

Interactive Digital Teaching Materials Based on Numeracy : Development Studies on Statistical Material with The Context of Musi Banyuasin

Leny Bariyah¹, Ely Susanti^{2*}, and Nyimas Aisyah³

^{1,2,3}Universitas Sriwijaya, Palembang, Indonesia

Correspondence should be addressed to Ely Susanti: ely_susanty@fkip.unsri.ac.id

Abstract

Students' numeracy skills remain low, and the potential of Android-based digital learning resources has not been fully optimized. This study developed digital teaching materials enriched with local contexts from Musi Banyuasin to make learning more relevant, meaningful, and connected to students' real-life experiences. The aim was to produce valid and practical digital teaching materials and to describe students' responses after their use. The research employed the Plomp development model, consisting of preliminary, construction, and evaluation phases. The participants were 20 seventh-grade students, and data were collected through questionnaires, observations, documentation, and interviews, then analyzed using descriptive quantitative and qualitative techniques. The results indicate that the developed materials are highly valid in terms of content, construct, language, ICT components, and the integration of local contexts. The materials also met the "very practical" criteria, with practicality scores above 82% in both implementation sessions. Students' numeracy performance improved, with most achieving the "good" category, suggesting that embedding local contexts has a positive influence on strengthening numeracy skills. In conclusion, the digital teaching materials are feasible, practical, and effective in supporting students' numeracy development. The use of contextualized digital features enhances engagement, facilitates independent learning, and enables teachers to deliver interactive and relevant mathematics instruction. The findings imply that such locally contextualized digital materials are suitable for broader classroom implementation and have strong potential for scaling up in future numeracy-focused learning innovations.

Keywords: Digital Teaching Materials; Numeracy; Plomp Model; Statistics

Information of Article

Subject classification	97U70 Technological tools (computers, calculators, software, etc.) and their use in the classroom
Submitted	4 July 2025
Review Start	11 September 2025
Round 1 Finish	1 October 2025
Round 2 Finish	17 November 2025
Accepted	29 December 2025
Scheduled online	31 December 2025
Similarity Check	13%

Abstrak

Kemampuan numerasi siswa masih tergolong rendah, sementara potensi sumber belajar digital berbasis Android belum dimanfaatkan secara optimal. Penelitian ini mengembangkan bahan ajar digital yang diperkaya dengan konteks lokal Musi Banyuasin untuk menjadikan pembelajaran lebih relevan, bermakna, dan terhubung dengan pengalaman nyata siswa. Tujuan penelitian adalah menghasilkan bahan ajar digital yang valid dan praktis serta mendeskripsikan respons siswa setelah penggunaannya. Penelitian menggunakan model pengembangan Plomp yang meliputi fase pendahuluan, konstruksi, dan evaluasi. Partisipan penelitian terdiri atas 20 siswa kelas VII, dengan data dikumpulkan melalui angket, observasi, dokumentasi, dan wawancara, kemudian dianalisis menggunakan teknik deskriptif kuantitatif dan kualitatif. Hasil penelitian menunjukkan bahwa bahan ajar digital yang dikembangkan sangat valid dari aspek konten, konstruk, bahasa, komponen TIK, serta integrasi konteks lokal. Bahan ajar juga memenuhi kriteria "sangat praktis" dengan skor kepraktisan di atas 82% pada kedua sesi implementasi. Kemampuan numerasi siswa meningkat, dengan sebagian besar berada pada kategori "baik", yang menunjukkan bahwa penerapan konteks lokal berdampak positif dalam memperkuat keterampilan numerasi. Dengan demikian, bahan ajar digital yang dikembangkan layak, praktis, dan efektif untuk mendukung pengembangan numerasi siswa. Penggunaan fitur digital yang kontekstual meningkatkan keterlibatan belajar, memfasilitasi kemandirian, dan membantu guru menyampaikan pembelajaran matematika secara interaktif dan relevan. Temuan ini mengimplikasikan bahwa bahan ajar digital berbasis konteks lokal layak untuk diimplementasikan lebih luas serta berpotensi besar untuk dikembangkan dalam inovasi pembelajaran numerasi di masa mendatang.

INTRODUCTION

Numeracy is a fundamental ability that enables individuals to reason mathematically and to formulate, use, and interpret mathematics for solving problems in various real-world contexts (OECD, 2024). This ability involves the use of mathematical concepts, procedures, facts, and tools to explain and predict real-life phenomena as well as to make appropriate decisions based on relevant information (Geiger & Schmid, 2024). Numeracy also requires learners to acquire, interpret, use, and communicate numerical information in different forms, such as graphs, tables, and charts, and to interpret analytical results for predicting, formulating, and making decisions (Bolstad, 2023). Hence, numeracy plays a central role in supporting critical thinking, problem-solving, and informed decision-making in everyday life. Its importance is emphasized particularly for students at the secondary level (Kurniati et al., 2024), as numeracy is essential not only for academic contexts but also for professional and social settings (O'Meara et al., 2024).

Numeracy equips learners with logical and analytical thinking skills and

enhances their competitiveness in the era of globalization and technology (Mulyono. et al., 2025), enabling them to recognize the role of mathematics in real-life situations and to make reasoned judgments and responsible decisions (Díez-Palomar et al., 2023; Winarni et al., 2025). Despite its importance, studies indicate that numeracy levels in Indonesia remain low (Hilda Nur Alifah Setyo Utami & Lailatul Inayah, 2024; Santia & Dwi Handayani, 2023). Some studies have also shown the fact that one in two students fails to meet literacy standards, and two in three fail to meet numeracy standards (Gloriani et al., 2023; Rakhmawati & Mustadi, 2022). Several factors contribute to this low achievement, including teacher-centered instruction (Muhamimin et al., 2024), limited student exposure to literacy-based questions (Aini et al., 2024), and difficulties in modelling real-world problems mathematically (Chen, 2022). Additionally, mathematics tasks tend to be routine and do not sufficiently promote numeracy skills (Kohar et al., 2022), and access to supporting numeracy-oriented learning materials remains limited (Mikidas et al., 2024). This low level of numeracy is also observed in Musi Banyuasin, where many

students struggle to understand basic mathematical concepts and apply them in everyday contexts.

Preliminary study further indicates that seventh-grade students struggle to interpret statistical representations such as bar charts and frequency tables (Pallauta et al., 2021; Sari et al., 2018). They also face difficulties connecting statistical data with unfamiliar real-life contexts, such as regional economic activities, environmental issues, and community practices (Martin et al., 2019; Nugraha & Basuki, 2021; Setiawan & Sukoco, 2021). Besides that, integrating local wisdom and the surrounding environment into learning can enhance the connection between concepts and students' real-life experiences (Shufa & Adji, 2024). Contexts familiar to students facilitate the visualization of learning situations, making abstract knowledge more concrete and meaningful (Agra et al., 2019; Albuquerque, 2019). (Windi & Suryaman, 2022). One of the local contexts is local wisdom in Musi Banyuasin. Local wisdom that can be leveraged in learning includes agriculture and plantation practices, considering that the majority of students in Musi Banyuasin come from farming families, making these contexts closely aligned with their daily experiences.

Previous studies have developed various numeracy-oriented learning materials, such as digital worksheets based on the Assessment Madrasah Competence (AKMI) (Nurwahid, 2024), AI-assisted digital worksheets (Taufiqurrahman et al., 2022), AKM-based digital worksheets for geometry (Miftah & Setyaningsih, 2022), and culturally contextualized numeracy worksheets (Damayanti et al., 2022). These studies demonstrate the potential of digital worksheets to support numeracy development. Other studies

also developed digital teaching materials such as digital worksheets, which have been shown to enhance students' numeracy skills (Syafruddin et al., 2022).

The low numeracy skills of students in Musi Banyuasin highlight the need for more contextual and engaging learning materials. Considering that the majority of students come from farming families, local wisdom in agriculture and plantation practices can be effectively leveraged, as these contexts closely align with their daily experiences. Integrating such local contexts into digital learning materials allows content to be presented interactively and visually, facilitating the visualization and understanding of mathematical concepts while linking numeracy skills to real-life situations, thereby enhancing both motivation and learning comprehension (Leton et al., 2025). Classroom observations also show that Android devices, although widely owned by students, are underutilized for learning. In addition, existing teaching materials were perceived as insufficiently engaging and lacking contextual relevance. These conditions further underscore the need for interactive digital teaching materials that leverage students' technological access while embedding local contexts to increase relevance and meaningful learning.

However, there remain research gaps. Some studies have specifically developed interactive digital teaching materials based on numeracy for statistical content, but no studies have integrated specific local contexts from Musi Banyuasin into digital numeracy materials, and the optimization of students' Android devices as interactive learning tools has received limited attention. Therefore, this study offers important novelty through the development of interactive digital teaching materials based on numeracy

that integrate statistical content with local contexts from Musi Banyuasin, utilizing authentic regional data such as environmental conditions, socio-economic activities, and local cultural characteristics. This integration is expected to enhance conceptual understanding, engagement, and the meaningfulness of learning. Based on this gap, the problem addressed in this study concerns the lack of digital learning materials that are interactive, contextually relevant to students' local environments, and designed specifically to strengthen numeracy in statistical topics. Thus, this study seeks to answer the following research questions: (1) What are the characteristics of valid and practical numeracy-based interactive digital teaching materials for statistical content within the Musi Banyuasin context? and (2) What is the potential effect of using these materials on students' numeracy skills? The contribution of this research lies in providing a contextual, technology-enhanced instructional solution that utilizes students' Android devices, integrates real data from Musi Banyuasin, and offers an innovative model for strengthening numeracy skills in statistical learning and addressing both pedagogical and contextual challenges identified in prior studies.

METHOD

Participants

The research subjects were selected purposively, consisting of 20 seventh-grade students, comprising both male and female learners with heterogeneous academic abilities. This group was considered representative of the diverse user characteristics targeted in the development of the numeracy-based

digital teaching materials. The study was conducted from April 16 to May 15, 2025, focusing on testing digital teaching materials for statistics using the Musi Banyuasin context. Through the Wizer.me platform, students engaged with digital materials designed to be engaging, easy to use, and aligned with their numeracy needs. The involvement of subjects with varied ability levels provided comprehensive data on user characteristics, the practicality of the materials, and their potential effectiveness in improving students' numeracy skills.

Research Design

The development process followed the Plomp (2013) model, which consists of three main phases: Preliminary, Construction, and Evaluation. The Preliminary Investigation phase included purposive selection of the research subjects and site, analysis of the learning materials, curriculum, and textbook review, and identification of essential supporting resources. During the construction phase, the numeracy-based digital teaching materials underwent systematic design, prototype creation, and expert validation to ensure their quality, coherence, and pedagogical feasibility. The criteria for selecting validators included expertise in mathematics education, experience in developing digital instructional materials, and strong knowledge of digital learning tools (Sugiharni et al., 2022). Validators were also required to possess a solid understanding of curriculum standards and pedagogical approaches to ensure the validity and instructional soundness of the numeracy-based digital teaching materials. Finally, in the Evaluation phase, the effectiveness of the developed materials was assessed through field-

testing, followed by systematic analysis of the results to determine their practicality and potential impact on students' numeracy performance.

Data Collection

Data collection in this study was carried out through validation sheets for the numeracy-based digital teaching materials, questionnaires, interviews, and a numeracy literacy test. The validation sheet assessed four key aspects: content, construct, ICT, and language. These aspects are distributed across 20 detailed evaluation items. The student questionnaire consisted of 10 statements designed to measure the practicality and usability of the digital teaching materials during classroom implementation. The validation sheets and student questionnaires were developed using a Likert scale to facilitate systematic assessment. The validation sheets asked experts to rate 20 items across four aspects—content, construct, ICT, and language—on a 4-point Likert scale, enabling a quantitative evaluation of the material's validity. Similarly, the student questionnaires consisted of 10 statements on practicality and usability, also rated on a Likert scale, to measure students' perceptions during classroom implementation. Using the Likert scale allows for consistent, comparable, and easily interpretable data across respondents. The numeracy test comprised 8 items focused on data interpretation, representing three cognitive levels: understanding, application, and reasoning (Gantiyani et al., 2022). These instruments collectively provided comprehensive data on the validity, practicality, and potential effectiveness of the developed digital teaching materials.

Data Analysis

The validation data, collected from expert reviewers, were analyzed quantitatively. The scores were aggregated and converted into average scores for each aspect and for the overall material. The validity criteria were interpreted based on predetermined categories, e.g., very good for very valid, good for valid, enough, less for invalid, and poor for very invalid. Student questionnaire data were analyzed descriptively. Responses to the 10 statements on practicality and usability were converted into percentage scores for each item. The overall practicality of the digital teaching materials was interpreted using this formula and category, e.g., very good for very practical, good for practical, enough, less for impractical, and poor category for very impractical. The validity and practicality index percentages for all assessed aspects were then calculated using the established formula.

$$P = \frac{S}{N} \times 100\%$$

Description: P is percentage of sub variables; S is total score of each sub; and N is maximum total score. Next results recapitulation according to category presented in Table 1 below this.

Table 1. Criteria Validity and Practicality

Achievement Level	Information
84 % ≤ p ≤ 100 %	Very good
68 % ≤ p ≤ 84 %	Good
52 % ≤ p ≤ 68 %	Enough
36 % ≤ p ≤ 52 %	Not good
20 % ≤ p ≤ 36 %	Very poor

To evaluate the performance of the numeracy-based digital teaching materials, this study employed a student numeracy test. After administering the test, an analysis was conducted to assess students' cognitive levels based on their performance. In addition to the quantitative data, qualitative data were

obtained from expert validators, who assessed the digital teaching materials using standardized validation criteria. The quantitative data were analyzed using percentage calculations, whereas the qualitative data were examined through descriptive analysis to ensure alignment with the quantitative outcomes. The test data were analyzed by scoring students' answers according to a predetermined rubric, with scores ranging from 0 to 100. These raw scores were then converted into final achievement values using the established scoring guideline.

$$n = \frac{S}{M} \times 100\%$$

Description: n is the student's mastery level; S is the total score of each sub; and M is the maximum total score. The next results recapitulation according to category is presented in Table 2 below.

Table 2. Predicate Value Categories

Mastery Level	Criteria
90 ≤ n ≥ 100	Very Good
80 ≤ n ≥ 89	Good
70 ≤ n ≥ 79	Enough
0 ≤ n ≥ 69	Less

(Apertha, 2018)

RESULT AND DISCUSSION

In this study, the developed product is a set of digital numeracy-based teaching materials in the form of student worksheets (LKPD) on statistics content, contextualized using Musi Banyuasin examples and supported by the Wizer.me platform. The research employed a development design adapted from the Plomp model. The Plomp development procedure consists of four key phases: the preliminary research phase, which includes needs analysis and context exploration; the design phase, in which the structure and components of the digital teaching materials are planned; the

construction phase, during which the prototype is developed; and the testing, evaluation, and revision phase, where the product is validated, tried out, and refined to ensure its validity and practicality.

Preliminary Phase

In the preliminary phase, the researchers conducted a comprehensive needs analysis to justify and guide the development of numeracy-based digital teaching materials. This stage involved examining students' characteristics and learning difficulties, reviewing curriculum standards, and analyzing the statistical content required at the junior secondary level. The needs analysis also aimed to identify gaps between existing learning resources and the competencies expected in numeracy, particularly in interpreting and representing data. These findings served as the foundation for determining the design requirements and pedagogical considerations necessary for developing high-quality, context-rich digital teaching materials.

Analyze students' characteristics and learning difficulties

The analysis results indicate that seventh-grade students exhibit heterogeneous academic characteristics that comprise high, medium, and low ability groups. Students in the high ability group can grasp concepts quickly and complete tasks independently. Those in the medium ability group require additional guidance to achieve complete conceptual understanding, whereas students in the low ability group struggle with fundamental ideas and need more intensive, structured learning support. Of the 24 students in the class, 7 are categorized as high ability, 11 as medium ability, and 6 as low ability. Further

examination of students' report cards shows that numeracy performance remains low, indicating the need for teaching materials that can effectively strengthen students' numeracy skills. Interviews also revealed that all students possess Android smartphones, which can serve as accessible digital learning tools to support the use of the developed materials.

Analysis Curriculum and materials

The curriculum and material analysis were conducted to identify the curriculum implemented in the school and to determine the learning content relevant for assessing seventh-grade students' numeracy skills. Based on classroom observations and discussions with teachers, it was found that the school has fully adopted the Merdeka Curriculum. The analysis of the Merdeka Curriculum content revealed that the statistics topic, specifically presenting and interpreting data, aligns with the competencies required for measuring students' numeracy performance. This topic provides opportunities for students to engage in data interpretation, reasoning with representations, and making informed decisions, which are essential components of numeracy.

Design Phase

This phase aims to design an appropriate solution to the problems identified during the preliminary stage by developing an initial prototype and preparing the necessary research instruments. At this stage, the researchers designed the numeracy-based digital teaching materials in the form of LKPD and numeracy test items. The first step in designing the teaching materials was compiling the learning content, as it

constitutes the core component of the product being developed. Once the content was established, the next step involved formulating the media concept, which was outlined in a narrative document describing the objectives of the development namely, to produce valid and practical numeracy-based digital teaching materials. The design outputs at this stage included the content structure, the selection of the digital platform to be used, and the storyboard that guided the layout and interactive elements of the teaching materials.

Material Design

The materials incorporated into the numeracy-based digital teaching resources were adapted and modified from various textbooks, AKM items, ANBK items, and other relevant references. The instructional content focuses on presenting and interpreting data through bar charts and pie charts, as these representations align with the numeracy competencies expected in the Merdeka Curriculum. To enhance relevance and authenticity, several data-interpretation tasks were contextualized using real situations from the Musi Banyuasin region, such as local population data, agricultural production, and environmental conditions. This contextualization aims to strengthen students' numeracy skills by engaging them with meaningful and familiar information, thereby supporting deeper understanding and improved problem-solving.

1. Election Application

This digital teaching material was developed using the Wizer.me application, which provides a variety of templates for designing interactive

learning resources. Based on an analysis of interactivity, engagement, challenge level, and suitability for mathematics learning, the researchers selected templates that best supported these criteria. The chosen templates included video-based components that allow students to watch instructional videos via embedded YouTube links, as well as open-ended question formats where students can respond by uploading photos or writing their answers directly in the provided response fields. These design choices were intended to enhance student engagement and support active participation throughout the learning process.

2. Studyboard Design

Before being developed in the Wizer.me application, all components of the Student Activity Sheet (LKPD) were initially drafted in the form of a storyboard. The storyboard functioned as a detailed blueprint that structured the layout, content sequence, and interactive features to be integrated into the numeracy-based digital teaching materials. The storyboard clearly outlines the key components of the digital materials, including statistical tasks and data-interpretation activities that are contextualized using authentic real-world situations from Musi Banyuasin. The finalized storyboard design is shown in

Figure 1.

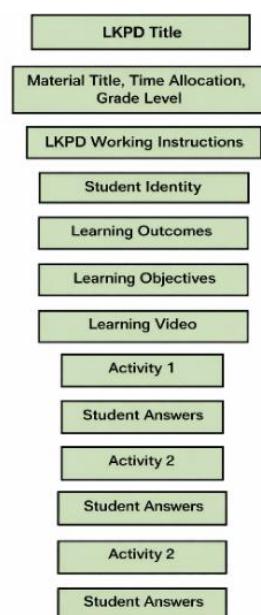


Figure 1. Storyboard Design

Construction Phase

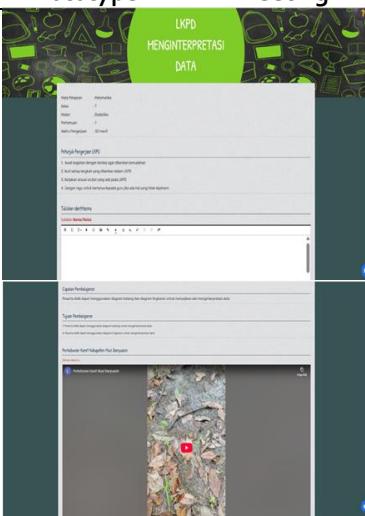

In this phase, Prototype I (the initial prototype) was produced as the realization of the previously formulated design. The development of the teaching materials began by translating the storyboard and content plan into digital form according to the established specifications. At this stage, both the digital teaching materials and the research instruments were completed and prepared for the subsequent testing phase. Prototype I was then ready to undergo expert validation and further refinement shown in Table 3 and Table 4.

Table 3. Prototype 1 Digital Teaching Materials Meeting 1

Prototype 1 LKPD Meeting 1	Description
	The first display on the LKPD contains the LKPD title, LKPD identity, LKPD work instructions, and student identity.

Prototype 1 LKPD Meeting 1	Description
	Display of learning achievements, learning objectives, learning videos presenting data in the form of bar charts and pie charts.
	Display supporting data on video
	Activity 1 and Activity 2 view

Table 4. Prototype 2 Digital Teaching Materials Meeting 2

Prototype 1 LKPD Meeting 2	Description
	The first display on the LKPD contains the LKPD title, LKPD identity, LKPD work instructions, and student identity.
	Display of learning achievements, learning objectives, learning videos presenting about rubber plantations in Musi Banyuasin Regency
	Activity 1 view

Prototype 1 LKPD Meeting 2	Description
	Activity 2 View

Test, Evaluation and Revision Phase

Following the development of Prototype I, the product was submitted for an Expert Review to undergo validation by specialists in the areas of content, construct, ICT, and language. The purpose of the expert validation process was to examine the

characteristics and quality of the designed digital teaching materials, ensuring that they met the requirements for feasibility before proceeding to field testing. The digital teaching materials were reviewed by two mathematics education lecturers and one mathematics teacher. The results of the expert validation during the first review session are presented in Table 5.

Table 5. Validation Result Digital Teaching Materials at Meeting 1

No	Aspect	Indicator	Percentage (%)
1	Content	Compliance the material presented in digital teaching materials with Phase D in the Independent Curriculum	80
		Material in appropriate teaching materials with draft correct and incorrect statistics cause misconception	87
		Compliance the material presented in the teaching materials with objective learning that has been set	87
		The material presented in the teaching materials is linked with context season Banyuasin	93
		Delivery The material in the teaching materials is arranged from easy to difficult	87
		Teaching materials are arranged in accordance with indicator numeracy	87
		Average	87
2	Construction	Completeness component teaching materials (digital LKPD) such as title, identity, purpose learning, and steps workmanship	93
		Compliance the situation presented with characteristics participant educate in phase D	80
		Accuracy and consistency type <i>fonts</i> used in teaching materials	80
		The situations presented in the teaching materials are interesting and challenging. For done participant educate	80
		Illustration visual on appropriate teaching materials with material learning	87
		The layout of the teaching materials has been arranged served in a way consistent	87
		Average	86
3	ICT	Teaching materials presented based on <i>ICT</i>	87
		illustrations in teaching materials are designed with use based application <i>ICT</i>	87
		Packaged teaching materials interesting	87
		Color and design interesting teaching materials	87

No	Aspect	Indicator	Percentage (%)
4	Language	Letters and numbers can read with Good	93
		Average	85
		Sentences used in teaching materials are sentence effective	87
		The terms used in teaching materials are appropriate with field Mathematics Education Science	87
		The language used in teaching materials is polite and appropriate with the norms in education	93
		Words used in appropriate teaching materials with PUEBI rules	93
		Language used in teaching materials are communicative language	93
		Language used in easy teaching materials understood	80
		Language used in teaching materials not ambiguous and meaningful double	80
		Teaching materials using appropriate sentence with level think junior high school students	87
Average			87.5

Table 5 shows that the validity criteria for the content, construct, ICT, and language aspects were 87%, 86%, 85%, and 87.5%, respectively. These results indicate that the digital teaching materials fall within the very valid

category, with an average validation score across the four aspects reaching 86.37%. Subsequently, the results of the second expert validation session are presented in Table 6.

Table 6. Validation Result Digital Teaching Materials at Meeting 2

No	Aspect	Indicator	Percentage (%)
1	Content	Compliance the material presented in digital teaching materials with Phase D in the Independent Curriculum	87
		Material in appropriate teaching materials with draft correct and incorrect statistics cause misconception	80
		Compliance the material presented in the teaching materials with objective learning that has been set	80
		The material presented in the teaching materials is linked with context season Banyuasin	87
		Delivery The material in the teaching materials is arranged from easy to difficult	87
		Teaching materials are arranged in accordance with indicator numeracy	87
		Average	84
		Completeness component teaching materials (digital LKPD) such as title, identity, purpose learning, and steps workmanship	87
		Compliance the situation presented with characteristics participant educate in phase D	80
		Accuracy and consistency type <i>fonts</i> used in teaching materials	80
2	Construction	The situations presented in the teaching materials are interesting and challenging. For done participant educate	87
		Illustration visual on appropriate teaching materials with material learning	80
		The layout of the teaching materials has been arranged served in a way consistent	80
		Average	82

No	Aspect	Indicator	Percentage (%)
3	ICT	Teaching materials presented based on <i>ICT</i>	87
		Illustrations in teaching materials are designed for use-based application of <i>ICT</i>	87
		Packaged teaching materials are interesting	87
		Color and design interesting teaching materials	87
		Letters and numbers can read with Good	93
4	Language	Average	84
		Sentences used in teaching materials are sentence effective	87
		The terms used in teaching materials are appropriate with field Mathematics Education Science	87
		The language used in teaching materials is polite and appropriate with the norms in education	93
		Words used in appropriate teaching materials with PUEBI rules	87
		Language used in teaching materials are communicative language	87
		Language used in easy teaching materials understood	80
		Language used in teaching materials not ambiguous and meaningful double	80
		Teaching materials using appropriate sentence with level think junior high school students	87
		Average	86

Table 6 shows that the validity scores for the content, construct, ICT, and language aspects were 84%, 82%, 84%, and 86%, respectively. Overall, these results indicate that the digital teaching materials meet the very valid criteria, with an average validation score of 84% across all four aspects.

Based on the analysis conducted, the validation results from the three expert validators for the content, construct, ICT, and language aspects during the development phase showed an average score of 86.37% in the first validation session and 84% in the second session. These findings indicate that the developed teaching materials are highly suitable for use. Overall, the materials present content aligned with the learning objectives and achievement targets, while the activities in the LKPD effectively support students' numeracy skills by engaging them in problem-solving tasks closely connected to their real-life experiences. This aligns with Hendriani and Gusteti (2021), who explain that

student worksheets (LKPD) serve as structured learning materials that include summaries, instructions, and tasks aligned with basic competencies, enabling students to practice and develop their skills. Furthermore, the LKPD developed in this study meets the principles of material depth and accuracy, incorporates contexts relevant to daily life, and provides clear procedural steps that guide students in constructing their understanding (Suriani & Putri, 2023).

According to Sari et al. (2022) stated that in develop quality teaching materials validity become runway main thing to be able to utilized by teachers and students. Worksheets participant education that meets standard eligibility potential For increase Spirit Study students and facilitate learning independent. In line with that, for support learning, required sheet Work participant students who have tested its suitability by experts Because sheet Work student functioning as guide demanding activities student for apply his understanding of the situation real through tasks to be done

completed (Desrinelti & Miaz , 2022). Referring to the results validation from 3 expert validators show that in a way All digital -based teaching materials for statistics context season Banyuasin produced has fulfil very valid criteria . However Thus, there are a number of comments and suggestions from expert validators.

Table 7. Validator Comment/Suggestions

Comments /Suggestions	Revision Decision
Some questions still do not match the numeracy indicators so the questions need to be corrected	The question has been revised according to the suggestions.
Write it down instructions in the LKPD section that contains videos for example: watch the video about method presenting data!	Fixed as suggested
Make it clear step LKPD work so that students understand What should done	Fixed as suggested
Take note writing letters and numbers so that can read with good by students	Fixed as suggested

After the prototype I LKPD has been fixed according to the validator 's suggestion, the results obtained at this stage This called prototype II. Next, the prototype II LKPD trial was carried out provided one -to-one to three participants educate class VII of SMP Negeri 4 Jirak Jaya. At stage this, researcher observe and see How every participant educate understand teaching materials that are worked on with the aim is for researchers can know response as well as constraint or difficulties faced participant educate when working on LKPD.

Figure 2. One-to-one Test

Apart from doing observation to difficulty student in working on digital LKPD based on numeracy, researchers also provide sheet comments and suggestions to student For get additional data. Following This is results observation student to difficulties, comments, and suggestions related to digital teaching materials.

Table 8. One-to-one Difficulty Student

	Difficulty Student	Revision Decision
1	Students are confused about the meaning of instructions in LKPD	Repair editorial Instructions on LKPD
2.	The figures presented in table too small so that students are wrong in read information	Repair size letters on LKPD

The difficulties experienced by students when completing the LKPD were then used to improve the developed digital teaching materials. Prototype II was subsequently revised and refined according to the suggestions and comments obtained from the one-to-one stage, resulting in Prototype III. Furthermore, the digital teaching materials were tested in a small-group trial involving sixseventh-grade students. At this stage, students were given a response questionnaire to assess the practicality of the developed product. The results of this small-group trial served as an evaluation step; if further revisions

were needed, improvements were made to produce numeracy-based digital teaching materials that are both valid and practical. Table 9 shows the result of practicality.

proceeded to the assessment phase, namely the summative evaluation, to determine the effectiveness, efficiency, and attractiveness of the developed product. This assessment involved field

Table 9. Questionnaire Result Practically

Practicality Indicators	Percentage	Criteria
Easy digital teaching materials accessed through digital devices	80 %	Practical
Appearance interesting and easy digital teaching materials understood .	76.7 %	Practical
Instruction use digital teaching materials are clear and easy followed	90 %	Very practical
I can use teaching materials independently or in groups	86.67%	Very practical
The statistical material presented in easy digital teaching materials understood	86.67 %	Practical
Digital teaching materials help I understand presenting and interpreting data with using bar charts and pie charts	80%	Very practical
Use digital teaching materials improve interest I in Study statistics .	82.38%	Very practical
Digital teaching materials help I connect material statistics with life daily	80%	Very practical
Instructions given in challenging digital teaching materials but still Can done	82.38 %	Practical
Digital teaching materials help I think more critical in finish problem numeracy	82.38%	Practical

From Table 9, it can be seen that the students' average rating of the digital teaching materials is 82.7%, which falls into the practical category. Therefore, it can be concluded that the teaching materials on statistics are practical for use by students in learning activities, and the students are able to use the digital teaching materials effectively.

Figure 3. Small Group Test

After the prototype development stage was completed, the research

testing through data collection and evaluation procedures. The field trial was conducted with students over three sessions on May 9, May 10, and May 15, 2025. After the learning sessions were completed, a numeracy literacy test consisting of eight questions was administered to the students. The test results were then analyzed to evaluate the impact of the digital teaching materials on students' numeracy literacy, providing insights into their effectiveness in supporting competencies related to data interpretation. Figure 4 below is the answer of students with good numeracy skills.

Soal 5
Pemerintah Kabupaten Musi Banyuasin berencana meningkatkan produksi kelapa agar mencapai 5% dari total produksi TW IV tahun 2024. Hitunglah berapa ton tambahan produksi kelapa yang perlu dicapai agar target 5% terpenuhi?

$$\frac{4}{100} \times 168194 = 6727,76 \text{ ton}$$

Figure 4. Answer Question 1 Student C

Figure 4 presents the answer to Question 5 by Student A. Student A has fulfilled the indicator formulation, as the student was able to identify the key information in the problem and understand what was being asked. This is shown by the student noting that 168,194 tons represents the total production of palm oil, rubber, and coconut in Q4 2024, and that 4% is the required increase in coconut production. Student A also fulfilled the do indicator, demonstrating the ability to determine the appropriate mathematical operation and solution steps by multiplying 4% by 168,194 tons. In addition, Student A met the next do indicator by using numbers, units, and calculations correctly, shown through the accurate computation that 4% of 168,194 tons is 6,727.76 tons. Furthermore, Student A partially fulfilled the interpret indicator, as the student was able to explain the reasoning, draw conclusions, and interpret the result logically through a clear sequence: identifying information, selecting the correct operation, and performing accurate calculations. However, Student A did not fully meet the final interpret indicator because the student did not conclude the answer in accordance with the contextual requirement of the question.

Teacher : Son, how is it? method finish question 5 ?
 Student A : what was asked addition production coconut from 1% to 5% means the increase is 4 %.
 Teacher : what? Because That You multiply 4% by 168,194 tons?
 Student A : Yes. ma'am Correct.
 Teacher : 6727.76 tons That What ?
 Student A : that results time ma'am
 Teacher : What do you mean , son?
 Student A : 6727.76 tons is addition production coconut
 Teacher : additional production coconut that is needed achieved so that the government's target is achieved fulfilled, yes right ?

Student A : Yes ma'am.
 Teacher : Why? No You write it down
 Student A : What should I do? written ma'am ?
 Teacher : Yes, son, that's it. will explain answer end You in accordance with the context in which it is asked.

After the students completed the numeracy test, the results were analyzed based on the numeracy evaluation rubric and its corresponding indicators. The analysis of students' problem-solving performance is presented in Figure 5.

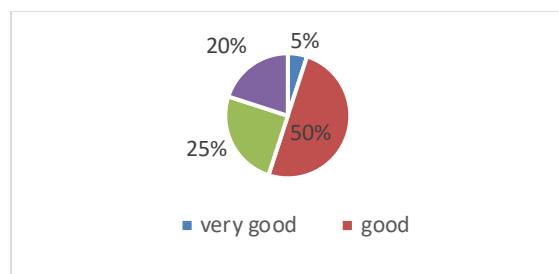


Figure 5. Test Result Ability Numeracy

Based on Figure 5, the results of the numeracy ability test show that 20% of students fall into the poor category, 25% into the adequate category, 50% into the good category, and 5% into the very good category. A total of 50% of the students are categorized as good. This indicates that half of the participants have been able to meet the numeracy indicators at a reasonably adequate level, particularly in identifying relevant information, determining appropriate operations, performing correct calculations, and completing solutions in a logical sequence.

Implication of Research

Digital teaching materials provide lots profit in support learning mathematics, in particular in support ability numeracy in material contextual statistics . Through attractive visual appearance and flexibility access , digital teaching materials are capable increase involvement students and encourage they For Study in a way independently , anytime and anywhere.

Teachers also get convenience in convey material learning in a way interactive and systematic , including in to hook draft statistics with data and problems real relevant with context local , such as social and economic data from the Musi Banyuasin region . In addition , digital teaching materials are easy updated and customized with need student and change curriculum , so it is very supportive principle learning differentiation .

Limitation

Weaknesses in research This is developed digital teaching materials This that is The features provided by the Wizer.me platform are still little is utilized . The use of formulas in mathematics Still experience difficulties . However , things This Can minimized with use insert image feature that can used For answer questions contained in digital teaching materials .

CONCLUSION

Based on the results obtained , then can concluded that study This produce 2 pieces digital teaching materials based on numeracy material statistics with the context of Musi Banyuasin which was developed is in the very valid category , namely 86.37% for teaching materials for meeting 1 and 84% for teaching materials for meeting 2 and the digital teaching materials that were developed have also been fulfil criteria practicality with percentage 82% for teaching materials for meeting 1 and 82.66% for teaching materials for meeting 2 which are in the very practical category . The advantages digital teaching materials that provide various feature have effect potential For support ability numeracy student .

REFERENCES

Aisyah, A., & Juandi , D. (2022). The description of Indonesian student mathematics literacy in the last decade. *International Journal of Trends in Mathematics Education Research*, 5(1), 105–110. <https://doi.org/10.33122/ijtmer.v5i1.114>

Bolstad, O.H. (2023). Lower secondary students' encounters with mathematical literacy. *Mathematics Education Research Journal*, 35(1), 237–253. <https://doi.org/10.1007/s13394-021-00386-7>

Damayanti, D., Arifin, S., & Paradesa , R. (2022). Development of Worksheets Students (LKPD) with Mathematics Education Approach Realistic Indonesia (PMRI) on Number Pattern Material Palembang Context for Junior High School/ MTs. *AdMathEduSt : Journal Scientific Mathematics Education Student* , 9(3), 84. <https://doi.org/10.12928/admathedust.v9i3.24479>

Dewi, N., Purnamasari , R., & Karmila , N. (2023). Development of E-LKPD Based on Wizer.Me Website on the Material of Properties of Spatial Figures . *Didactics : Journal Scientific PGSD FKIP Mandiri University* , 9(2), 2562–2575. <https://doi.org/10.36989/didactic.v9i2.995>

Efuansyah , E., & Wahyuni, R. (2019). Development of Mathematics Teaching Materials Based on PMRI on Cube and Block Material for Class VIII. *Journal Derivatives : Journal Mathematics and Mathematics Education* , 5(2), 28–41. <https://doi.org/10.31316/j.derivat.v5i2.139>

Erawati , NK, Purwati, NKR, Putri, NWS, & Wardika , i WG (2023). Training Utilizing Wizer.me as a Digital Learning Media . January Edition , 4(2), 125–134.

Fiskha , S., Patri, D., Heswari , S., Muhammadiyah, S., & Penuh , S. (2022). Analysis Ability Numeracy Student Class VIII of Junior High Schools in Sungai Penuh City in Solving AKM Questions. *Muara Pendidikan Journal* , 7(2).

Hasanah, U., & Silitonga , M. (2020). Implementation of the Literacy Movement School in Elementary School . Jakarta: Research Center Policy , Research and Development and Book Agency , Ministry of Education and Culture . In WWW.Quipperblog.com.

Imamuddin, M., Zulmuqim , & Sepriyanti , N. (2022). Exploring Madrasah Students Mathematics Literacy Ability. *International Journal Of Humanities Education and*

SocialSciences(IJHESS),1(4),357–361.
<https://doi.org/10.55227/ijhess.v1i4.84>

Indraswati , D., Sobri, M., Fauzi, A., Amrullah, LWZ, & Rahmatih , AN (2023). Effectiveness Training Creating Interactive Worksheets with Wizer.Me For Optimizing Learning at SDN 26 Mataram . Journal on Education, 5(4), 14615–14624. Retrieved from <https://doi.org/https://doi.org/10.31004/joe.v5i4.2517>

Indonesia, RP, & Isi, D. (2024). Musi Banyuasin Regency What is it? Report Card Education ? 1–25.

Ministry of Education and Culture . (2021). What is an education report card . <https://pusatinformasi.raporpendidikan.kemdikbud.go.id/hc/en-us/articles/6545029651609-Tentang-Rapor-Pendidikan-dan-Rapor-Mutu>

Ministry of Education and Culture . (2020). AKM and its implications for learning . Center for Assessment and Learning, Research and Development and Book Agency , Ministry of Education and CultureLearning , Research and Development and Book Agency , Ministry of Education and Culture , 1–37.

Kurniawan, AP, Budiarto, MT, & Ekawati , R. (2022). Development of Numeracy Questions Based on Cultural Values Context Javanese Primbon . JRPM (Journal of Mathematics Learning Review), 7(1),20–34.
<https://doi.org/10.15642/jrpm.2022.7.1.20-34>

Kusuma, YP(2013). Nutritional Content of Rice. Kompasiana https://www.kompasiana.com/yudhaputra_kusuma/55297e70f17e615a798b458b/nutritional-content-of-rice

Miftah, RN, & Setyaningsih , R. (2022). Development of Student-Based LKPD Assessment Minimum Competency (AKM) in Geometry Material For Increase Ability Literacy Numeracy . AKSIOMA: Journal of Mathematics Education Study Program , 11(3), 2199.
<https://doi.org/10.24127/ajpm.v11i3.5780>

Nurwahid , M., & Ashar, S. (2022). A Literature Review: Efforts to Overcome Students' Mathematical Literacy. Journal Exacta Pendidikan (Jep), 6(2), 214–221.
<https://doi.org/10.24036/jep/vol6-iss2/666>

NURWAHID, N. (2024). Training Ability Literacy Numeracy Students of Nurul Huda Sawo Elementary School With Develop Lkpd

Based on Assessment Indonesian Madrasah Competence (Akmi). Journal Abadimas Adi Buana, 8(01), 29–39.
<https://doi.org/10.36456/abadimas.v8.i01.a9222>

PISA 2022 Mathematics Framework. (2023). <https://doi.org/10.1787/7eagee19-en> pusmendik.kemdikbud.go.id. (2022, April 26). Assessment Competence Minimum. Accessed on December 25, 2024, from [\(https://pusmendik.kemdikbud.go.id/an/page/news_detail/asesmen-kompetensi-minimum#pusmendik.kemdikbud.go.id\)](https://pusmendik.kemdikbud.go.id/an/page/news_detail/asesmen-kompetensi-minimum#pusmendik.kemdikbud.go.id). (2022, April 26). Indonesian Education Report Card . Retrieved December 25, 2024, from [\(https://pusmendik.kemdikbud.go.id/an/page/download/8\)](https://pusmendik.kemdikbud.go.id/an/page/download/8)

R. Septianingsih , D. Safitri , SS (2023). Scholars education . Scholar of Education, 1(1), 1–13. <https://doi.org/10.9644/scp.v1i1.332>

Setiawan, B., Muharani , IN, Arifin, MZ, & Ardianto , D. (2024). Problematic Numerical Literacy in Elementary Schools: Systematic Literature Review. 8(1), 55–65.

Syafruddin , IS, Khaerunnisa , E, & Rafanti , I. (2022). Development of E-LKPD for Support Ability Literacy Mathematics on Arithmetic Material Social . Journal Scholar : Journal of Mathematics Education , 6(3), 3214–3227. <https://doi.org/10.31004/cendekia.v6i3.1727>

Taufiqurrahman , M., & ., Bagus, SD, Adawiyah, FR, & HD (2022). MATHE dunesa . Journal Mathematics Education Science , 7(3), 21–29.
<https://doi.org/10.26740/mathedunesa.v13n3.p1000-1012>

Temel, H. (2021). Theory and Practice in Mathematics and Natural Sciences. In Livre de Lyon.

Widiyasari , R., Astriyani , A., & Purwoko, RY (2023). Development of Mathematics Teaching Materials Based on Local Wisdom with PMRI Approach . Proceedings of the National Seminar on Research LPPMUMJ, 1–10. <http://jurnal.umj.ac.id/index.php/semnaslit>

Wijaya, A., & Effendi, A. (2021). Assessment framework minimum competency (AKM) [Minimum Competency Assessment Framework (AKM)]. Nusantara PGRI University of Kediri, 01, 1–107.