑖(𝑡) 

across time steps, the design matrix Φ𝐵𝑎𝑙𝑖 ∈ ℝ𝑁×𝑛 is formed. 

The outputs are arranged into vector 𝑌𝐵𝑎𝑙𝑖 ∈ ℝ𝑁, written as (7) 

[24]. 

Φ𝐵𝑎𝑙𝑖 =

[
 
 
 

𝜙𝐵𝑎𝑙𝑖(𝑡0)

𝜙𝐵𝑎𝑙𝑖(𝑡0 + 𝛿𝑡)
⋮

𝜙𝐵𝑎𝑙𝑖((𝑁 − 1)𝛿𝑡)]
 
 
 
  

 

𝑌𝐵𝑎𝑙𝑖 = [

𝑌𝐵𝑎𝑙𝑖(𝑡0)
𝑌𝐵𝑎𝑙𝑖(𝑡0 + 𝛿𝑡)

⋮
𝑌𝐵𝑎𝑙𝑖((𝑁 − 1)𝛿𝑡)

]  (7) 

Even though the dataset originates from time-series 

observations, the pairs {𝜙𝐵𝑎𝑙𝑖(𝑡), 𝑌𝐵𝑎𝑙𝑖(𝑡)} do not necessarily 

need to preserve temporal order. Consequently, for 𝑖 =

1,… , 𝑁𝐸𝐷 , the matrices Φ𝐵𝑎𝑙𝑖
(𝑖)

 and vectors 𝑌𝐵𝑎𝑙𝑖
(𝑖)

 can be 

combined to construct (8) [24]. 

Φ𝐸𝐷 = [

Φ𝐵𝑎𝑙𝑖
(1)

⋮

Φ𝐵𝑎𝑙𝑖
(𝑁𝐸𝐷)

] 𝑌𝐸𝐷 = [

𝑌𝐵𝑎𝑙𝑖
(1)

⋮

𝑌𝐵𝑎𝑙𝑖
(𝑁𝐸𝐷)

]   (8) 

The goal is to obtain a predictive model 𝑀̂ described by 

parameters 𝑐 , estimated solely from the available ED. The 

parameter vector is identified by minimizing a loss function 𝐿, 

which quantifies the mismatch between observed outputs and 

predicted responses, as (9) [24]. 

𝑐̂ = argmin
𝑐

 𝐿(𝑌𝐸𝐷 , 𝑀̂(Φ𝐸𝐷; 𝑐))  (9) 

A common set of surrogate models 𝑀̂ involves the use of 

neural networks, where the parameter vector 𝑐  contains the 

weights and biases. Among these, models expressed in a 

linear form with respect to their parameters are often 

emphasized, since the optimization reduces to least-squares as 

(10) [24]. 

𝑐̂ = argmin
𝑐

  ∥ 𝑌𝐸𝐷 − 𝐺(Φ𝐸𝐷)𝑐 ∥2
2  (10) 

With the definition Ψ𝐸𝐷 = 𝐺(Φ𝐸𝐷), the parameter vector 𝑐 

can be obtained analytically through ordinary least squares 

(OLS), written as (11) [24]. 

𝑐̂ = (Ψ𝐸𝐷
⊤ Ψ𝐸𝐷)−1Ψ𝐸𝐷

⊤ 𝑌𝐸𝐷   (11) 

Enhanced regression schemes such as LASSO can be used, 

which introduce an 𝑙1-norm penalty alongside a regularization 

factor 𝛾, shown in (12) [24]. 

𝑐̂ = argmin
𝑐

  ∥ 𝑌𝐸𝐷 − Ψ𝐸𝐷𝑐 ∥2
2+ 𝛾 ∥ 𝑐 ∥1  (12) 

This study applies conjugate gradient (CG) optimization to 

adjust step size without requiring second-order derivatives, 

reducing computational cost. The CG update is implemented 

as (13)-(14) [27]. 

𝑌𝐵𝑎𝑙𝑖
(𝑖+1)

= 𝑣(𝑖+1) + 𝑌𝐵𝑎𝑙𝑖
(𝑖)

+ 𝑐(𝑖)  (13) 

𝑤(𝑖+1) = 𝑤(𝑖) + 𝑌𝐵𝑎𝑙𝑖
(𝑖)

 𝜂(𝑖)  (14) 

where the training direction at iteration (𝑖 + 1), denoted as 

𝑌𝐵𝑎𝑙𝑖
(𝑖+1)

, is computed by summing the current gradient 𝑣(𝑖+1), 

the previous direction 𝑌𝐵𝑎𝑙𝑖
(𝑖)

, and the conjugate parameter 𝑐(𝑖). 

The parameter update is given by the weights 𝑤(𝑖) and 𝑤(𝑖+1), 

while 𝜂(𝑖) is the learning rate. 

B. Dataset 

The dataset used in this study includes secondary data 

collected from various official sources covering the period 

from 2018 to 2023 in Bali Province. The six-year range is 

selected because consistent and category-matched data for all 

required variables are only available for this period. Earlier 

datasets do not contain complete or uniform records across all 

forecasting parameters, which is unsuitable for developing a 

comparable multivariate forecasting model. Since time-series 

forecasting requires data with consistent structure and 

synchronized variables, using incomplete or mismatched 

categories would introduce bias and reduce model reliability. 

Therefore, the 2018-2023 dataset represents the most valid 

and methodologically feasible time window for analysis. 

The variables are electricity energy (GWh), connected 

capacity (MVA), number of customers, electricity tariff 

(Rp/kWh), Gross Regional Domestic Product (GRDP in 

billion Rp), and population (persons). These align with the 

variables used in PLN’s Rencana Usaha Penyediaan Tenaga 

Listrik (RUPTL) [2], [6]-[11].  

The electricity tariff varied, ranging from Rp 877.83/kWh 

in 2018 to Rp 1,333.12/kWh in 2023. There were significant 

increases in 2019 and 2022 that may have affected 

consumption behavior. The Gross Regional Domestic Product 

(GRDP) showed dynamic trends, rising from Rp 233,636.77 

billion in 2018 to Rp 274,358.18 billion in 2023. The 

population gradually increased from 4,309,200 persons in 

2018 to 4,404,260 persons in 2023. Figure 1. shows input data 

in this research. 

The target data for model training represents actual 

electricity energy consumption in Bali Province for 2018-

2023 and corresponds with the input variables mentioned 

above [6]-[11], [28], [29]. To validate comparisons, RUPTL 

projection data were used as reference targets [4]. 

C. Performance Evaluation 

The network is configured with six input variables, 

structured as a 6-12-6-1 network. The selection of this 

configuration is based on the 2N heuristic rule, where N 

represents the number of input neurons. With six input 

variables (N = 6), the recommended number of neurons in the 

hidden layer  ranges around 2N = 12, which provides an 

optimal balance between learning capacity and model 

generalization. Prior studies have demonstrated that applying 

the 2N rule produces improved convergence and minimizes 

underfitting and overfitting in forecasting applications, 

particularly within nonlinear multivariate datasets [33]. The 
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Figure 1.  Comparison Actual Data, RUPTL, and NARX Conjugate Gradient 

dataset is simulated and processed in MATLAB. Prior to 

training, the input data are normalized to the range (-1, 1) 

using the hyperbolic tangent sigmoid (tansig) transfer function, 

as expressed in (15) [31]. 

𝑋𝑛 = 2 .
𝑋𝑝−min (𝑋𝑝)

max (𝑋𝑝)−min (𝑋𝑝)
− 1  (15) 

The forecasting simulation output will be evaluated using 

MSE, as expressed in (16) [31]. 

𝑀𝑆𝐸 =  
1

𝑛
 ∑ (𝑌𝑖 − 𝑦𝑡̂)

2𝑛
𝑡=1   (16) 

where, MSE is the Mean Square Error, 𝑛 is the number of data 

points, 𝑌𝑖 is the actual data, and 𝑦
𝑡̂
 is the forecasted data. 

The data is denormalized to return it to the actual values 

using (17) [32]. 

𝑋 = 0.5 . (𝑋𝑛 + 1). (max(𝑋𝑝)) − min (𝑋𝑝)) + min (𝑋𝑝)  (17) 

where X represents the real data that has been denormalized, 

and Xn is the normalized data. The maximum value of the 

original real data is denoted as max{Xp}, while the minimum 

value is represented by min{Xp} 

Then, the MAPE between the NARX-CG algorithm and 

the RUPTL is calculated for comparison using (18) [33]. 

𝑀𝐴𝑃𝐸 =  
1

𝑛
 ∑ |

𝑌𝑡−𝑌𝑡̇

𝑌𝑡
|𝑛

𝑡=1 . 100%  (18) 

where n represents the total number of data points, 𝑌𝑡 denotes 

the actual data values, and 𝑌𝑡̇ signifies the forecasted values. 

 

 

III. RESULTS AND DISCUSSION 

The simulation was performed using the NARX Conjugate 

Gradient model based on (1)-(15). The Mean Squared Error 

(MSE) for Bali Province was calculated using (16), as shows 

in Table I. The output data of the NARX Conjugate Gradient 

network were denormalized to obtain the predicted electricity 

consumption in actual units (GWh) using (17). The 

denormalized output was then used to calculate the Mean 

Absolute Percentage Error (MAPE) for the NARX-CG 

according (18). The results in Table I shows that the NARX 

Conjugate Gradient model provides varying degrees of 

accuracy across the 2018-2023.  

To evaluate the relative performance, the MAPE of the 

NARX-CG forecasts was compared with the MAPE of PLN’s 

RUPTL projections, which are based on the same input 

variables. The comparison allows for assessing which method 

provides more accurate electricity consumption forecasting. 

The results are presented in Table II. 

The MSE for the model is calculated as 0.09853, shows 

generally small discrepancy between the normalized target 

data and the network output.  Specifically, years such as 2018, 

2020, 2021, and 2022 shows negligible squared errors. The 

largest deviation occurs in 2019, where the squared error 

reaches 0.53684, shows that the model experienced a transient 

difficulty capturing extreme fluctuations in the target signal. 

This anomaly is associated with significant disruptions in 

national and regional economic performance leading up to the 

COVID-19 pandemic, which began impacting Indonesia at the 

end of 2019 and escalated in early 2020. The pre-pandemic 

slowdown triggered irregular patterns in electricity demand 

due to reduced industrial operations, shifts in business 

activities, and early contraction across tourism-dependent 

regions such as Bali. Consequently, the instability in 

consumption patterns during this transitional period 

introduced high variability in the time-series signal, making it 

more challenging for the NARX model to learn consistent 

temporal relationships, where the output at each time step is 

influenced by past inputs and outputs through the regressor 

vector Φ(t) [24]. 

Table II shows the denormalized output of NARX-CG 

alongside the RUPTL forecasts and actual electricity 

consumption. The average MAPE of NARX-CG is 8.12%, 

significantly lower than the 28.48% observed in RUPTL 

forecasts. This discrepancy highlights the good performance 

of the NARX-CG model in capturing the nonlinear and 

dynamic behavior of electricity demand in Bali Province. 

Notably, in years such as 2022 and 2023, NARX-CG achieves 

MAPE values of 5.86% and 1.93%, respectively, shows robust 

predictive capabilities even in periods with rapidly increasing 

consumption. The comparison show the limitations of the 

RUPTL method, which relies primarily on linear regression 

and fails to capture complex demand dynamics. Consequently, 

NARX-CG emerges as a promising approach for more reliable 

short-and medium-term load forecasting. 

 

TABLE I.   MSE NARX CONJUGATE GRADIENT BALI PROVINCE 

Year Target Output Error Squared Error 

2018 -0.277680 -0.277620 0.000060 0.000000003600 

2019 0.213110 0.945800 0.732690 0.536840000000 

2020 -0.709880 -0.709940 -0.000060 0.000000003600 

2021 -1.000000 -0.999600 0.000400 0.000000160000 

2022 -0.073811 -0.073796 0.000015 0.000000000225 

2023 1.000000 0.766950 -0.233050 0.054340000000 

  MSE 0.098530000000 
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TABLE II.   COMPARISON MAPE RUPTL AND NARX CONJUGATE GRADIENT BALI PROVINCE 

Year 

Actual Consumption 

Bali Province 

(GWh) 

RUPTL 

Forecast 

(GWh) 

NARX Conjugate 

Gradient 

Forecast 

(GWh) 

MAPE RUPTL 

Forecast 

(%) 

MAPE NARX CG 

Forecast 

(%) 

2018 5,302.67 5,866 5682.6 10.62 7.16 

2019 5,706.72 6,221 6326.0 9.01 10.87 

2020 4,946.86 6,630 5455.2 34.02 10.31 

2021 4,708.02 7,105 5302.9 50.91 12.61 

2022 5,470.51 7,595 5789.8 38.84 5.86 

2023 6,354.53 8,101 6232.0 27.48 1.93 

 MAPE 28.48 8.12 

 

The errors observed in RUPTL forecasts, as evidenced by 

consistently high MAPE values, have practical consequences 

for electricity system reliability shows in Figure 1. Historical 

deviations exceeding 10% in multiple provinces, including 

Bali, suggest that RUPTL’s linear assumptions fail to account 

for demand variability driven by population growth, economic 

activity, and seasonal patterns. The significant errors in years 

such as 2021 and 2022, where MAPE reaches 50.91% and 

38.84%, respectively, shows potential risks in power planning. 

These inaccuracies may have contributed indirectly to system 

disturbances, such as the Bali blackout, by creating 

mismatches between supply and anticipated demand. By 

contrast, the lower MAPE achieved by NARX-CG shows that 

incorporating dynamic inputs and nonlinear modeling can 

reduce forecast errors and enhance operational planning. 

The basis of the NARX model explains its improved 

performance relative to RUPTL. As a deterministic dynamic 

system, NARX incorporates both past outputs and delayed 

exogenous inputs to predict future electricity consumption, as 

shown in equations (1)-(12) [24]. The surrogate model 𝑀̂ 

approximates the true system dynamics by combining 

autoregressive lags with external drivers while accounting for 

stochastic residuals. By training the model on an experimental 

design (ED) comprising historical input-output trajectories, 

the parameter vector 𝑐  is optimized to minimize forecast 

errors, as expressed in (9). The conjugate gradient algorithm 

further enhances optimization by efficiently updating network 

weights without requiring computationally expensive second-

order derivatives. This combination of nonlinear regression 

and gradient-based optimization enables NARX-CG to handle 

temporal dependencies and capture fluctuations that 

traditional linear methods like RUPTL cannot. 

Analyzing the year by year performance of NARX-CG by 

Figure 1. reveals that the model is particularly effective in 

stabilizing forecasts during periods of demand growth. For 

instance, while the MSE table shows large deviations in 

normalized 2021, the denormalized output achieves a forecast 

within 12.61% MAPE of actual consumption. In contrast, 

RUPTL projects consistently overestimate consumption, as 

seen in 2020 and 2021, in MAPE exceeding 30% and 50%, 

respectively. These observations are consistent with NARX 

theory, where the design matrix Φ and regressor vector φ(t) 

capture both short-term fluctuations and long-term trends 

from past outputs and exogenous variables.  Moreover, this 

result shows that the NARX-CG model maintains stability 

despite variations in data scaling, showing its robustness 

under fluctuating demand conditions. The ability of the model 

to preserve forecasting accuracy after denormalization 

suggests that the learned nonlinear relationships remain 

consistent across different data representations. Consequently, 

this characteristic supports the suitability of NARX-CG for 

long-term electricity demand analysis where structural 

changes and demand growth frequently occur. 

IV. CONCLUSION 

This study shows that the NARX Conjugate Gradient 

(NARX-CG) model provides strong performance in 

forecasting electricity consumption in Bali Province, 

achieving a MAPE of 8.12% and an MSE of 0.09853. By 

incorporating past outputs and delayed exogenous inputs, the 

model effectively captures nonlinear and time-dependent 

demand dynamics, as adaptive responses to consumption 

fluctuations and maintaining robust performance during 

periods of rapid growth. Furthermore, the inclusion of 

variables such as connected capacity, customer numbers, 

tariffs, GRDP, and population enhances the model’s ability to 

represent complex demand behavior, supporting its 

applicability as a reliable tool for electricity planning. Future 

research may extend this work through comparative 

evaluations with advanced forecasting models such as LSTM 

and GRU, multi-step-ahead forecasting, real-time data 

integration from SCADA or smart meters, and the 

incorporation of probabilistic uncertainty analysis to support 

risk-based planning and reserve margin decision-making. 
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