

Turnitin_14734 Kreano 16(2).pdf

 Universitas Negeri Semarang - iTh

Document Details

Submission ID

trn:oid:::3618:126840211

21 Pages

Submission Date

Jan 25, 2026, 11:32 AM GMT+7

9,474 Words

Download Date

Jan 27, 2026, 12:20 AM GMT+7

48,515 Characters

File Name

Turnitin_14734 Kreano 16(2).pdf

File Size

638.8 KB

17% Overall Similarity

The combined total of all matches, including overlapping sources, for each database.

Filtered from the Report

- ▶ Bibliography
- ▶ Small Matches (less than 10 words)

Match Groups

- **71** Not Cited or Quoted 16%
Matches with neither in-text citation nor quotation marks
- **10** Missing Quotations 2%
Matches that are still very similar to source material
- **0** Missing Citation 0%
Matches that have quotation marks, but no in-text citation
- **0** Cited and Quoted 0%
Matches with in-text citation present, but no quotation marks

Top Sources

- 15% Internet sources
- 8% Publications
- 0% Submitted works (Student Papers)

Integrity Flags

0 Integrity Flags for Review

No suspicious text manipulations found.

Our system's algorithms look deeply at a document for any inconsistencies that would set it apart from a normal submission. If we notice something strange, we flag it for you to review.

A Flag is not necessarily an indicator of a problem. However, we'd recommend you focus your attention there for further review.

Match Groups

- **71** Not Cited or Quoted 16%
Matches with neither in-text citation nor quotation marks
- **10** Missing Quotations 2%
Matches that are still very similar to source material
- **0** Missing Citation 0%
Matches that have quotation marks, but no in-text citation
- **0** Cited and Quoted 0%
Matches with in-text citation present, but no quotation marks

Top Sources

- 15% Internet sources
- 8% Publications
- 0% Submitted works (Student Papers)

Top Sources

The sources with the highest number of matches within the submission. Overlapping sources will not be displayed.

Rank	Source	Percentage
1	www.asianinstituteofresearch.org	3%
2	R Oktaviyanti, J A Dahan. "Developing Guided Worksheet for Cognitive Apprenti...	2%
3	repository.upi.edu	1%
4	eprints.uny.ac.id	<1%
5	sophia.ufj.edu.br	<1%
6	edupij.com	<1%
7	e-journal.stkipwiliwangi.ac.id	<1%
8	talenta.usu.ac.id	<1%
9	doaj.org	<1%
10	jurnal.fkip.unila.ac.id	<1%

11 Publication

M Misbah, F D Sasmita, P A C Dinata, U A Deta, N Muhammad. "The validity of intr... <1%

12 Internet

archive.umsida.ac.id <1%

13 Internet

journal.unnes.ac.id <1%

14 Publication

Nursichati Nursichati, Purwo Susongko, Tri Mulyono. "Critical Thinking Ability Tes... <1%

15 Internet

garuda.ristekdikti.go.id <1%

16 Internet

pdfs.semanticscholar.org <1%

17 Publication

Rezi Ariawan, Nurmala Nurmala, Agus Dahlia, Hayatun Nufus, Erdawati Nurd... <1%

18 Publication

León-Díaz Fredy, Boude Oscar, Vargas-Sánchez Ana. "Pedagogical mediation with ... <1%

19 Internet

garuda.kemdikbud.go.id <1%

20 Internet

www.atlantis-press.com <1%

21 Internet

www.camp-cosmos.com <1%

22 Publication

Linden J. Ball, Frédéric Vallée-Tourangeau. "The Routledge International Handboo... <1%

23 Publication

Zetriuslita Zetriuslita, Wahyudin Wahyudin, Jarnawi Jarnawi. "Mathematical Critic... <1%

24 Internet

ijere.iaescore.com <1%

25	Internet	
	www.researchgate.net	<1%
26	Publication	
	St. Fatima Kadir, Andi Faridah Arsal, Syamsiah. "Development of Learning Tools f...	<1%
27	Internet	
	ibimapublishing.com	<1%
28	Publication	
	Ratri Rahayu, Henry Suryo Bintoro, Alif Catur Murti. "THE EFFECT OF SELF-CONFID...	<1%
29	Publication	
	Restrepo, Norbert. "Developing the Leadership Competency of Critical Thinking i...	<1%
30	Internet	
	journalofbusiness.org	<1%
31	Internet	
	ressat.org	<1%
32	Internet	
	123dok.com	<1%
33	Internet	
	cv.unesa.ac.id	<1%
34	Internet	
	eclass.uniku.ac.id	<1%
35	Internet	
	ejournal.unibabwi.ac.id	<1%
36	Internet	
	ojs.unm.ac.id	<1%
37	Internet	
	repository.uinjkt.ac.id	<1%
38	Publication	
	Ade Gafar Abdullah, Vina Adriany, Cep Ubud Abdullah. "Borderless Education as a...	<1%

39 Publication

Masfiyah Masfiyah, Munthoha Nasuha, Tity Kusrina. "Development of Problem-B... <1%

40 Publication

Paulina Pannen, Ojat Darojat, Moch Abduh. "Education Technology in the New No... <1%

41 Internet

docslib.org <1%

42 Internet

dspace.univ-adrar.edu.dz <1%

43 Internet

e-journal.undikma.ac.id <1%

44 Internet

fisika.fkip.unila.ac.id <1%

45 Internet

international.aripi.or.id <1%

46 Internet

iojes.net <1%

47 Internet

jipp.unram.ac.id <1%

48 Internet

rjoas.com <1%

49 Internet

www.e-ijer.com <1%

50 Internet

www.journal.uad.ac.id <1%

51 Internet

www.scilit.net <1%

1 Development of Critical Thinking Instruments and Student Curiosity in Number Theory Course**3 Zetriuslita^{1*}, Rezi Ariawan¹, Damar Rais², Riyand Hidayat³****5** ¹Department of Mathematics Education, Faculty of Teacher Training and Education, Universitas
6 Islam Riau, Pekanbaru, Indonesia**7** ²Mathematics Education, PGRI University of Yogyakarta, Indonesia**8** ³University Putra Malaysia, Malaysia**10** Correspondence should be addressed to Author: zetriuslita@edu.uir.ac.id**12 Abstract**

13 This study aims to develop and test the validity and reliability of instruments that can measure critical
14 thinking and curiosity of students in Number Theory course. This research is Research and
15 Development (R&D) with ADDIE model, which consists of 5 stages, namely: analysis, design,
16 development, implementation and evaluation. Data was collected from students who had taken the
17 Number Theory course 40 students and 5 lecturers as expert validators. The instruments developed
18 are in the form of tests and questionnaires consisting of several main indicators for each construct
19 measured. Data collection instruments in the form of critical thinking test validation sheet and
20 curiosity attitude with Likert scale. Data analysis techniques using inferential statistical analysis,
21 namely by testing validity and reliability using the Q-Cochran statistical test. From the results of
22 validation from experts about the validity of the construct and content obtained. The results showed
23 that for construct validity obtained Asymp. $Sig = 0.144$ greater than $\alpha = 0.05$, thus H_0 is accepted and
24 H_1 is rejected and for content validity obtained Asymp. $Sig = 0.287$ is greater than $\alpha = 0.05$, thus H_0 is
25 accepted and H_1 is rejected, it is concluded that the students' mathematical critical thinking
26 instrument is valid. The results of the validity and reliability test to students were obtained. For five
27 test, all of them valid because $r_{xy} \geq r_{kritis} = 0.203$. For the reliability of the question, it was obtained R_{11}
28 = 0.807 and $r_{kritis} = 0.203$, meaning $R_{11} \geq r_{kritis}$, the conclusion is that the question is reliable and has a
29 very high reliability. For the curiosity questionnaire, the validity of the items by looking at the
30 Corrected Item-Total Correlation. If there is an item whose value is below 0.2, it is said that the item
31 is invalid. Of the 40 items, it can be said that all are valid because the Corrected Item-Total
32 Correlation value is above 0.2 and for reliability, Cronbach's Alpha is obtained at $0.91 \geq 0.05$, which
33 shows that the questionnaire instrument is reliable and has a very high category. The results showed
34 that the critical thinking instrument and curiosity questionnaire are valid and reliable. This
35 instrument can provide information about improving critical thinking skills and curiosity attitudes of
36 students in Number Theory courses and the results can provide a basis for further research on the
37 relationship between critical thinking, curiosity, and learning outcomes in mathematics or other
38 disciplines.

40 Keywords: Instrument Development, Critical Thinking, Curiosity, Number Theory**42 Abstrak**

43 Penelitian ini bertujuan untuk mengembangkan dan menguji validitas dan reliabilitas instrumen yang
44 dapat mengukur kemampuan berpikir kritis dan rasa ingin tahu mahasiswa pada mata kuliah Teori
45 Bilangan. Penelitian ini merupakan penelitian dan pengembangan (R&D) dengan model ADDIE, yang

1 terdiri dari 5 tahap, yaitu: analisis, desain, pengembangan, implementasi, dan evaluasi. Data
2 dikumpulkan dari mahasiswa yang telah mengambil mata kuliah Teori Bilangan sebanyak 40
3 mahasiswa dan 5 orang dosen sebagai validator ahli. Instrumen yang dikembangkan berupa tes dan
4 angket yang terdiri dari beberapa indikator utama untuk setiap konstruk yang diukur. Instrumen
5 pengumpulan data berupa lembar validasi tes kemampuan berpikir kritis dan angket sikap rasa ingin
6 tahu dengan skala Likert. Teknik analisis data menggunakan analisis statistik inferensial, yaitu dengan
7 melakukan uji validitas dan reliabilitas dengan menggunakan uji statistik Q-Cochran. Hasil penelitian
8 menunjukkan bahwa untuk validitas konstruk diperoleh nilai Asymp. $Sig = 0,144$ lebih besar dari $\alpha = 0,05$, dengan demikian H_0 diterima dan H_1 ditolak dan untuk validitas isi diperoleh nilai Asymp. $Sig = 0,287$ lebih besar dari $\alpha = 0,05$, dengan demikian H_0 diterima dan H_1 ditolak, maka disimpulkan bahwa instrumen berpikir kritis matematis siswa valid. Untuk reliabilitas soal diperoleh $R_{11} = 0,807$ dan $r_{kritis} = 0,203$, berarti $R_{11} \geq r_{kritis}$, kesimpulannya soal tersebut reliabel dan memiliki reliabilitas yang sangat tinggi. Untuk kuesioner rasa ingin tahu, validitas item dengan melihat Corrected Item-Total Correlation. Jika ada item yang nilainya di bawah 0,2 maka dikatakan item tersebut tidak valid. Dari 40 item, dapat dikatakan semua valid karena nilai Corrected Item-Total Correlation di atas 0,2 dan untuk reliabilitas diperoleh Cronbach's Alpha sebesar $0,91 \geq 0,05$ yang menandakan bahwa instrumen kuesioner tersebut reliabel dan memiliki kategori sangat tinggi. Hasil penelitian menunjukkan bahwa instrumen berpikir kritis dan kuesioner curiosity adalah valid dan reliabel dan dapat digunakan dalam mata kuliah teori bilangan. Hasil penelitian ini dapat menjadi dasar untuk penelitian lebih lanjut mengenai hubungan antara berpikir kritis, curiosity, dan hasil belajar matematika atau disiplin ilmu lainnya.

21
22 **Keywords:** Pengembangan Instrumen, Berpikir Kritis, Curiosity, Teori Bilangan

23
24 **Mathematics Clasification:** 97D10 (Education and instruction in mathematics)

25 Please check Mathematics Clasification here:

26 <https://mathscinet.ams.org/msc/msc2010.html?t=97-XX&s=&btn=Search&ls=s>

27
28 Metadata of Author

29 Zetriuslita: SCOPUS ID: - 57200363692 - | ORCID ID: -<http://orcid.org/0000-0002-4037-0896> |

30 Google Scholar : - <https://scholar.google.com/citations?hl=id&user=iEJ2QhgAAAAJ>

31 Co-author: SCOPUS ID: - optional - | ORCID ID: - mandatory - | Google Scholar : - optional -

32
33 **INTRODUCTION**

34 In the 21st century, critical thinking skills are needed so that humans are able to cope with
35 changing circumstances or challenges in life to face changing circumstances or challenges in life that
36 are always evolving (Kardoyo et al., 2020; Din, 2020). Likewise in the field of mathematics,
37 this skill is a necessity that must be possessed by students, both at the high school and college levels
38 (Zetriuslita et al., 2016). Also, an attitude of curiosity is needed in learning mathematics. Because
39 with high mathematical curiosity, it will have a positive impact on positive impact in learning
40 (Hunaepi et al., 2024; Zetriuslita & Ariawan, 2021).

41 Teachers and lecturers aims to develop students' critical thinking skills and curiosity, especially
42 in complex disciplines, one of which is Number Theory. Number Theory is one of the branches of
43 pure mathematics that demands high-level thinking skills, logic, and in-depth analysis. Therefore, an
44 instrument is needed that can measure students' critical thinking skills and curiosity to determine

1 the extent to which these objectives are achieved. Developing an instrument that is reliable and
2 feasible to be used as a data collector of students' mathematical critical thinking skills is one of the
3 efforts to obtain a valid and reliable instrument (Firdausi et al., 2023). The development of critical
4 thinking and curiosity instruments is important in the context of mathematics education, especially
5 as these two abilities are positively correlated with problem-solving skills and deeper concept
6 understanding (Hunaepi et al., 2024; Arafah et al. 2023). Critical thinking helps students analyse,
7 evaluate and synthesise information to solve problems (Ennis, 1984), while curiosity encourages
8 students to keep exploring and questioning, which can improve their conceptual understanding.
9 Skills already developed by Zetriuslita et al., (2017) and Chukwuyenum, (2013), but this skills is often
10 ignored by teachers in the learning process in the classroom (Cáceres et al., 2020), (Zetriuslita et al.,
11 2021), (Le et al., 2018) and (Anwar et al., 2012). Research instruments are tools or devices used to
12 collect data in a study. The instruments in question are test instruments for critical thinking skills and
13 questionnaire instruments for curiosity. Markey dan Loewenstein are stated that curiosity is a feeling
14 of dissatisfaction that arises when someone faces incomplete information. This curiosity encourages
15 individuals to fill in the information gaps (Rahaja et al., 2022).

16 The problem is that there is still a lack of critical thinking tests and curiosity questionnaires
17 used by lecturers, they mostly use questions that already exist in reference books used especially for
18 Number Theory courses. In general, the questions in the reference books emphasize more on
19 understanding, not up to the level of high order thinking skills (HOTS). It is crucial to emphasize the
20 importance of solving Higher Order Thinking Skills (HOTS) problems for students. Engaging with
21 HOTS problems encourages critical thinking, creativity, and problem-solving abilities. These skills
22 are essential not only in academic settings but also in real-world situations. By tackling HOTS
23 problems, students learn to analyze complex situations, evaluate different solutions, and make
24 informed decisions. This process fosters a deeper understanding of the subject matter and prepares
25 them for future challenges. Furthermore, developing these skills enhances their ability to collaborate
26 and communicate effectively, which are vital in today's interconnected world.

27 There are many studies on critical thinking and curiosity, including (Zetriuslita et al., 2017,
28 Raida & Jamaludin, 2020, Iqoh, Rinaldi, & Putra, 2021, Hanifah Ameliah & Munawaroh, 2016;
29 Changwong, 2018; Siti et al., 2021; Sunarti et al., 2021 ; Collins et al., 2004; Hunaepi et al., 2024;
30 Rahaja et al., 2022; (Murphy et al., 2021); (Cohanpou et al., 2022). The results of the research
31 conducted have not fully focused on developing critical thinking and curiosity instruments, as
32 research conducted by Susanti et.al., 2021 entitled Analysis of the Development of Critical Thinking
33 Instruments Test in Physics. It is also necessary to develop critical thinking instruments and curiosity
34 questionnaires in this study as a tool to measure critical thinking skills and curiosity attitudes of
35 students, especially in Number Theory courses. So that lecturers can use learning models to improve
36 students' critical thinking skills and curiosity attitudes.

37 Based on the above problems, it is necessary to develop critical thinking and curiosity
38 instruments, especially in number theory courses. This study aims to develop a valid and reliable
39 instrument to measure critical thinking skills and curiosity in students who take Number Theory
40 courses. Critical thinking is the skills to analyse, evaluate, and make informed decisions. In Number
41 Theory, this ability emerges when students are faced with various mathematical problems, such as
42 theorem proving, solving congruence problems, and analysing the properties of prime numbers. The
43 critical thinking process allows students to construct logical arguments, analyse patterns, and
44 evaluate the results of their own calculations. (Ennis, 1984; Facione, 1990).

45 Curiosity refers to a person's drive to dig deeper into a concept or phenomenon. In the context

1 of Number Theory, curiosity is reflected in students' desire to understand practical applications of
2 abstract concepts, search for unique number patterns, or explore unanswered open questions in
3 mathematics. This attitude not only encourages intellectual exploration, but also increases student
4 engagement and motivation to learn. (Loewenstein, 2023).

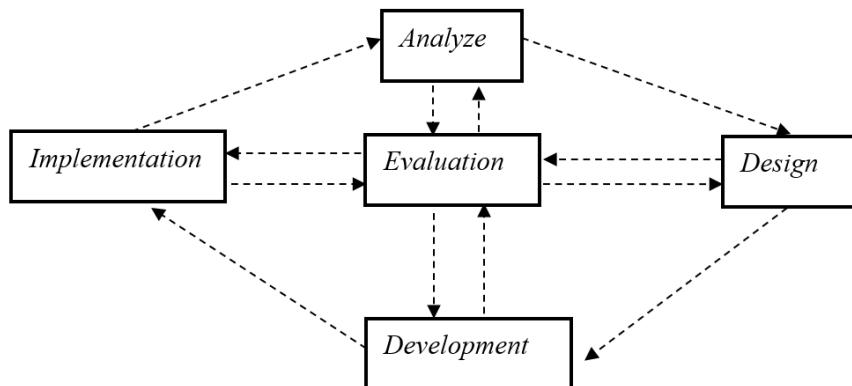
5

6 METHOD

7 This study used the Research and Development (R&D) method which involved several stages,
8 namely: (1) literature study and development of the initial concept of the instrument, (2) validation
9 of the instrument by experts, (3) field trials, and (4) data analysis to determine the validity and
10 reliability of the instrument. The subject of this research is students who have been studied Numbers
11 Theory that consist of 40 peoples and 5 lecturers as expert validators, The research instruments used
12 were critical thinking ability test and curiosity questionnaire.

13 Data collection used validation sheets, questionnaires, and data analysis using inferential
14 statistical tests, namely the Q-Cochran test.(Sugiyono, 2017a). The Grid of mathematical critical
15 thinking skill test validation sheet and curiosity questionnaire can be seen in table 1 and table 2
16 below.

17 Table 1. The Grid of Mathematical Critical Thinking Ability Test Validation Sheet


Validity	Question No.	Consideration		Comments and Suggestions for Improvement
		Result	Valid	Invalid
Advance	Language/ redactional clarity	1		
		2		
		3		
		4		
		5		
	Clarity of problem presentation	1		
		2		
		3		
		4		
		5		
Contents	Conformity with Indicators	1		
		2		
		3		
		4		
		5		
	Suitability to the aspect of ability to be measured	1		
		2		
		3		
		4		-
		5		
18	Level of difficulty of questions with student abilities	1		
		2		
		3		
		4		
		5		
19				

1

Table 2. The Grid of Mathematical Curiosity Instrument

No	Indicator	Sub-indicator	Question Number	
			Positive	Negative
1	Asking information regarding issues that have been provided	1. Asking and response towards problem that have been given. 2. Response towards question that have been asked. 3. Try to attempt and ask a question.	1,10, 12,27,38	15,29,31
2	Ambition to know everything in detail	1. Try to identify the solution. 2. Not giving up finding the solution toward the problem that has been given. 3. Give attention toward issue that have been given 4. Evaluate the results that have been gain. 5. Focus towards problem that has been given.	4,9,11,16, 17, 25, 31,	13,23,24,32
3	Enthusiastic for learning	1. Enthusiastic in discussion. 2. Interested towards the material that has been provided. 3. Enthusiast in solving issue that has been given.	3,6,8,15,35,40	18,20,22, 28,30
4	Try to discover information from any sources	1. Reading the related material regarding the problem that has provided. 2. Search for references related to the given problem 3. Try to find related references towards the issue that has been provided.	2,26,33,36	19,21
5	Try to find and execute the alternative solution	1. Try to find solution regarding problem that has been given. 2. Enthusiast to find alternative problem solution.	7,14,34, 37	39,40

2 The development model used was ADDIE (Alhamuddin et al., 2018). ADDIE model consists of
 3 five steps which are: (1) analyze, (2) design, (3) development, (4) implementation, and (5) evaluation
 4 (Firdaus & Nisa, 2019). In visual steps ADDIE Model can be look at the figure below:

1

Figure 1. ADDIE Model Research and Development

2
 3 We can conclude the steps of the research based on the figure above which are : 1) Analyze
 4 step, there are no instruments especially in Numbers study to find out critical thinking test and
 5 curiosity questionnaire; 2) Design step is a step to design the test that will be developed by creating
 6 test grid based on indicator and assessment tool to determine the validity of the critical thinking test
 7 and mathematical attitude curiosity questionnaire in the form of validation paper based on Likert
 8 scale; 3) Development step, by validate and reliable of the instruments. Validation test are conducted
 9 by several mathematical or mathematical education experts, on this study researcher is derived from
 10 two mathematic education doctors, one person specialized in number theory study, one doctor who
 11 has been teaching in the study for a long time and one other is a doctoral candidate in mathematics
 12 education; 4) In Implementation step, instruments that have been validated are being tested for
 13 students to identify the validity and reliability by using inferential statistic test which is Q-Cochran
 14 test (Sugiyono, 2017b); 5) The final step which is Evaluation step the test result or instruments
 15 implementation is being evaluated with statistic test to find out the validity and also the reliability of
 16 the instruments which are the critical thinking test and mathematical curiosity questionnaire. The
 17 category reliability can be seen at Table 3.

18 Table 3. Category Reliability Critical Thinking Test and Mathematical Curiosity
19 Questionnaire

No	Reliability	Category
1	0,80 --- 1,00	Very High
2	0,60 --- 0,80	Tall
3	0,40 --- 0,60	Enough
4	0,20 --- 0,80	Low
5	< 0,20	Very Low

20

21 The data analysis technique uses the validity of the instrument with the Q-Cohran test to
 22 test the hypothesis of expert validation. The hypotheses used are:

23 H_0 : Validators give the same consideration.

24 H_1 : Validators do not give the same consideration.

25 The test criteria: H_0 is accepted if Asymp.Sig score is bigger than $\alpha = 0,05$

26 For the validity of each question, the criteria used are if $r_{xy} \geq r_{critical}$ then the question is valid, and for
 27 the reliability of the question, if $R_{11} \geq r_{critical}$, then the question is said to be reliable.

28

29

1 RESULTS AND DISCUSSION

2 Result

3 The ADDIE development model was used for product research and development, and the
4 following is a description of the results of each stage of development:

5 1. Analyse Stage

6 Analysis activities include needs analysis, curriculum analysis, and analysis of teaching
7 materials used. Based on the results of the analysis, that so far the critical thinking ability test
8 instruments and curiosity questionnaires used so far have not been guaranteed validity and
9 reliability, specifically for test instruments for Number Theory courses. (Zetriuslita et al., 2017).

10 The results of the curriculum analysis can be seen in the Learning Outcomes (LO) of the
11 Number Theory Course (taken from the semester learning plan) which do not refer to critical
12 thinking skills, namely:

13 After completing this course in one semester, students are expected to:

- 14 1. Students are able to use mathematical induction in mathematical proofs
- 15 2. Students are able to solve the Binom theorem
- 16 3. Students are able to solve the division algorithm
- 17 4. Students are able to solve the Euclidean algorithm
- 18 5. Students are able to solve Linear Diophantine Equation
- 19 6. Students are able to explain the principle of congruence and prove its properties
- 20 7. Students are able to solve applications of congruence

21 From the LO above, the indicators of critical thinking skills have not been seen, still at the
22 application stage.

23 The analysis of teaching materials used like test obtained information that the questions are
24 still in the application category such as one of the questions given in the final semester exam in the
25 number theory course "Determine the remainder of the division of 2^{117} by 117", this question still
26 understanding concepts, not up to the level of critical thinking. So the need to develop critical
27 thinking instruments and curiosity questionnaires in number theory courses is very important.

28 For the curiosity, there were exist discuss qualitatively about what curiosity is and there were
29 experimental research raises curiosity through learning like as (Chen et al., 2025; Lapum & Hume,
30 2015; Ulum, 2022; Jackson & Ward, 2012; Mulyati et al., 2021). Ulum (2022) in his research,
31 "Mathematical Curiosity Scale for Classroom Teachers and Teacher Candidates", used "Personal
32 Information Form" as data collection tools. The scale used was developed by Usluoğlu and Toptaş
33 (2021). It is in a five-point Likert type and consists of 22 items. There were no adverse items on the
34 scale. The ranges for the items in the scale were formed on the basis of five ranges: "I strongly
35 disagree, I disagree, I am undecided, I agree, and I strongly agree." The scale consists of 3 sub-
36 dimensions called "Desire to Know the Unknown," "Seeking for Innovation" and "Desire for Success."
37 There are 11 items in the first dimension, 7 items in the second dimension and 4 in the third
38 dimension. The Cronbach's alpha reliability coefficient for the total scale was calculated as 0.85.
39 Cronbach's alpha reliability coefficient was calculated as 0.81 for the sub-dimensions "Desire to Know
40 the Unknown," 0.79 for "Seeking Innovation" and 0.71 for "Desire for Success." The Cronbach alpha
41 reliability coefficients reached for this study were calculated as 0.93 for the total scale, 0.92 for the
42 "Desire to Know the Unknown," 0.86 for the "Novelty Seeking" and 0.76 for the "Desire for Success."
43 From the results obtained at this analysis stage, it is necessary to develop critical thinking
44 instruments and curiosity questionnaires, especially in number theory courses.

45 Based on the result of analysis stage, it was found that it is necessary to develop critical

1 thinking skills instruments and curiosity questionnaires in number theory courses.

2 2. Design Stage

3 At the design stage, a critical thinking skills test grid and a curiosity questionnaire grid were
4 made, the grids were related to the indicators of critical thinking skills and curiosity questionnaire
5 indicators. For critical thinking, this can be seen from the following indicators:

6 a. Able to identify, i.e. the ability to provide reasons for the problems faced
7 b. The ability to connect, namely the ability to connect between the events at hand.
8 c. The ability to analyse, namely the ability to select and determine important information
9 from existing symptoms
10 d. Evaluating ability, which is the ability to find and detect important things from a given
11 phenomenon.
12 e. Problem solving ability, which is the ability to understand the problem, choose a strategy
13 and carry out the solution of the given problem.

14 These critical thinking indicators are inferred from the opinions of several experts such as
15 (Ennis, 1984), Gokhale (1995), O'Daffer and Thornquist (1993) (in Zetriuslita & Ariawan, 2016)

16 For the attitude of curiosity, this can be seen from the following indicators:

17 a. Enquire about the information or problem provided
18 b. Desire to know things in detail
19 c. Enthusiastic/excited in learning
20 d. Seeks information from various sources
21 e. Trying alternative solutions to the problem

22 (Iqoh et al., 2021; Zetriuslita, Wahyudin, & Dahlan, 2020)

23 This indicator is used because in previous studies it has not been used and it is also suitable
24 for Number Theory courses.

25 3. Development Stage

26 The instruments in this study are tests and non-tests, test instruments are used to measure
27 critical thinking skills and non-test instruments in the form of questionnaires prepared based on a
28 Likert scale to measure students' curiosity attitudes. Instruments for quantitative data in the form
29 of tests to measure students' critical thinking skills were developed by making a test grid with steps,
30 a) designing a test grid, b) compiling test items, c) validating experts, d) testing tests, e) validity and
31 reliability tests, f) making revisions, if needed. After that, the development of student curiosity
32 questionnaires in the form of non-test instruments, compiled based on indicators, then made a grid
33 of statements in the form of positive and negative statements and tested and revised if needed.

34 While the non-test instrument in the form of a questionnaire used to see the increase in students'
35 mathematical curiosity was developed based on curiosity indicators and made positive statements
36 and negative statements and observation sheets used to describe the implementation of learning.

37 At this stage, critical thinking skills questions and curiosity questionnaires were made based
38 on predetermined indicators. There are 5 critical thinking skills questions made and 40 curiosity
39 questionnaire statements.

40 a. Critical Thinking Test

41 In development stage have done content outline for the mathematical thinking ability test
42 and critical thinking abilities guideline. It can be seen in Table 4 and Table 5 at the link
43 <https://drive.google.com/drive/folders/1iNnAcVQf5Z-AGuwo4k64IJZ4oopAncAw>.

44 In table 4 at link above , there are 5 questions given where each question is one indicator, this
45 right is done to make it easier to measure the validity of each indicator of each question given,

1 whether the questions given have been made in accordance with the given indicators.

2 b. Mathematics Curiosity Questionnaire

3 The instrument for identify students' curiosity towards mathematics study is a questionnaire
 4 that consist positive and negative statement. The scale that researcher uses is Likert scale which is
 5 the alternative answer for each statement that can be stated Always (A), Often (O), Rarely (R), and
 6 Never (N). Score Categories in Likert Scale can be seen in Table 6.

7 Tabel 6. Score Categories in Likert Scale

No	Description	Statement (+)	Statement (-)
1	Always	5	1
2	Often	4	2
4	Rarely	2	4
5	Never	1	5

8 (Sugiyono, 2017a)

9 This questionnaire consists of 40 statements and constructed based on the curiosity

10 indicator that can be in table 7.

11 Table 7. Mathematical Curiosity Questionnaire

No	STATEMENT	Always (A)	Often (O)	Rarely (R)	Never (N)
1	I will ask directly if I don't understand the lecturer's explanation and instructions about the assignment to be done.				
2	I look for information about the material being studied from reference books/other sources such as the internet, learning CDs.				
3	I study with friends, if there is an assignment that needs to be discussed				
4	I read the lecture material before it is taught.				
5	I will ask the lecturer if there is a problem/question given in the lesson that I don't understand				
6	In group discussions, I try to discuss the given problems with enthusiasm.				
7	I am challenged in solving the problems given				
8	I try to find solutions to problems by never giving up				
9	I will not give up if I experience obstacles in solving problems				
10	I will answer the lecturer's questions if I know the answer.				
11	I pay attention to the lecturer's instructions regarding the problems given in the lecture.				

12	I try to find out the lecture material by asking friends or lecturers.				
13	I am indifferent to the problems given by the lecturer in the lecture				
14	I will present the results of the group discussion, if our group is selected for the presentation.				
15	I will answer questions from other groups, if anyone disputes the results of our group's presentation.				
16	I don't want to ask the lecturer or friends even though I don't understand the material being presented.				
17	I don't have the courage to ask lecturers or friends about the material being studied.				
18	I feel uninterested in the mathematics materials being taught.				
19	I am not interested in looking for math materials from various sources.				
20	I'm afraid when the lecturer asks me to do questions on the blackboard.				
21	Difficult questions make me lazy to do them.				
22	This lecture material is too difficult for me.				
23	If I can't do my homework I'd rather do another job				
24	When the lecturer was explaining, I didn't listen attentively.				
25	I evaluate the results of individual or group work.				
26	I searched for the answers to the problems given by the lecturer myself.				
27	I asked the presentation group if there was anything that contradicted the results of our group discussion.				
28	I'm lazy to note down the important points in the worksheet				
29	When I was tired and sleepy, I couldn't focus and didn't pay attention to the lecturer's explanation.				
30	This learning is less interesting for me.				
31	If there is a question from the lecturer, I don't try to answer it and pretend not to know.				
32	At home I don't study the material that has been delivered on campus				

33	I immediately solve the problem, if I understand what I read from the existing references.				
34	I'm curious, if I haven't found a definite answer to the problem given				
35	I will not stop solving the problem until I get the answer.				
36	I read notes, source books related to the courses taught.				
37	I worked on the questions in the source book even though the lecturer didn't assign them.				
38	When I made a mistake with my assignment, I asked the lecturer where the mistake was.				
40	When I work on a difficult math problem, I stop working on it.				

1

2 4. Implementation Stage

3 The questions of critical thinking skills and curiosity questionnaire were given to the research
 4 subjects, to determine the validity and reliability of the tests and questionnaires that had been
 5 made. And also given to the validator to assess the test and questionnaire. Validation test are
 6 conducted by several mathematical or mathematical education experts, on this study researcher is
 7 derived from two mathematics education doctors, one person specialized in number theory study,
 8 one doctor who has been teaching in the study for a long time and one other is a doctoral candidate
 9 in mathematics education. In total there are five expertise who conduct the validation test.

10 In general, the result of validator consideration is stated that the question item in the test can
 11 be used as a research instrument although some changes and improvement need to do especially in
 12 the narration or language and the correlation between questions and the indicators. The
 13 consideration result from validator which are face validation and content can be seen next.

14 a. Face Validity

15 Here is the validators' consideration result of face validation (V1 until V5) can be seen in table 8:

16 Tabel 8. Validators' Consideration Result of Face Validation for Critical Thinking Test

QN	V1	V2	V3	V4	V5
1	1	1	1	1	1
2	0	1	1	1	1
3	1	1	1	1	1
4	1	1	1	1	1
5	0	1	1	0	1

17 QN : Question Number

18 Vi : Validator , i=1,2,3,4,5

19 To test the consideration of face validity from critical thinking from five experts, then
 20 formulation of statistical hypothesis is needed.

1 The hypotheses are:
2 H_0 : Validators give the same consideration.
3 H_1 : Validators do not give the same consideration.
4 To test the same consideration result of this face validation then researcher use Q-Cochran
5 statistical test. The test criteria: H_0 is accepted if Asymp.Sig score is bigger than $\alpha = 0,05$. The result
6 of Q-Cochran statistical test can be seen in Table 9.

7 Table 9. Uniformity Test Result of Instrument Face Validity
8

N	5
Cochran's Q	6,857 ^a
Df	4
Asymp. Sig.	0,144

13 a. 1 is treated as a success.

14 In table 9 can be seen that Asymp.Sig score is 0,144 more than $\alpha = 0,05$. With that H_0 can be
15 accepted and H_1 is rejected, it can be conclude that five validator have been given uniformity
16 consideration towards face validity for critical thinking instrument. It means the language feature in
17 the instrument that have been given to the validator proven to be effective and can be used for the
18 participants.

19 b. Content Validity

20 The result of validators consideration for content validity can be seen in table 10:

21 Table 10. Validators' Consideration Result for Content Validity

No Soal	V1	V2	V3	V4	V5
1	1	1	1	1	1
2	0	0	1	1	1
3	1	1	1	1	1
4	1	1	1	1	1
5	0	1	1	0	1

22 To test the same consideration result of this face validation then researcher use Q-Cochran
23 statistical test. The test criteria: H_0 is accepted if Asymp.Sig score is bigger than $\alpha = 0,05$. The result
24 of Q-Cochran statistical test can be seen in Table 11 :

25 Table 11. Uniformity Test Result of Instrument
Content Validity

N	5
Cochran's Q	5,000 ^a
Df	4
Asymp. Sig.	,287

a. 1 is treated as a success.

1 It can be seen in table 11 that Asymp.Sig score is 0,287 more than =0,05. Because of it H_0 can
 2 be accepted and H_1 is denied and it can be summarize that all of five validators is given uniformity
 3 of consideration regarding the content validity of critical thinking skill. From the results of expert
 4 validation, it was found that the critical thinking skills test was valid and reliable.

5 The validators' comments on the critical thinking instrument are as follows:

6 1. For question no.1 indicator 1, only words such as "solve it", according to the validator "solve
 7 the problem:
 8 2. For question no.5 indicator 5, it says a dozen fruits, according to the validator the sentence is
 9 not correct.

10 The validators' comments can be seen on figure 2.

NO	MATERI	INDIKATOR KEMAMPUAN	INDIKATOR SOAL	NO.SOAL	SOAL
1	APLIKASI KFKONGRUIT	BERPIKIR KRITIS Kemampuan menginterpretasikan gagasan gagasan matematika secara tertulis	Diberikan masalah tentang deret bilangan, mahasiswa diharapkan dapat menginterpretasikan masalah tersebut.	1a	1. a. Jika sekarang hari Kami dengan pasti jatuh hari a 2000 hari lagi. Apa yang menentukan penyelesaian
5	PERSAMAAN DIOPHANTINE LINIER (PDL)	BERPIKIR KRITIS Kemampuan memecahkan masalah, yaitu kemampuan memahami masalah, memilih strategi dan melaksanakan penyelesaian dari masalah yang diberikan	Diberikan masalah tentang kekongnenan, mahasiswa diharapkan dapat menemukan konsep-konsep yang diberikan setiap langkah	5a,	Selesaikan permasalahan tersebut! Seseorang akan membeli selusin buah-buahan yang terdiri dari apel dan jeruk delapan buah. Jika sebuah apel harga 2000 dan sebuah jeruk 1000, berapa harga total buah yang dibeli? LENOVO 16:40 ... x pemilihan kata "selusin" sepertinya kurang tepat jika untuk buah

14 Figure 2. The validators' comments on the critical thinking instrument

15 The validators' comments for curiosity questionnaire are as follows:

16 1. Statement 1 should contain only 1 sub-indicator and statement 2, the word learning CD
 17 should be replaced with more modern media.
 18 2. For the other statements, there are only incomplete sentences and some have repeated
 19 writing.

20 The validators' comments can be seen on figure 3.

No	PERNYATAAN	SL	SR	JR
1	Saya akan langsung bertanya, apabila kurang memahami penjelasan dan arahan dosen tentang tugas yang akan dikerjakan			
2	Saya mencari informasi tentang materi yang dipelajari dari buku rujukan/sumber lain seperti internet, CD pembelajaran			
3	Saya belajar dengan teman, apabila ada tugas yang perlu didiskusikan			
4	Saya membaca materi perkuliahan sebelum materi tersebut diajarkan			

LENOVO 16:22
... x
Dalam 1 pernyataan seharusnya hanya mengandung 1 sub indikator, agar jelas penilaianya setelah dijawab oleh siswa

CD pembelajaran sebaiknya diganti dengan media lain yang lebih modern

21

30	Pembelajaran ini kurang menarik bagi saya.				LENOVO 16:30	...
31	Apabila ada pertanyaan dari dosen, saya tidak berusaha menjawabnya dan berpura-pura tidak tahu				sebaiknya hanya satu kalimat dalam 1 pernyataan	
32	Di rumah saya tidak mempelajari materi yang telah disampaikan di kampus					
33	Saya langsung menyelesaikan masalah, apabila sudah memahami apa yang dibaca dari referensi yang ada					
34	Saya penasaran, apabila belum menemukan jawaban yang pasti dari masalah yang diberikan					
35	Saya akan belum berhenti menyelesaikan masalah, apabila belum mendapatkan jawabannya				LENOVO 16:31	...
36	Saya membaca catatan, buku sumber yang berhubungan dengan mata kuliah yang diajarkan				saya tidak akan berhenti...	
37	Saya mengerjakan soal-soal yang ada di buku sumber walaupun tidak ditugaskan dosen					
38	Ketika ada tugas saya yang salah, maka saya bertanya kepada dosen letak kesalahannya				LENOVO 16:31	...
39	Ketika mengerjakan soal matematika yang sulit, saya berhenti mengerjakannya				di mana letak kesalahannya	
40	Jika diberikan tugas oleh dosen, saya langsung mengerjakannya					

1

Komentar dan Saran Perbaikan Secara Keseluruhan

Perbaiki angket sesuai saran terlampir.

D. KESIMPULAN

Berdasarkan penilaian yang telah dilakukan, lembar wawancara untuk guru ini dinyatakan:

1. Layak digunakan untuk uji coba tanpa revisi.
2. **Layak digunakan untuk uji coba setelah revisi.**
3. Tidak layak untuk digunakan untuk uji coba.

2

3 Figure 3. The validators' comments and suggestions for curiosity questionnaire

4 5. Evaluation Stage

5 The results of the critical thinking test and curiosity questionnaire validation analysis can be
6 described below.

7 a. Critical Thinking Test

8 The instrument was tested on students who had taken the Number Theory course so that the
9 validity and reliability of the test were obtained according to the desired standard. For the validity
10 of each question, the criteria used are if $r_{xy} \geq r_{critical}$ then the question is valid, and for the reliability of
11 the question, if $R_{11} \geq r_{critical}$, then the question is said to be reliable.

12 From the test results obtained data on the validity and reliability of the critical thinking ability
13 test can be seen in Table 12 as follows:

14

1

Table 12. Critical Thinking Test Validity and Reliability Results

Question Number	Validity		Reliability	
	r_{xy}	Description	R_{11}	Category
1	0,535	Valid		
2	0,432	Valid		
3	0,705	Valid	0,807	Very High
4	0,518	Valid		
5	0,279	Valid		

2

Note: $r_{critical} = 0.273$ and $dk = 50$ for $\alpha = 0.05$

3

Table 12 shows that the critical thinking test questions can be used in this study because all the questions given are valid and have very high reliability.

4

In this study, the Q-Cochran statistical test was used to test the uniformity of the results of face validity and content validity of the instruments developed, especially the critical thinking ability instrument. The Q-Cochran test is a non-parametric test used to test whether there is uniformity or significant differences among groups of respondents (in this case the validators) in assessing a criterion.

5

Face validity relates to whether an instrument appears subjectively valid, especially in terms of language use and overall appearance. In the face validity test results, the test criteria is to accept H_0 (null hypothesis) if the Asymp. Sig value is greater than the significance level $\alpha = 0.05$. Conversely, if the Asymp. Sig value is smaller than α , then H_0 is rejected. In this study, the Q-Cochran test results for face validity showed an Asymp. Sig = 0.144, which is greater than $\alpha = 0.05$. Therefore, H_0 is accepted and H_1 is rejected. This means that the conclusion can be drawn that the validators gave uniform judgements regarding the face validity of the instrument. This indicates that the language and appearance of the instrument have been considered effective by the validators.

6

After face validity is tested, the next step is to test content validity, which relates to whether the instrument thoroughly covers all aspects of critical thinking skills to be measured. The testing process uses the same criteria, which is to accept H_0 if the Asymp. Sig value is greater than $\alpha = 0.05$. The Q-Cochran test results for content validity showed an Asymp. Sig = 0.287, which is also greater than $\alpha = 0.05$. Based on this result, H_0 was accepted, which means that the validators gave a uniform assessment of the content validity of the instrument. In other words, all five validators agreed that the instrument had appropriately covered all aspects of critical thinking skills.

7

From these two tests, it can be concluded that the critical thinking skills instruments tested have met the standards of face validity and content validity. The validators have given uniform consideration, both in terms of language use and the content of the instrument developed. Thus, this instrument is considered suitable for use in measuring critical thinking skills. Many studies on the development of critical thinking test instruments, to get a valid and reliable test instrument such as research Rohmatulloh, Nindiasari, & Fatah, (2023) and Firdaus & Nisa, (2019). From the research results obtained, the instrument can be used.

8

b. Curiosity Questionnaire

9

The instrument used to measure students' curiosity towards Number Theory course is a questionnaire containing positive and negative statements. The scale used is a Likert scale, with alternative answers for each statement being Always (SL), Often (SR), Rarely (JR) and Never (TP). This questionnaire consists of 40 statements arranged based on curiosity indicators, which can be seen in Table 13 below.

10

Table 13. Reliability of Mathematical Curiosity Questionnaire Instrument
 Reliability Statistics

Cronbach's Alpha	N of Items
.910	40

Table 13 shows the Cronbach's Alpha coefficient value of 0.910. It is concluded that the reliability of the instrument is categorised as very high. Furthermore, the validity of each item or item can be seen in Table 14 below:

Table 14. Correlation of Items with Total Items

	Scale Mean if Item Deleted		Scale Variance if Item Deleted		Corrected Item-Total Correlation		Cronbach's Alpha if Item Deleted		Decision	
Item 1	114,2459	142,155	,407		,909				Valid	
Item 2	113,7869	144,504	,301		,910				Valid	
Item 3	113,4754	143,854	,441		,908				Valid	
Item 4	114,4754	145,687	,309		,910				Valid	
Item 5	114,2131	139,037	,618		,906				Valid	
Item 6	113,8525	143,095	,473		,908				Valid	
Item 7	113,9672	144,166	,408		,909				Valid	
Item 8	114,0492	145,381	,317		,910				Valid	
Item 9	114,0656	144,596	,350		,909				Valid	
Item 10	113,7541	140,655	,542		,907				Valid	
Item 11	113,3115	144,085	,399		,909				Valid	
Item 12	113,4918	144,454	,363		,909				Valid	
Item 13	113,2623	140,163	,640		,906				Valid	
Item 14	113,2295	142,680	,435		,908				Valid	
Item 15	113,6066	142,976	,393		,909				Valid	
Item 16	113,2951	143,945	,344		,909				Valid	
Item 17	113,3607	139,534	,661		,905				Valid	
Item 18	113,3115	142,285	,523		,907				Valid	
Item 19	113,3279	142,491	,535		,907				Valid	
Item 20	113,8689	143,383	,390		,909				Valid	
Item 21	113,9836	142,616	,466		,908				Valid	
Item 22	113,5902	143,513	,419		,908				Valid	
Item 23	113,7869	141,670	,499		,907				Valid	
Item 24	113,3607	143,301	,417		,908				Valid	
Item 25	114,0492	144,981	,345		,909				Valid	
Item 26	114,1148	145,970	,266		,910				Valid	
Item 27	113,9344	142,396	,412		,909				Valid	
Item 28	113,4262	145,282	,347		,909				Valid	
Item 29	114,2295	141,280	,522		,907				Valid	

Item 30	113,3279	142,657	,498	,907	Valid
Item 31	113,5902	141,813	,532	,907	Valid
Item 32	113,6393	145,034	,398	,909	Valid
Item 33	113,7213	139,771	,525	,907	Valid
Item 34	113,6885	140,518	,599	,906	Valid
Item 35	114,0820	144,510	,353	,909	Valid
Item 36	113,7213	140,838	,532	,907	Valid
Item 37	114,6885	146,918	,326	,909	Valid
Item 38	114,3770	144,572	,337	,909	Valid
Item 39	114,0164	145,516	,273	,910	Valid
Item 40	114,2367	140,231	,223	,905	Valid

1

2 Table 14 can be used to see the validity of items by looking at the Corrected Item-Total
3 Correlation. If there are items (items) whose value is below 0.2, it is said that the item is invalid. Of
4 the 40 items, it can be said that all are valid because the Corrected Item-Total Correlation value is
5 above 0.2. The instrument used in this study aims to measure students' curiosity towards Number
6 Theory course. The instrument is a questionnaire containing 40 statements, consisting of positive
7 and negative statements, which are arranged based on curiosity indicators.

8 To ensure that this instrument has a high level of consistency in measuring curiosity, reliability
9 testing was carried out using the Cronbach's Alpha coefficient. Reliability indicates the extent to
10 which an instrument provides consistent results when measured repeatedly. In general, the value of
11 Cronbach's Alpha between 0.7 to 0.9 is considered a good indication of reliability, while values above
12 0.9 indicate very high reliability.

13 Based on Table 13, the Cronbach's Alpha value obtained is 0.910, which indicates that the
14 instrument has a very high reliability. This means that the questionnaire used is very consistent in
15 measuring students' mathematical curiosity towards the Number Theory course. This high reliability
16 value has several important implications. Firstly, the instrument can be trusted to provide consistent
17 results if used in different measurements or on similar student populations. Secondly, since the
18 Cronbach's Alpha value is above 0.9, the instrument is not only consistent but also highly accurate in
19 capturing the measured dimensions of curiosity. Thus, the measurement results obtained from this
20 questionnaire can be used as valid data in evaluating students' curiosity in the context of learning
21 Number Theory.

22 Overall, this instrument can be considered as a reliable measurement tool in research on
23 mathematical curiosity, so that it can be used as a basis for decision making related to improving
24 teaching methods or developing course materials in the field of Number Theory. From the results of
25 the consideration of the validators and the validity and reliability tests of the mathematical critical
26 thinking ability instrument and the mathematical curiosity questionnaire, an instrument that meets
27 the criteria of a good instrument is obtained. In the sense that this instrument can be used in the
28 process of collecting the necessary data.

29 Discussion

30 The development of critical thinking and curiosity instruments in the Number Theory course is
31 very important to evaluate the effectiveness of learning and to encourage the development of
32 students' skills in solving mathematical problems. Valid and reliable instruments will help lecturers
33 in designing teaching strategies that are more effective and adaptive to student needs. Some

1 previous studies that developed critical thinking test instruments include (Siti et al., 2021; Atika &
2 Mz, 2016; Susanti & Adamura, 2020; Uki & Bire, 2021; Rohmatulloh et al., 2023; Firdausi et al., 2023;
3 Rokhis & Mas'ula, 2020; Aini et al., 2023), while for curiosity instruments including (Bayuningrum et
4 al., 2021; Dwidayati, 2017; Facione, 1990; Fauzi et al., 2017; Hanifah Ameliah & Munawaroh, 2016;
5 Hunaepi et al., 2024; Kadek et al., 2020; Kundu & Bej, 2022). Kundu & Bej in their research was
6 focused on comparing the effectiveness of three learning models on student curiosity in primary
7 schools in India, not specifically developing a curiosity instrument. From the above studies, both for
8 critical thinking instruments and for curiosity instruments, not many have developed them, so that
9 from the research that researchers have done, they have provided something new and obtained new
10 findings

11 From the results of research on the development of valid and reliable critical thinking and
12 curiosity instruments, this instrument was tested on students to see their critical thinking skills and
13 curiosity. The results of data processing using the t test, it was found that there was an increase in
14 students' critical thinking ability and curiosity.

15 The new instrument developed in this study differs from the previous instrument in several key
16 aspects : 1). Validity and reliability, the new instrument was designed with a stronger focus on validity
17 and reliability. The development process involved pilot testing and statistical analysis to ensure that
18 the instrument could accurately measure what it was intended to measure, whereas previous
19 instruments may not have gone through this process as thoroughly. 2) Focus on number theory
20 context, the new instrument is more specific to the learning context of number theory, with
21 questions and tasks that are relevant to the material being taught. This is different from previous
22 instruments which may have been general and not focused on specific aspects of the subject. 3).
23 Increased student engagement, the new instrument is designed to encourage active student
24 engagement, with questions that challenge them to think critically and explore new ideas. This is
25 different from previous instruments that may not have stimulated students' curiosity enough. 4)
26 More constructive feedback, the new instrument provides more constructive feedback to students,
27 helping them understand areas for improvement and how to improve their critical thinking skills.
28 Previous instruments may not have provided feedback that was in-depth or specific enough. With
29 these differences, the new instrument is expected to provide a more accurate and in-depth
30 evaluation of students' critical thinking skills and curiosity in learning Number Theory. Improved
31 instruments are expected to increase student understanding and engagement in the subject of
32 Number Theory. Valid and reliable instruments allow teachers to get a more accurate picture of
33 students' abilities and identify areas for improvement .

34 This study recommends that the developed instrument be implemented in the learning process
35 at large. In addition, it is important to conduct training for teachers so that they can use this
36 instrument effectively in curriculum evaluation and development. This study also shows that a
37 problem-based learning approach can positively contribute to the development of students' critical
38 thinking skills and curiosity. This is in line with findings from other studies showing that active
39 learning methods can increase student engagement.

40 Overall, this study made an important contribution in the development of instruments to
41 measure students' critical thinking skills and curiosity in Number Theory. With more valid and reliable
42 instruments, it is expected that the learning process can be improved, so that students can be better
43 prepared to face challenges in learning mathematics.

44 The limitations of this research are that it has not reached the stage of testing effectiveness in
45 learning and for critical thinking instruments, namely tests can only be used for number theory

1 courses, while curiosity questionnaires can be used for all courses.

2 CONCLUSION

3 The results of this study indicate that the instrument developed has good validity and reliability
4 to be used in measuring the level of critical thinking and curiosity of students in the Number Theory
5 course. This instrument is expected to be used by lecturers to evaluate and develop students' critical
6 thinking and curiosity skills, as well as a tool for further research in the field of mathematics
7 education. This instrument can provide information about improving critical thinking skills and
8 curiosity attitudes of students in Number Theory courses and the results can prove critical thinking
9 skills and curiosity attitudes of students in Number Theory courses and the results can provide a basis
10 for further research on the relationship between critical thinking, curiosity, and learning outcomes in
11 mathematics or other disciplines. Therefore, for further research to test the effectiveness of the
12 instrument using N-Gain with conduct experimental research so that significant results are obtained
13 from the effectiveness of the instrument.

14

15 REFERENCES

16 Aini, S. N., Pramasdyahsari, A. S., & Setyawati, R. D. (2023). Pengembangan Instrumen Tes Berpikir
17 Kritis Matematis Berbasis PjBL STEM Menggunakan Pendekatan Etnomatematika. *Jurnal
18 Cendekia : Jurnal Pendidikan Matematika*, 07(2), 2118–2126.

19 Alhamuddin, Inten, D. N., Adwiyah, R., & Fauzan, N. (2018). eveloping the I am Anti-Corruption
20 Learning Model and Its Impact on Reducing Student Fraud. *Pendidikan Progresif*, 8(2), 53–67.
21 <https://doi.org/10.23960/jpp.v14.i2.202452>

22 Anwar, M. N., Aness, M., Khizar, A., Naseer, M., & Muhammad, G. (2012). *Relationship of Creative
23 Thinking with the Academic Achievements of Secondary School Students*. 1(3), 1–4.

24 Arafah, R. A. D., Kurniati, D., Lestari, N. D. S., Pambudi, D. S., & Yulianti, N. (2023). Pengembangan
25 Perangkat Pembelajaran Matematika Model Problem Based Learning Untuk Meningkatkan
26 Analyticity Siswa. *AKSIOMA: Jurnal Program Studi Pendidikan Matematika*, 12(3), 2700.
27 <https://doi.org/10.24127/ajpm.v12i3.7533>

28 Atika, N., & Mz, Z. A. (2016). Pengembangan LKS Berbasis Pendekatan Rme Untuk
29 Menumbuhkembangkan Kemampuan Berpikir Kritis Matematis. *Suska Journal of Mathematics
30 Education*, 2(2), 103–110.

31 Bayuningrum, W. A., Iswinarti, & Yuniardi, M. S. (2021). Peran Kreativitas dalam Memediasi
32 Hubungan Rasa Ingin Tahu dengan Motivasi Akademik Pada Mahasiswa Seni The Role of
33 Creativity in Mediating the Relationship between Curiosity and 1. Bayuningrum WA, Iswinarti,
34 Yuniardi MS. Peran Kreativitas dalam Memediasi. *Jurnal Psikologi Teori Dan Terapan*, 12(1), 81–
35 91. <https://doi.org/10.26740/jptt.v12n1.p81-91>

36 Cáceres, M., Nussbaum, M., & Ortiz, J. (2020). Integrating critical thinking into the classroom: A
37 teacher's perspective. *Thinking Skills and Creativity*, 37, 100674.
38 <http://www.sciencedirect.com/science/article/pii/S1871187120301486>

39 Changwong, K. (2018). Critical thinking skill development : Analysis of a new learning management
40 model for Thai high schools. *Journal of International Studies*, 11, 37–48.

41 Chukwuyenum, A. N. (2013). Impact of Critical thinking on Performance in Mathematics among
42 Senior Secondary School Students in Lagos State. *IOSR Journal of Research & Method in
43 Education (IOSR-JRME)*, 3(5), 18–25.

44 Cohanpou, M., Aly, M., & Gottlieb, J. (2022). Leveraging vision to understand curiosity. *BioRxiv*, 1–
45 21.

46 Collins, R. P., Litman, J. A., & Spielberger, C. D. (2004). The measurement of perceptual curiosity.
47 *Personality and Individual Differences*, 36(5), 1127–1141. [https://doi.org/10.1016/S0191-8869\(03\)00205-8](https://doi.org/10.1016/S0191-
48 8869(03)00205-8)

1 Din, M. (2020). Evaluating university students' critical thinking ability as reflected in their critical
2 reading skill: A study at bachelor level in Pakistan. *Thinking Skills and Creativity*, 35, 100627.
3 <https://doi.org/https://doi.org/10.1016/j.tsc.2020.100627>

4 Dwidayati, N. K. (2017). Kemampuan Berpikir Kreatif dan Rasa Ingin Tahu pada Model Problem-
5 Based Learning dengan Masalah Open Ended. *Unnes Journal of Mathematics Education*
6 *Research*, 6(1), 103–111.

7 Ennis, R. . (1984). The Nature of Critical Thinking. *Informal Logic*, 6(2), 1–8.
8 <https://doi.org/10.22329/il.v6i2.2729>

9 Facione, P. A. (1990). *Critical Thinking: A Statement of Expert Consensus for Purposes of Educational*
10 *Assessment and Instruction*. <https://doi.org/10.18690/um.feri.3.2024.2>

11 Fauzi, A. R., Zainuddin, Z., & Atok, R. Al. (2017). Penguatan Karakter Rasa Ingin Tahu dan Peduli
12 Sosial melalui Discovery Learning. *Jurnal Teori Dan Praksis Pembelajaran IPS*, 2(2), 79–88.
13 <https://doi.org/10.17977/um022v2i22017p079>

14 Firdaus, A., & Nisa, L. C. (2019). *Kemampuan Berpikir Kritis Siswa pada Materi Barisan dan Deret*
15 *Berdasarkan Gaya Berpikir*. 10(1), 68–77.

16 Firdausi, Syukur, M., Tjalla, A., & Sarifah, I. (2023). Pengembangan Instrumen Berpikir Kritis
17 Matematika Siswa. *AKSIOMA: Jurnal Program Studi Pendidikan Matematika*, 12(3), 2899–2910.

18 Hanifah Ameliah, I., & Munawaroh, M. (2016). Pengaruh Keingintahuan Dan Rasa Percaya Diri
19 Siswa Terhadap Hasil Belajar Matematika Kelas VII Mts Negeri I Kota Cirebon. *Eduma : Mathematics Education Learning and Teaching*, 5(1), 9–21.
20 <https://doi.org/10.24235/eduma.v5i1.598>

21 Hunaepi, H., Suma, I. K., & Subagia, I. W. (2024). Curiosity in Science Learning: A Systematic
22 Literature Review. *International Journal of Essential Competencies in Education*, 3(1), 77–105.
23 <https://doi.org/10.36312/ijece.v3i1.1918>

24 Iqoh, U., Rinaldi, A., & Putra, R. W. Y. (2021). Model Pembelajaran WEE Ditinjau dari Curiosity:
25 Pengaruhnya terhadap Kemampuan Pemahaman Konsep Matematis. *JKPM (Jurnal Kajian*
26 *Pendidikan Matematika*, 6(2), 267.

27 Kadek, N., Dwi, A., Murda, I. N., Ayu, I. G., & Agustiana, T. (2020). Korelasi Antara Rasa Ingin Tahu
28 dan Motivasi Belajar dengan Hasil Belajar IPA Siswa Kelas V. *Jurnal Mimbar Ilmu*, 25(1), 20–31.

29 Kardoyo, Nurkin, A., Muhsin, & Pramusinto, H. (2020). Problem-based learning strategy: Its
30 impact on students' critical and creative thinking skills. *European Journal of Educational*
31 *Research*, 9(3), 1141–1150. <https://doi.org/10.12973/EU-JER.9.3.1141>

32 Kundu, A., & Bej, T. (2022). Elementary Students Mathematics Curiosity: A Comparative Pedagogy
33 of Face-To-Face, Online, and Blended Modes. *International Journal of Virtual and Personal*
34 *Learning Environments*, 12(1), 1–16. <https://doi.org/10.4018/IJVPLE.313413>

35 Le, H., Janssen, J., & Wubbels, T. (2018). *Collaborative learning practices : teacher and student*
36 *perceived obstacles to effective student collaboration*. 3577.
37 <https://doi.org/10.1080/0305764X.2016.1259389>

38 Loewenstein, G. (2023). The Psychology of Curiosity: A Review and Reinterpretation. In *Exotic*
39 *Preferences* (pp. 121–177). <https://doi.org/10.1093/oso/9780199257072.003.0006>

40 Murphy, C., Dehmelt, V., Yonelinas, A., Ranganath, C., & Gruber, M. J. (2021). Temporal proximity
41 to the elicitation of curiosity is key for enhancing memory for incidental information. *Learning*
42 *Memory*, 28(2), 34–39. <https://doi.org/10.1101/LM.052241.120>

43 Rahaja, S., Ronny Wibhawa, M., & Lukas, S. (2022). Mengukur Rasa Ingin Tahu Siswa. *Polyglot:*
44 *Jurnal Ilmiah*, 14(2), 151–164. <https://ojs.uph.edu/index.php/PJI/article/view/832>

45 Raida, S. A., & Jamaludin, D. N. (2020). The Effectiveness of Constructivist Learning Using Guided
46 Discovery Models on The Concept of A Regulatory System for Curiosity and Anti-Narcotics
47 Attitudes. *Thabiea : Journal of Natural Science Teaching*, 3(1), 41–50.
48 <https://doi.org/10.21043/thabiea.v3i1.7023>

49 Rohmatulloh, Nindiasari, H., & Fatah, A. (2023). Pengembangan E-Modul Interaktif Berbasis
50 Problem Based Learning (PBL) Untuk Meningkatkan Kemampuan Berpikir Kritis Matematis

1 Peserta Didik. *AKSIOMA: Jurnal Program Studi Pendidikan Matematika*, 12(4), 3599–3612.

2 Rokhis, T. A., & Mas'ula, N. (2020). Pengembangan Instrumen Tes Kemampuan Berpikir. *SAP*
3 (*Susunan Artikel Pendidikan*), 4(3), 177–185.

4 Siti, N., Gumilang, R., & Tsurayya, A. (2021). Pengembangan Instrumen Kemampuan Berpikir Kritis
5 dan Kreatif Matematika Peserta Didik Kelas VII SMP Development of Mathematics' Critical
6 and Creative Thinking Instruments for Grade VII on Secondary School. *Jurnal Pendidikan*
7 *Matematika Dan Sains*, 9(2), 89–98.

8 Sugiyono. (2017a). *Metode Penelitian Pendidikan Pendekatan Kuantitatif, Kualitatif, dan R&D*.
9 Bandung: Alfabeta.

10 Sugiyono. (2017b). Pendekatan Kuantitatif, Kualitatif, Kombinasi, R&D dan Penelitian Evaluasi. In
11 *Metodelogi Penelitian* (pp. 147–148).

12 Sunarti, T., Wasis, W., Setyarsih, W., Zainudin, A., & Jauhariyah, M. N. R. (2021). Analysis of the
13 Development of Critical Thinking Instruments Test in Physics. *International Joint Conference on*
14 *Science and Engineering*, 209(Ijcse), 627–634.

15 Susanti, V. D., & Adamura, F. (2020). Pengembangan Perangkat Pembelajaran Kooperatif
16 Berorientasi Brain Based Learning Untuk Melatih Kemampuan Berpikir Kritis Matematis
17 Siswa. *Jurnal Pendidikan Matematika Dan IPA*, 11(1), 74.
18 <https://doi.org/10.26418/jpmipa.v11i1.32717>

19 Uki, N. M., & Bire, M. O. H. (2021). Pengembangan Bahan Ajar Pencemaran Lingkungan Berbasis
20 PBL terhadap Kemampuan Berpikir Kritis Siswa. *Jurnal Basicedu*, 5(6), 5892–5898.
21 <https://doi.org/10.31004/basicedu.v5i6.1730>

22 Zetriuslita, & Ariawan, R. (2016). Development of critical thinking ability testmathematical content
23 shaped description on flat field size and volume rotate objects. *Proceeding Proceedings*
24 *International Seminar on Mathematics, Science, and Computer Science Education*.

25 Zetriuslita, Ariawan, R., & Nufus, H. (2016). Analisis Kemampuan Berpikir kritis Matematis
26 Mahasiswa dalam menyelesaikan soal uraian Kalkulus Integral Berdasarkan Level Akademik
27 Mahasiswa. *Infinity Journal*, 5(1), 56–65.

28 Zetriuslita, Istikomah, E., & Nofriyandi. (2021). Improving Students' Mathematics Communication
29 Ability Through Geogebra Peningkatan Kemampuan Komunikasi. *Pedagogia: Jurnal*
30 *Pendidikan*, 10(2), 113–126.

31 Zetriuslita, Wahyudin, & Dahlan, J. A. (2017). Mathematical Critical Thinking and Curiosity Attitude
32 in Problem Based Learning and Cognitive Conflict Strategy: A Study in Number Theory course.
33 *International Education Studies*; Vol. 10, No. 7; 2017, 10(07), 65–78.
34 <http://www.ccsenet.org/journal/index.php/ies/article/view/66563>

35 Zetriuslita, Wahyudin, & Dahlan, J. A. (2020). The correlation among students' response in apply
36 problem based learning and cognitive conflict strategy to improve critical thinking skills and
37 curiosity attitude based on academic level. *Journal of Physics: Conference Series*.
38 <https://doi.org/doi:10.1088/1742-6596/1521/3/032034>

39 Zetriuslita, Z., & Ariawan, R. (2021). Students'mathematical Thinking Skill Viewed From Curiosity
40 Through Problem-Based Learning Model On Integral Calculus. *Infinity Journal*, 10(1), 31–40.

41