

Turnitin_32035 Submission Agustus.pdf

 Universitas Negeri Semarang - iTh

Document Details

Submission ID**trn:oid:::3618:111743786****15 Pages****Submission Date****Sep 11, 2025, 8:14 AM GMT+7****8,770 Words****Download Date****Jan 27, 2026, 12:22 AM GMT+7****49,642 Characters****File Name****Turnitin_32035 Submission Agustus.pdf****File Size****719.3 KB**

15% Overall Similarity

The combined total of all matches, including overlapping sources, for each database.

Filtered from the Report

- ▶ Bibliography

Match Groups

- **101** Not Cited or Quoted 13%
Matches with neither in-text citation nor quotation marks
- **25** Missing Quotations 3%
Matches that are still very similar to source material
- **0** Missing Citation 0%
Matches that have quotation marks, but no in-text citation
- **0** Cited and Quoted 0%
Matches with in-text citation present, but no quotation marks

Top Sources

- 10% Internet sources
- 12% Publications
- 0% Submitted works (Student Papers)

Integrity Flags

0 Integrity Flags for Review

No suspicious text manipulations found.

Our system's algorithms look deeply at a document for any inconsistencies that would set it apart from a normal submission. If we notice something strange, we flag it for you to review.

A Flag is not necessarily an indicator of a problem. However, we'd recommend you focus your attention there for further review.

Match Groups

- 101 Not Cited or Quoted 13%
Matches with neither in-text citation nor quotation marks
- 25 Missing Quotations 3%
Matches that are still very similar to source material
- 0 Missing Citation 0%
Matches that have quotation marks, but no in-text citation
- 0 Cited and Quoted 0%
Matches with in-text citation present, but no quotation marks

Top Sources

- 10% Internet sources
- 12% Publications
- 0% Submitted works (Student Papers)

Top Sources

The sources with the highest number of matches within the submission. Overlapping sources will not be displayed.

Rank	Type	Source	Percentage
1	Publication	Maila D.H. Rahiem. "Towards Resilient Societies: The Synergy of Religion, Education, and Science" in <i>Journal of Islamic Studies and Education</i> 2020, 1(1), 1-12.	<1%
2	Internet	ojs2.aaresearchindex.com	<1%
3	Publication	Yuli Rahmawati, Peter Charles Taylor. "Empowering Science and Mathematics for Sustainable Development" in <i>Journal of Islamic Studies and Education</i> 2020, 1(1), 1-12.	<1%
4	Internet	ejournal.uinmadura.ac.id	<1%
5	Internet	jalt.journals.publicknowledgeproject.org	<1%
6	Internet	www.journal.stitmadani.ac.id	<1%
7	Publication	Chandra Intan Berliana, Siti Nurkhasanah, Purnomo, Dewi Rohmah. "Integrating Mathematics and Science in Islamic Education" in <i>Journal of Islamic Studies and Education</i> 2020, 1(1), 1-12.	<1%
8	Publication	Taylor, Carol. "The effects of a combined mathematics content/methods course in teacher education" in <i>Journal of Teacher Education</i> 2000, 51(1), 1-12.	<1%
9	Internet	www.epstem.net	<1%
10	Internet	www.jptam.org	<1%

11

Publication

Lukman Jakfar Shodiq, Serli Zuniawati, Nafida Hetty Marhaeni. "Systematics litrat... <1%

12

Publication

Rivani Adistia Dewi, Dadang Juandi, Turmudi Turmudi. "Analysis of Deep Learning... <1%

13

Internet

jurnal.unipa.ac.id <1%

14

Publication

Klaudius Ware, Klaudia E.N. Bambut, Sri Sulystyaningsih N.D. Tiring, Maria Yuvita ... <1%

15

Publication

Novianto Ari Prihatin, Victor Novianto. "IMPLEMENTING DEEP LEARNING THROU... <1%

16

Publication

Supiani Supiani, Dedy Achmad Kurniady, Thutju Yuniarsih, Nur Aedi. "Evaluating ... <1%

17

Internet

ojs.fkip.ummetro.ac.id <1%

18

Internet

researchsynergyfoundation.ning.com <1%

19

Internet

stars.library.ucf.edu <1%

20

Internet

www.jele.or.id <1%

21

Internet

www.scilit.net <1%

22

Publication

Lee McCallum, Dara Tafazoli. "Computer-Assisted Language Learning in the Glob... <1%

23

Internet

ejournal.1001tutorial.com <1%

24

Internet

journal.ikipsiliwangi.ac.id <1%

25	Internet	publish.kne-publishing.com	<1%
26	Internet	www.grafati.com	<1%
27	Internet	journal.unnes.ac.id	<1%
28	Internet	repository.upy.ac.id	<1%
29	Publication	"Learning and Collaboration Technologies", Springer Science and Business Media ...	<1%
30	Publication	"Research on Educational Model of Deep Learning Promoted by Interactive Strate...	<1%
31	Publication	Lopez, Mark Peter. "Amplifying Marginal Voices of the Global Movement for Deep...	<1%
32	Publication	Nia Agustina Faricha, Agus Prasetyo Kurniawan, Aning Wida Yanti, Lydia Lia Prayi...	<1%
33	Publication	Wasis Wuyung Wisnu Brata, Rahma Yanti Padang, Cicik Suriani, Eko Prasetya, Na...	<1%
34	Internet	ideas.repec.org	<1%
35	Internet	link.springer.com	<1%
36	Internet	scholarspace.manoa.hawaii.edu	<1%
37	Internet	www.iksadkongre.com	<1%
38	Publication	"Sustainable Digital Technology and Ethics in an Ever-Changing Environment", Sp...	<1%

39	Internet	eduroam.mersin.edu.tr	<1%
40	Internet	iiari.org	<1%
41	Internet	jer.ponteditora.org	<1%
42	Internet	repository.radenintan.ac.id	<1%
43	Internet	repository.unj.ac.id	<1%
44	Internet	www.istes.org	<1%
45	Publication	Parlindungan Sinaga, Wawan Setiawan, Mey liana. "The impact of electronic inter...	<1%
46	Publication	Pretorius, Lizelle. "An Altered Flipped Class Pedagogy as Intervention Strategy to ...	<1%
47	Internet	bookchapter.unnes.ac.id	<1%
48	Internet	e-journal.undikma.ac.id	<1%
49	Internet	eproceeding.bbg.ac.id	<1%
50	Internet	mmidentity.fmk.sk	<1%
51	Internet	vdocuments.site	<1%
52	Publication	"Artificial Intelligence and Human Agency in Education: Volume One", Springer Sc...	<1%

53 Internet

123dok.com <1%

54 Publication

Fan Ouyang, Pengcheng Jiao, Bruce M. McLaren, Amir H. Alavi. "Artificial Intellige... <1%

55 Publication

Fenglin Jia, Daner Sun, Chee-kit Looi. "Artificial Intelligence in Science Education (... <1%

56 Publication

George Lagogiannis, Avraam Chatzopoulos. "A No-Code Educational Platform for ... <1%

57 Publication

Hanifah Aqliyah, Evinovita Evinovita. "Faktor Penyebab Rendahnya Minat UMKM ... <1%

58 Publication

Hernita Rancendo, Abd. Hamid, Marinus B. Tandiayuk. "PENERAPAN MODEL PEM... <1%

59 Publication

Kell, Carrie. "Faculty Perspectives on Generative AI in First-Year Writing: A Groun... <1%

60 Publication

Lutfi Incikabi, Mehmet Koray Serin, Semahat Incikabi. "chapter 13 Flipping the M... <1%

61 Publication

Maria João Félix, Rita Assoreira Almendra, Fernando Moreira da Silva, Fátima Po... <1%

62 Publication

Prince Kusi, Francis Ohene Boateng, Emmanuel Teku. "The effect of technology in... <1%

63 Internet

core.ac.uk <1%

64 Internet

dokumen.pub <1%

65 Internet

ijisrt.com <1%

66 Internet

irjstem.com <1%

67	Internet	jiips.fkip.unila.ac.id	<1%
68	Internet	journal.tofedu.or.id	<1%
69	Internet	jurnal.tazkia.ac.id	<1%
70	Internet	listens.online	<1%
71	Internet	mural.maynoothuniversity.ie	<1%
72	Internet	pp-msu.com.ua	<1%
73	Internet	sman8batam.sch.id	<1%
74	Internet	uir.unisa.ac.za	<1%
75	Internet	vbn.aau.dk	<1%
76	Internet	www.coursehero.com	<1%
77	Internet	www.researchgate.net	<1%
78	Publication	"Handbook of Research in Educational Communications and Technology", Spring...	<1%
79	Publication	Nilam Nur Jazilatur Rohmah, Abd. Qohar. "Developing interactive multimedia on ...	<1%
80	Publication	Paul J. Vermette, Cynthia L. Kline. "Group Work that Works - Student Collaboratio...	<1%

81

Publication

Putri Yuanita, Maimunah Maimunah, Kartini Kartini, Nur Arif. "Analysis of SOLO t... <1%

82

Publication

Tigere, Michael Togara. "Perceptions of School Management Teams on Informati... <1%

83

Publication

Ummu Ahya Giyanti, Ahmad Misbahul Anam. "INFLUENCE OF SOCIAL COGNITIO... <1%

84

Publication

Maxim Brnic, Gilbert Greefrath, Frank Reinhold. "Working with digital textbooks ... <1%

85

Publication

Sevgi Aydin-Günbatar, Alper Durukan, Mustafa Serkan Günbatar. "Generative AI ... <1%

86

Publication

Siti Ravi'ah, Otib Satibi Hidayat, Ika Lestari. "Development of Literacraft-Based So... <1%

87

Publication

Stephen J. Farenga, Salvatore G. Garofalo, Daniel Ness. "International Handbook ... <1%

88

Internet

www.ncbi.nlm.nih.gov <1%

Development of Mathematics Learning Design Using AI-Based Deep Learning Approach to Enhance Students' Digital Literacy

Amalia Silwana^{1*}, Lita Aditya Khoirun Nisa¹, and Evi Widayanti¹

¹STKIP Bina Insan Mandiri, Indonesia

Correspondence should be addressed to Amalia Silwana: amalia@stkipbim.ac.id

Abstract

The deep learning approach has been introduced as a new governmental strategy to improve the quality of education in Indonesia and is currently being implemented in the national curriculum. However, there remains a lack of research that holistically develops deep learning instructional designs integrated with Artificial Intelligence (AI) to support students' digital literacy. Therefore, the development of a mathematics instructional design that synergistically combines deep learning and AI-based technology to enhance digital literacy is still an unmet educational need. This study aimed to develop a mathematics learning design using an AI-based deep learning approach to improve students' digital literacy, specifically in the topic of three-dimensional geometric shapes for Grade V elementary students. The study employed a Research and Development (R&D) method following the ADDIE development model: Analysis, Design, Development, Implementation, and Evaluation. The result of this study is a mathematics learning design using AI-based deep learning approach in the topic of elements and nets cube and cuboid. The teaching module was validated as highly valid, with a validation score of 3.64, and found to be highly practical with a practicality score of 3.39. Furthermore, the design was proven effective in improving digital literacy, as shown by a significant difference between students' pre-test and post-test scores based on the Wilcoxon Signed Rank Test ($Z = -3.051$, Asymp. Sig. (2-tailed) = 0.002). The average digital literacy score increased from 29.35 (pre-test) to 32.55 (post-test), indicating that the instructional design had a significant positive impact on students' digital literacy. Through this learning design, students experienced deep learning that emphasized understanding, application, and reflection through mindful, meaningful, and joyful learning activities. This research contributes to the advancement of mathematics education by offering a holistic mathematics learning design using AI-based deep learning approach which effective in enhancing students' digital literacy.

Keywords: Mathematics Learning Design; Deep Learning Approach; Artificial Intelligence; Digital Literacy

Abstrak

Pendekatan deep learning sebagai suatu strategi baru pemerintah dalam meningkatkan kualitas pendidikan di Indonesia dan mulai diterapkan di kurikulum yang saat ini berlaku. Akan tetapi, belum banyak penelitian yang mengembangkan desain pembelajaran deep learning secara holistik dengan berbasis Artificial Intelligence (AI) yang mendukung literasi digital siswa. Sehingga pengembangan desain pembelajaran matematika yang mengintegrasikan pendekatan pembelajaran deep learning dan teknologi berbasis AI secara sinergis untuk meningkatkan literasi digital siswa masih menjadi kebutuhan yang belum terjawab. Penelitian ini bertujuan untuk mengembangkan desain pembelajaran matematika dengan pendekatan deep learning berbasis AI sebagai upaya untuk meningkatkan literasi digital siswa, khususnya pada materi bangun ruang sisi datar kelas V SD. Penelitian ini menggunakan metode penelitian Research and Development (R&D) dengan model pengembangan Analysis, Design, Development, Implementation, dan Evaluation (ADDIE). Penelitian ini menghasilkan desain pembelajaran matematika dengan pendekatan deep learning berbasis AI berupa modul ajar materi unsur-unsur dan jaring-jaring kubus dan balok untuk kelas V SD yang terbukti valid dengan skor validasi 3.64 (sangat valid), terbukti praktis dengan skor kepraktisan 3.39 (sangat praktis). Desain pembelajaran yang dikembangkan juga

1 terbukti efektif meningkatkan literasi digital siswa melalui Wilcoxon Signed Rank Test pada nilai pre tes dan pos
2 tes angket literasi digital siswa dengan $Z = -3.051$ dan Asymp. Sig. (2-tailed) = 0.002, sehingga terdapat perbe-
3 daan yang signifikan antara literasi digital sebelum dan setelah pembelajaran matematika dengan pendekatan
4 deep learning berbasis AI dilakukan. Rata-rata skor literasi digital siswa meningkat dari 29.35 pada pre tes literasi
5 digital menjadi 32.55 pada pos tes literasi digital siswa sehingga penerapan desain pembelajaran mampu mem-
6 berikan dampak positif yang signifikan terhadap literasi digital siswa. Melalui desain pembelajaran ini, siswa
7 mendapatkan pengalaman belajar memahami, mengaplikasi, dan merefleksi melalui pembelajaran
8 berkesadaran, bermakna, dan menggembirakan. Penelitian ini memberikan kontribusi dalam perkembangan
9 pembelajaran matematika dalam hal pengembangan desain pembelajaran matematika dengan pendekatan
10 deep learning secara holistik serta berbasis AI yang efektif dalam meningkatkan literasi digital siswa.

11
27 **Mathematics Clasification: 97U10 Comprehensive works on educational material and media**
12 **and educational technology in mathematics education**
13
14

15 Metadata of Author

16 First author: SCOPUS ID: 58017291600 | ORCID ID: <https://orcid.org/0009-0004-9145-9112> | Google
17 Scholar : VB8mByIAAAAJ

18 Co-author: SCOPUS ID: - | ORCID ID: <https://orcid.org/0009-0007-7132-6349> | Google Scholar :
19 b7HzCpQAAAAJ

39 Co-author: SCOPUS ID: - | ORCID ID: <https://orcid.org/0000-0002-2072-5856> | Google Scholar :
21 _yGR9rUAAAAJ

22
23 **INTRODUCTION**
24 Deep learning refers to the ability to grasp and integrate conceptual and procedural knowledge,
25 along with applying conceptual insights in unfamiliar contexts (Hattie & Donoghue, 2016; Miller &
26 Krajcik, 2019). The implementation of a deep learning approach in education must be supported by
27 several key factors, including a conductive learning ecosystem, broad and meaningful learning
28 partnerships, and the effective integration of digital technology (Suyanto et al., 2025). The compo-
29 nents are essential to realizing the three core principles of deep learning: mindful learning, mean-
30 ingful learning, and joyful learning. When these principles are applied effectively, the deep learning
31 approach can significantly enhance students' competencies, foster their learning interest and
32 awareness, and encourage active participation in the learning process (Kong & Hao, 2022).

33 The implementation of the deep learning approach in education represents the government's
34 commitment to accelerate educational transformation, as well as to enhance and expedite the im-
35 pact of education in preparing a generation to achieve the demographic dividend in 2025 and the
36 Golden Indonesia vision in 2045. The Head of Primary and Secondary Education Ministry, stated in
37 Tempo (2024) that this approach has been integrated into the learning process through the curricu-
38 lum currently implemented within the national education system. However, the readiness of teach-
39 ers to adopt and implement the deep learning approach is still considerably low (Atmojo et al.,
40 2025), posing a challenge to its effective integration into educational practice.

41 In the implementation of the deep learning approach, it is essential for teachers to comprehend
42 the effective integration of digital technology in the learning process, as it constitutes a key sup-
43 porting component of deep learning. One of the technological applications that can be integrated
44 into the learning process is the use of digital learning media and Artificial Intelligence (AI). AI, in par-
45 ticular, can contribute significantly to improving instructional quality, enriching learners' experienc-
46 es, and deepening students' comprehension of subject content (AIAli & Wardat, 2024; Chen et al.,
47 2020; Pokrívčáková, 2019; Sharma et al., 2019). The integration of Artificial Intelligence (AI) in edu-
48 cation can play a pivotal role in achieving the Sustainable Development Goals (SDGs) by 2030, as

50 well as the realization of the fourth Asta Cita, which emphasizes the government's commitment to
85 reinforce national development, particularly in the domains of technology and education. The integration
37 of technology in education is connected to students' digital literacy, defined as their ability
4 to effectively engage with digital learning resources (Gilster, 1997; Makhafola et al., 2025). As a
5 global concern, digital literacy must be developed in learning to prepare students for the demands
6 and challenges of the 21st century.

19 The development of IT- and AI-based mathematics learning has been explored in various studies,
29 such as the study by Nadjla (2024) on AI-based mathematics learning found that the integration of
29 Artificial Intelligence in mathematics instruction was effective in enhancing students' conceptual
19 understanding, mathematical problem-solving skills, educational accessibility, and character devel-
19 opment. Furthermore, research has been conducted on teachers' experiences with AI-based instruc-
19 tional tools (Arvin et al., 2023), as well as exploratory study on teachers' perceptions, challenges,
19 and the pedagogical implications of integrating AI-based ChatGPT into mathematics learning
19 (Egara & Mosimege, 2024). The findings of both studies indicate that AI is still rarely utilized in
19 classroom practice, despite its demonstrated positive impact on teaching effectiveness, student
19 engagement, and conceptual understanding. Realizing the full potential of AI in education requires
19 improved digital literacy and teacher preparedness, supported by comprehensive implementation
52 guidelines (Arvin et al., 2023). Subsequent research on mathematics education utilizing the deep
45 learning approach remains limited in its integration with IT and AI. For example, the study conduct-
ed by Wijaya, et al (2025) applied the deep learning approach at the elementary school level. The
main findings indicated that the deep learning approach was successful and had a positive impact
on students' critical thinking skills, character development, social abilities, and learning motivation.

23 A review of existing studies reveals a research gap that has yet to be thoroughly explored. The
24 study by Wijaya, et al (2025), for instance, focuses on the deep learning approach but does not ho-
25 listically develop an AI-based deep learning instructional design. Meanwhile studies by Egara & Mo-
26 simege (2024), Arvin, et al. (2023), and Nadjla (2024) are relevant to the use of AI, yet remain lim-
27 ited in scope and do not comprehensively integrate AI-based deep learning instructional design
28 with students' digital literacy. Moreover, previous research has primarily focused on the use of digi-
29 tal technologies such as applications and interactive learning media (Bray & Tangney, 2017;
30 Reinhold et al., 2020). There is still a limited number of studies that holistically develop instructional
31 designs based on advanced technologies, such as AI, to support students' digital literacy. Research
32 on deep learning and AI in education has also not explicitly examined their contributions to enhanc-
33 ing students' digital literacy (Nababan et al., 2025). Consequently, the role of AI in creating learning
34 experiences that improve digital literacy is still not widely discussed. Furthermore, mathematics
35 learning, deep learning approaches, and AI-based educational technology are often studied sepa-
36 rately (Barokah & Mahmudah, 2025).

37 Based on relevant previous research described, the development of an integrated mathematics
38 instructional design that combines deep learning approaches and AI-based technologies to enhance
39 students' digital literacy represents a critical and underexplored area of research. State of the art of
40 this research are: a) comprehensive mathematics learning design with an AI-based deep learning
41 approach; b) involving AI (ChatGPT) in mathematics learning linked to students' digital literacy; c)
42 integrating mathematics learning design with a deep learning approach, AI, and 21st century digital
43 literacy needs.

44 The objective of this study is to develop a mathematics learning design that integrates an AI-
45 based deep learning approach to enhance students' digital literacy, with a focus on the topic of
46 three-dimensional geometric shapes for fifth-grade elementary students. This topic was selected
47 due to its inherent need for interactive visualizations, which can be effectively facilitated through
48 the use of digital technology and AI. Preliminary observations conducted at SD Muhammadiyah 15
49 Surabaya indicate that students encounter difficulties in understanding this topic, and that AI-based
50 technological tools have not yet been utilized to support students' conceptual understanding. By
51 integrating AI technologies and interactive digital media, the proposed mathematics learning de-

1 sign is expected to not only improve students' digital literacy, but also offer teachers an innovative
2 alternative for implementing deep learning approaches within mathematics learning.

4 **METHOD**

5 This research used the Research and Development (R&D) research method with the ADDIE de-
6 velopment model, which consists of five stages: Analysis, Design, Development, Implementation,
7 and Evaluation. The Analysis stage included analysis of students' learning needs, and analysis of
8 teacher needs and human resources. The Design stage included determining the materials used,
9 determining the learning objectives, developing a teaching module framework, and determining
10 the AI tools to be utilized. In the Development stage, learning media were prepared using AI-
11 integrated GeoGebra with ChatGPT and a mathematics teaching module was developed using an
12 AI-based deep learning approach focused on three-dimensional geometric shapes especially cube
13 and cuboid. This stage also encompassed the development of research instruments, validation of
14 the learning design, materials, and learning evaluation by experts, and validation and reliability test-
15 ing of the students' digital literacy pre-test and post-test questionnaires by distributing the ques-
16 tionnaires to students who were not research subjects, namely 25 students of MI Roudlotul
17 Mu'allimin Laban Menganti Gresik. The Implementation stage included pre-test for student digital
18 literacy, implementation of the developed learning design, and post-test for student digital literacy.
19 The Evaluation stage included distributing student response questionnaires and evaluating teaching
20 module based on the results of the students' response questionnaires.

21 This research was conducted in July 2025 at SD Muhammadiyah 15 Surabaya, involving 20 fifth-
22 grade students as research subjects. The AI utilized in this study was Generative Pre-trained Trans-
23 former (ChatGPT), which was integrated with the IT-based learning media GeoGebra. The use of
24 GeoGebra aimed to facilitate interactive simulations of the elements and nets of three-dimensional
25 geometric spaces, especially cube and cuboid. Meanwhile, the ChatGPT features employed in the
26 developed learning design included mathematical concept explanations, an interactive question-
27 and-answer assistant, critical thinking stimulation through reflective questioning, provision of inde-
28 pendent practice exercises, and assistance in operating GeoGebra.

29 The data collection techniques in this study such as: a) observation; b) interviews, to analyze the
30 needs of teachers and students, and analyze teacher human resources; and c) questionnaires, stu-
31 dent responses questionnaires to practicality test and digital literacy pre-test and post-test ques-
32 tionnaires to effectiveness test.

33 Data analysis techniques used in this study included validity test analysis, practicality test analy-
34 sis, and effectiveness test analysis. The validity of the learning design, materials, and learning eval-
35 uation was analyzed based on the validity mean score obtained for each indicator, using the follow-
36 ing formula:

$$\bar{x}_v = \frac{\text{Total Score}}{\text{Number of Indicators}}$$

37 The validity mean score was grouped into four validity criteria (Hibri, 2021), as shown in Table 1
38 below.

39 *Table 1. Validity Criteria*

40 Validity Mean Score (\bar{x}_v)	Validity Criteria
41 $3.25 < \bar{x}_v \leq 4.00$	Very Valid
42 $2.50 < \bar{x}_v \leq 3.25$	Valid
43 $1.75 < \bar{x}_v \leq 2.50$	Less Valid
	Not Valid

44 The learning design, materials, and learning evaluation were feasible for implementation in re-
45 search if the average score for each criterion was very valid or valid.

1 Meanwhile, practically analysis was obtained through student response questionnaires. Practi-
2 cality can be seen from the practicality mean score obtained for each indicator using the following
3 formula:

$$\bar{x}_p = \frac{\text{Total Score}}{\text{Number of Indicators}}$$

4 The practicality mean score was grouped into four practicality criteria (Hasanah et al., 2023), as
5 shown in Table 2.

6 *Table 2. Practicality Criteria*

Practicality Mean Score (\bar{x}_p)	Practicality Criteria
$3.25 < \bar{x}_p \leq 4.00$	Very Practical
$2.50 < \bar{x}_p \leq 3.25$	Practical
$1.75 < \bar{x}_p \leq 2.50$	Less Practical
$0 \leq \bar{x}_p \leq 1.75$	Not Practical

7 Furthermore, to analyze the effectiveness of enhancing digital literacy, a one-group pre-test
8 post-test comparison experimental design was used. Differences in average pre-test and post-test
9 digital literacy scores were analyzed using Wilcoxon Signed Rank Test since based on the normality
10 test with the Shapiro-Wilk test, it was found that the data was not normally distributed.

11 RESULTS AND DISCUSSION

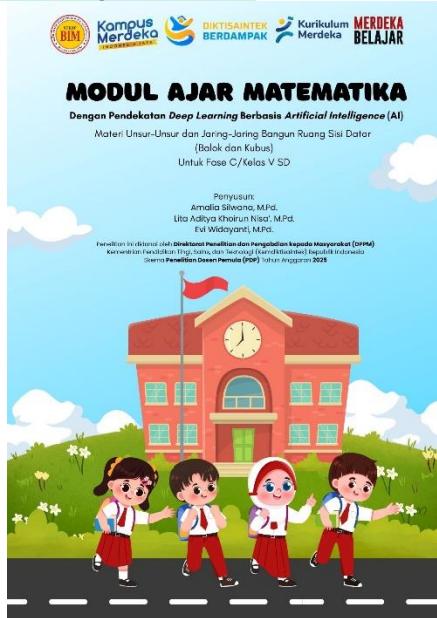
12 Results

13 The stages in the development of a mathematics learning design using deep learning approach
14 based AI are described as follows.

16 Analysis Stage

17 At this stage, a need analysis is conducted to identify teachers' challenges in delivering mathematics
18 material, as well as students' difficulties in understanding mathematical concepts. Additionally,
19 an analysis of teacher competencies is carried out, particularly regarding their understanding of
20 mathematics learning through a deep learning approach. Based on interviews with selected students
21 and teachers at SD Muhammadiyah 15 Surabaya, the following empirical data were obtained:
22 (a) mathematics learning has not fully implemented the deep learning approach; (b) teachers'
23 knowledge of deep learning is limited, often perceived merely as an extension of contextual learning;
24 (c) technology-based instructional media are rarely used, as technology is perceived to have
25 minimal impact on students' comprehension; (d) AI has never been utilized in instructional practices;
26 and (e) students perceive mathematics learning environments as monotonous and unengaging.

27 Design Stage


28 At design stage, researchers determine the learning material, specifically focusing on the elements
29 and nets of three-dimensional geometric shapes, namely cube and cuboid. Researchers develop the
30 framework for the teaching module, which includes the design of its components as follows: (a) the
31 identification section, comprising student identification, subject matter identification, and graduate
32 profile dimensions; (b) the learning design section, which consists of learning outcomes, interdiscipli-
33 nary connections, learning topics, learning objectives, pedagogical practices, learning partners, learning
34 environment, and digital integration; (c) the learning experience section, detailing the steps of learning
35 activities; and (d) the assessment section, which encompasses assessments of learning, assessments as
36 learning, and assessments for learning.

37 At this stage, researchers also select the AI technology to be integrated into learning process,
38 aligning with the principles of the deep learning approach. ChatGPT is chosen with the objective of
39 providing immediate feedback to students, personalizing learning based on individual student
40 needs, and enhancing interactivity by incorporating advanced and cutting-edge technology. In line
41 with research by Egara & Mosimege (2024), which indicates that ChatGPT has a positive impact on
42 learning effectiveness, student engagement and comprehension.

1 *Development Stage*

2 At the development stage, researchers prepare ChatGPT-integrated learning media using Geo-
3 Gebra to be utilized in learning activities. The learning media employed have passed both validity
4 and practicality tests. Furthermore, researchers develop a teaching module using AI-based deep
5 learning approach for teaching three dimensional shape (cube and cuboid) for fifth-grade elemen-
6 tary students, aiming to enhance students' digital literacy. This development process includes the
7 design of the module's cover, layout, and content.

8 The teaching module consists of several components: lesson plans, pretest and posttest on ma-
9 terial and digital literacy, student worksheets for the topic elements and nets of cube and cuboid,
10 student reflective journals, self-assessment sheets, and peer-assessment sheets. The cover design
11 of the teaching module is illustrated in Figure 1 below.

12 *Figure 1. Cover of Mathematics Teaching Module.*

13 At this stage, the validity and reliability of the digital literacy pretest and posttest questionnaire
14 were tested by distributing the questionnaire to students who were not research subjects, namely
15 25 students of MI Roudlotul Mu'allimin Laban Menganti Gresik. The validity test of the digital litera-
16 cy pretest and posttest questionnaire is presented in Table 3 below.

17 *Table 3. Validity Test Result*

Statement	Calculated <i>r</i> Value	Table <i>r</i> value	Criteria
P ₁	0.446	0.3961	Valid
P ₂	0.427	0.3961	Valid
P ₃	0.399	0.3961	Valid
P ₄	0.475	0.3961	Valid
P ₅	0.741	0.3961	Valid
P ₆	0.527	0.3961	Valid
P ₇	0.473	0.3961	Valid
P ₈	0.464	0.3961	Valid
P ₉	0.401	0.3961	Valid
P ₁₀	0.455	0.3961	Valid
P ₁₁	0.473	0.3961	Valid

19 Based on the validity test result in Table 3, all of the calculated *r* value for every items is greater
20 than the *r* table value. Therefore, the 11 items in the digital literacy pretest and posttest question-
21 naires are considered valid. Next, a reliability test was conducted. The results of reliability test by
22 SPSS obtained Cronbach's Alpha value 0.661. This value is greater than 0.6, indicating that the

30 questionnaire is reliable. Since the digital literacy pre-test and post-test questionnaire has passed validity and reliability tests, it can be used to measure digital literacy level in research.

79 Furthermore, the validity of teaching module was tested by three experts: learning design expert, material expert, and learning evaluation expert. The validity test by the learning design expert about compatibility of learning objectives, compatibility of materials and learning design, learning steps, appropriateness of technology integration, relevance of digital literacy enhancement, and coherence of design component obtained an average validation score of 3.45. The validity test by the material expert about compatibility of material with learning outcomes, material accuracy (scientific quality and conceptual precision), meaningfulness of material and learning context, compatibility with deep learning approach, integration of technology and AI, language use and presentation obtained an average validation score of 3.83. The validity test by the learning evaluation expert consisted of validation of the material pre-test and post-test, student worksheets, student reflective journals, student self-assessment, and peer assessment obtained an average validation score of 3.65. Hence, the average score from overall validation results given by the three validators is 3.64, indicating a high level of validity (Hobri, 2021). Thus, the teaching module is considered appropriate for use in this study.

17 *Implementation Stage*

18 In the implementation stage, a trial of the mathematics learning design developed over five
19 meetings was conducted. At the beginning of the lesson, students completed a digital literacy pre-
20 test questionnaire, and at the end of the lesson, they completed a digital literacy posttest question-
21 naire. The results of the digital literacy pretest and posttest were used to determine the effective-
22 ness of the learning design in improving students' digital literacy.

23 Based on SPPS analysis result, the mean digital literacy score of students before being given
24 mathematics learning according to the developed learning design was 29.35 and after being given
25 mathematics learning according to the developed learning design was 32.55 or an increase in the
26 mean score of 3.2. Furthermore, the pretest and posttest scores were compared to determine
27 whether there were significant differences in students' digital literacy before and after the imple-
28 mentation of the developed learning design.

29 However, before being compared, the data scores were first tested for normality. Based on the
30 SPSS output, the Shapiro-Wilk Significance value for the digital literacy pretest is 0.030. If the sig-
31 nificance level used 5%, then Sig. < 0.05. So, the digital literacy pretest data is not normally distrib-
32 uted. While the Shapiro-Wilk significance value for the digital literacy posttest is 0.307. Then Sig. >
33 0.05. So the digital literacy posttest data is normally distributed. Therefore, the test for differences
34 between the digital literacy pretest and posttest scores uses a non-parametric test, namely the Wil-
35 coxon Signed Rank Test. Testing the null hypothesis that there is no significant difference in stu-
36 dents' digital literacy in mathematics learning with deep learning approach based AI using SPSS.
37 Based on SPSS output, sixteen students obtained higher posttest scores than their pretest scores.
38 Meanwhile, four students' posttest score decreased.

39 Null hypothesis testing was continued using the Wilcoxon Signed Rank Test. Based on the test
40 results obtained $Z = -3.051$ and Asymp. Sig. (2-tailed) = 0.002. By using significance level of 5%,
41 Asymp. Sig. (2-tailed) < 0.05 which means H_0 is rejected so that there is a significant difference be-
42 tween digital literacy before and after mathematics learning with deep learning approach based AI
43 is carried out. This shows that the developed learning design has proven effective in improving stu-
44 dents' digital literacy.

45 *Evaluation Stage*

46 In the evaluation stage, students completed a student response questionnaire to determine their
47 responses to the developed learning design. The results of the student response questionnaire were
48 used to test the practicality of the developed learning design and evaluate the teaching module.
49 The results of the practicality test for every aspect: the average score for attractiveness of the learn-
50 ing process aspect is 3.33; the average score for meaningfulness of the learning process aspect is
51 3.58; the average score of presentation of learning materials aspect is 3.38; and the average score of

1 learning materials aspect is 3.25. Hence, the average total score of practicality test result is 3.39,
2 indicating a high level of practical (Hobri, 2021).

4 Discussion

5 The mathematics learning design for the topic of elements and nets of cubes and cuboid was
6 developed using a holistic deep learning approach, in accordance with the deep learning framework
7 proposed by the Ministry of Primary and Secondary Education (Suyanto et al., 2025). The devel-
8 oped learning design is structured to facilitate in-depth exploration of the subject matter through
9 activities grounded in the principles of mindful, meaningful, and joyful learning, aiming to foster
10 experiences of understanding, application, and reflection. This aligns with the core goals of deep
11 learning, which include promoting deep conceptual understanding (Rahayu et al., 2025), encourag-
12 ing student participation through interactive activities (Mutmainnah et al., 2025), fostering long-
13 term knowledge construction (Bistari et al., 2025), strengthening skills aligned with real-world de-
14 mands (Akmal et al., 2025), and stimulating students' creative thinking in developing ideas for their
15 projects (Natsir, 2025).

16 The first step in developing a deep learning-based lesson plan is identification, which includes
17 identifying students, identifying materials, and determining the dimensions of the graduate profile.
18 The determination of the graduate profile dimensions is carried out by aligning them with the in-
19 tended learner outcomes expected upon completion of the learning process. In this instructional
20 design, five dimensions of the graduate profile are selected: (1) critical reasoning, as the learning
21 activities presents students with problems and task that require critical thinking skills; (2) creativity,
22 as the lesson involves project-based tasks that demand students' creative thinking; (3) collabora-
23 tion; as group-based activities are incorporated throughout the learning process; (4) independence,
24 as despite the collaborative learning, there are tasks that require individual responsibility and self-
25 direction; and (5) communication, as the learning process cultivates communication skills through
26 inter-group discussion, classroom presentations, participation in whole-class discussion, and writ-
27 ten self-reflection in reflective journals. The selected graduate profile dimensions are aligned with
28 the learning culture promoted in this design, which emphasizes collaboration, active participation,
29 critical thinking, and student curiosity.

30 In addition, this learning design introduces novel elements that differentiate it from other in-
31 structional approaches, namely the integration of interdisciplinary content and the involvement of
32 learning partners. The interdisciplinary aspect in the developed mathematics learning design in-
33 cludes the integration of art and culture subject (in terms of the application of the material in eve-
34 ryday life) and information and communication technology (ICT) (as students engage in digital-
35 based learning activities using tools such as AI-powered ChatGPT and GeoGebra as a digital learn-
36 ing media). Learning partners represent a key element of deep learning (Fullan & Quinn, 2020). In
37 this design, art and culture teacher is invited as learning partner to provide students with additional
38 knowledge on constructing cubes and cuboids, and to support them in completing a project by cre-
39 ating simple 3D models. The presence of learning partners can broaden students' perspectives and
40 enhance the relevance and authenticity of the learning experience (Fullan et al., 2018).

41 The instructional models employed in this mathematics learning design are Discovery Learning
42 for teaching the topic of the elements of cube and cuboid, and Project Based Learning for teaching
43 the topic of cube and cuboid nets. Both instructional models are considered aligned with the prin-
44 ciple of deep learning, because in these instructional models, the teacher as an activator and stu-
45 dents are involved in choices and are responsible for their learning by involving students in authen-

tic and relevant problems or simulations, thus demonstrating a deep learning process (Fullan et al., 2018).

The mathematics learning design with deep learning approach based AI that has been developed has undergone a validity assessment by experts in learning design, materials, and learning evaluation, yielding a score of 3.64, indicating a very high level of validity. Several improvement notes were provided by the validators including revisions to the layout design of the student worksheet to make them more appealing to fifth-grade elementary students, refinement of the pre-test and post-test content, and the addition of self-assessment and peer-assessment items related to students' ability to use AI tools. This aligns with previous research, which emphasizes that student worksheets should be designed to be visually engaging (Wahyuni et al., 2021). Furthermore, colour selection in design has been shown to influence students' behaviour, emotional responses, and learning success at the elementary school level (Glogar et al., 2017).

The developed mathematics learning design has proven to be practical, as indicated by a high practicality score (3.39) based on aspects of learning attractiveness, usefulness, and the quality of content and its delivery. Mathematics learning using a deep learning approach offers students a unique and meaningful experience. In line with the principle of deep learning, students are guided to be consciously aware of the intended learning goals from the outset, experience the benefits of learning because the content is connected to their daily lives, and are encouraged to think critically about societal conditions and how mathematical concepts can be applied in real-life contexts. This process leads to meaningful learning experience. Students are most engaged when what they are learning holds relevance beyond the classroom (Fullan & Langworthy, 2013). Through the project of constructing a simple 3D model, students are able to perceive the relevance and real-world application of the mathematical content.

Students are also encouraged to engage in self-reflection regarding the concepts they have understood and those they have not yet mastered, as well as to improve their performance in subsequent lesson as part of learning experience of reflection. In the developed mathematics learning design, for each sub-topic covered students are provided with a reflective journal. This journal is an integral component of mindful learning. It consists of several guided questions that students are required to answer. The questions follow the STARR reflection model, which includes: Situation (S) of the learning context; Task (T), the task students were assigned; Action (A), the actions taken to complete the tasks; Result (R), the outcomes of students' work, and Reflection (R), students' evaluation of learning process. This approach align with the STARR reflection model as discussed by Badriah & Permana (2023). This kind of reflection model has proven effective in supporting the self-reflective process. Reflection is particularly crucial in mathematics education (Lee, 2021), as it allows students to revisit prior thinking, connect experiences with learning, and foster deep learning (Dewey, 1993).

The mathematics learning design with deep learning approach based AI has been proven effective in enhancing students' digital literacy. This learning design incorporates AI tools, specifically ChatGPT, along with the use of GeoGebra as an interactive and engaging digital mathematics learning media. Such integration aligns with the principles of the deep learning that emphasize meaningful and joyful learning experiences. AI has been shown to make learning more engaging and creative (Mohamed et al., 2022), which supports the joyful learning principle. Moreover, the use of AI-powered chat bots in education has the potential to advance the role of technology in learning and increase accessibility for all students regardless of their learning pace (Chau et al., 2025). In addition, the integration of digital technologies contributes to improvements in student

1 performance, motivation, and problem-solving abilities (Rodríguez-Jiménez et al., 2023).
2 The use of GeoGebra as an instructional media includes interactive features that generate
3 three-dimensional simulations of cube and cuboid, thereby facilitating students' understanding of
4 the concepts. The interactive features in the learning media also serve to motivate students to par-
5 ticipate more actively in learning process (Sinaga et al., 2022). In addition, the integration of tech-
6 nology in education is essential for improving the quality of instruction (Bayne, 2015; Hussian, 2018),
7 making mathematics more accessible and flexible for diverse types of learners (Gadelha, 2018), and
8 ensuring a more effective and efficient learning process (Ilyas et al., 2023). Technology has also
9 been shown to increase students' motivation and willingness to engage in learning activities
10 (Cóndor-Herrera et al., 2021). In the context of Indonesia's Merdeka Curriculum, the use of digital
11 technology is considered a fundamental infrastructure need (Sari et al., 2024) and a critical compo-
12 nent in implementing deep learning. Digital technologies can accelerate the process of deep learn-
13 ing (Fullan & Langworthy, 2014).

14 Furthermore, the use of AI in this study was found to have a positive impact on students, as evi-
15 denced by the increase in the average post-test scores of students' digital literacy. This finding is
16 consistent with previous research, which has shown that AI offers several advantages, including
17 enhancing conceptual understanding, improving student performance, and making learning more
18 effective (Mohamed et al., 2022). The findings of this study also reveal that the use of AI-powered
19 ChatGPT engaged students' creative thinking skills, particularly in generating prompts. Students
20 were able to formulate prompts based on what they wanted to explore. For several question listed
21 in student worksheet, students were instructed to gather information from the internet, particu-
22 larly using ChatGPT. All five student groups submitted different prompts. In this context, it is essential
23 for teachers to guide students in using AI effectively to support learning. AI should not merely be
24 used to solve problems directly; rather, it should be employed to facilitate learning experiences.
25 Therefore, teachers must provide instructional direction on how to make meaningful prompts in
26 order to optimize AI interaction while ensuring alignment with learning objectives (Setälä et al.,
27 2025).

28 The assessment methods employed in this learning design include assessments at the begin-
29 ning, during, and at the end of the learning process. Assessments at the beginning of learning con-
30 sist of a pre-test on the subject matter and a pre-test on digital literacy. Assessments during the
31 learning process are student worksheets and a simple 3D model project. Assessments at the end of
32 learning process are reflective journals, self-assessment, peer assessment, a post-test on the sub-
33 ject matter, and a post-test on digital literacy.

34 The assessments employed in this learning design align with the three primary functions of as-
35 sessment: assessment as learning, assessment for learning, and assessment of learning. Assess-
36 ment as learning refers to assessments aimed at supporting student reflection and learning reflec-
37 tion. In this design, it is implemented through reflective journals, student self-assessments, and
38 peer assessment. In the context of deep learning, students are expected to reflect on their own un-
39 derstanding and learning processes (Fauskanger & Bjuland, 2018). Assessment for learning serves
40 as a tool to improve the learning process by providing feedback for students and serving as a basis
41 for teacher reflection. In this design, it takes the form of diagnostic question asked during whole-
42 class reflection at the end of each learning meeting. Assessment of learning is used to evaluate stu-
43 dents' learning achievements. In this design, it includes written tests and project-based assess-
44 ments. The tasks provided in this learning design follow a constructivist orientation. High-quality
45 deep learning tasks emphasize the application of newly acquired knowledge in real-world contexts

1 (Fullan & Langworthy, 2014).

2 Based on the explanation above, the mathematics learning design using AI-based deep learning
3 approach has been proven to be valid, practical, and effective in enhancing students' digital literacy.
4 Overall, the results of this study emphasize the importance of implementing deep learning ap-
5 proaches and integrating technology into mathematics education in a comprehensive manner. The
6 combination of deep learning with digital technology integration (AI-based ChatGPT and GeoGe-
7 bra) has led to improved students' digital literacy, increased engagement in learning, and deeper
8 conceptual understanding. The results also highlight several strengths of implementing the devel-
9 oped mathematics learning design using AI-based deep learning approach: it aligns with the prin-
10 ciples of mindful, meaningful, and joyful learning; provides an innovative instructional model for
11 teachers to adopt; promotes active, personalized, adaptive, and differentiated learning; enhances
12 flexibility and effectiveness in the learning process; develop 21st-century skills; and leverages a vari-
13 ety of digital learning resources.

14

15 **Implication of Research**

16 The successful development of mathematics learning design using AI-based deep learning ap-
17 proach has several important implications for mathematics education, particularly for education
18 practitioners, school administrators, policymakers, and educational researchers aiming to enhance
19 students' digital literacy. The effectiveness of the developed mathematics learning design in the
20 form of a teaching module grounded in an AI-based deep learning approach demonstrated its fea-
21 sibility in increasing student engagement, improving the quality of mathematics learning, and sup-
22 porting students in developing their digital literacy skills. The learning design encourages students
23 to become critical and creative thinkers, capable of effective collaboration and communication.
24 Therefore, teachers and researchers are encouraged to adopt and further develop holistic mathe-
25 matics learning designs based on deep learning approaches. They may also be inspired to integrate
26 cutting-edge digital technologies and real-life, project-based learning tasks to foster deep and
27 meaningful learning experiences. For school administrators and policymakers, the success of this
28 learning design emphasize the importance of providing institutional support and infrastructure
29 necessary for implementing digital innovations in classroom settings.

30

31 **Limitation**

32 This research has several limitations. The first limitation lies in the scope of the learning design
33 developed, which was restricted to an AI-based deep learning module for teaching three-
34 dimensional shapes (specifically cube and cuboid) in fifth-grade elementary school. As such, the
35 mathematics content addressed was limited to the topics of element and nets of cube and cuboid
36 for Grade V. Further investigation is needed to determine whether similar instructional modules
37 would be effective in other areas of mathematics, such as number theory, algebra, or statistics.
38 Moreover, the effectiveness of the module in improving students' digital literacy has not been wide-
39 ly tested, as the study involved only 20 students from a single school and was conducted over the
40 course of five meetings. This limited scope restricts the generalizability of the findings; thus, any
41 conclusions should be interpreted with caution. Future research should involve a larger and more
42 diverse sample, as well as an extended duration of implementation to expand upon the current find-
43 ings.

44

45 **CONCLUSION**

7 This research produced a mathematics learning design using AI-based deep learning approach in
2 the form of a teaching module on the topics of elements and nets of cube and cuboid for Grade V
3 elementary students. The learning design was validated by experts in learning design, material, and
4 learning evaluation, resulting in a validation score of 3.64, categorized as very valid. The learning
5 design also proved to be practical based on student response questionnaires, with a practicality
6 score of 3.39, categorized as very practical. The learning design was found to be effective based on
7 the results of the Wilcoxon Signed Rank Test comparing students' digital literacy pre-test and post-
8 test scores, the result if the test are $Z = -3.051$ and Asymp. Sig. (2-tailed) = 0.002, indicating a statis-
9 tically significant difference in digital literacy before and after the implementation of the learning
10 design. The average digital literacy score of students increased from 29.35 on the pre-test to 32.55
11 on the post-test. These results demonstrate that the implementation of the learning design had a
12 significant positive impact on students' digital literacy. Furthermore, research findings indicate that
13 students experienced learning that emphasized understanding, application, and reflection through
14 mindful, meaningful, and joyful learning. They acquired meaningful knowledge by relating the con-
15 tent to real-life contexts, engaged mindful learning through reflective activities that helped them
16 recognize learning goals and areas of improvement, and enjoyed joyful learning through engaging
17 classroom activities and the use of tools such as GeoGebra and ChatGPT, both of which provided
18 new and exciting experiences for students in learning mathematics.
19 .

20 ACKNOWLEDGMENT

21 We would like to thank many people who have contributed to this research and supported us
22 through the process. We are very grateful to the Directorate of Research and Community Services
23 (DPPM) Ministry of Education, Research, and Technology Republic of Indonesia on research fund-
24 ing (contract number 128/C3/DT.05.00/PL/2025) for giving the support in this research.
25

26 REFERENCES

27 Akmal, A. N., Maelasari, N., & Lusiana, L. (2025). Pemahaman Deep Learning dalam Pendidikan:
28 Analisis Literatur melalui Metode Systematic Literature Review (SLR). *JIIP - Jurnal Ilmiah Ilmu
29 Pendidikan*, 8(3), 3229–3236. <https://doi.org/10.54371/jiip.v8i3.7442>

30 AlAli, R., & Wardat, Y. (2024). Opportunities and Challenges of Integrating Generative Artificial
31 Intelligence in Education. *International Journal of Religion*, 5(7), 784–793.
32 <https://doi.org/10.61707/8y29gv34>

33 Arvin, N., Hoseinabady, M., Bayat, B., & Zahmatkesh, E. (2023). Teacher Experiences with AI-based
34 Educational Tools. *AI and Tech in Behavioral and Social Sciences*, 1(2), 26–32.
35 <https://doi.org/10.61838/kman.aitech.1.2.5>

36 Atmojo, I. R. W., Muzzazinah, Ekawati, E. , Triastuti, R., Isnantyo, F. D., Sukarno, & Ramadian, R. K.
37 (2025). Pelatihan Implementasi Pendekatan Pembelajaran Deep Learning Untuk
38 Meningkatkan Kompetensi Pedagogik Guru SD di Kota Surabaya. *Jurnal Pengabdian
39 UNDIKMA: Jurnal Hasil Pengabdian & Pemberdayaan Kepada Masyarakat*, 6(1), 123–131.
40 <https://doi.org/10.33394/jpu.v6i1.14507>

41 Badriah, B., & Permana, I. (2023). Enhancing Competence in Writing Best Practices Through the
42 Utilization of the STAR Technique. *JLER (Journal of Language Education Research)*, 6(3), 193–
43 203. <https://doi.org/10.22460/jler.v6i3.20452>

44 Barokah, N., & Mahmudah, U. (2025). Transformasi Pembelajaran Matematika SD Melalui Deep
45 Learning: Strategi untuk Meningkatkan Motivasi dan Prestasi. *Bilangan : Jurnal Ilmiah
46 Matematika, Kebumian Dan Angkasa*, 3(3), 48–61. <https://doi.org/10.62383/bilangan.v3i3.521>

47 Bayne, S. (2015). What's the matter with 'technology-enhanced learning'? *Learning, Media and
48 Technology*, 40(1), 5–20. <https://doi.org/10.1080/17439884.2014.915851>

1 Bistari, Mikraj, H., Rustam, Budhysatrya, D. A., Zubaidah, Winarji, A., Nurfadilah, Pasaribu, R. L.,
2 Jamilah, & Junarti. (2025). Moral Message-Based Deep Learning in Mathematics Instruction
3 for Mathematics MGMP Teachers of Kubu Raya. *International Journal of Public Devotion*, 8(1),
4 59–70. <https://doi.org/10.26737/ijpd.v8i1.4722>

5 Bray, A., & Tangney, B. (2017). Technology usage in mathematics education research – A systematic
6 review of recent trends. *Computers and Education*, 114, 255–273.
7 <https://doi.org/10.1016/j.compedu.2017.07.004>

8 Chau, D. B., Luong, V. T., Long, T. T., & Linh, N. T. T. (2025). Personalized Mathematics Teaching
9 with The Support of AI Chatbots to Improve Mathematical Problem-Solving Competence for
10 High School Students in Vietnam. *European Journal of Educational Research*, 14(1), 323–333.
11 <https://doi.org/10.12973/eu-jer.14.1.323>

12 Chen, L., Chen, P., & Lin, Z. (2020). Artificial Intelligence in Education: A Review. *IEEE Access*, 8,
13 75264–75278. <https://doi.org/10.1109/ACCESS.2020.2988510>

14 Condor-Herrera, O., Bolaños-Pasquel, M., & Ramos, C. (2021). E-learning and M-learning benefits in
15 the learning process. In S. Nazir, T. Z. Ahram, & W. Karwowski (Eds.), *Advances in human
16 factors in training, education, and learning sciences. lecture notes in networks and systems* (pp.
17 331–336).

18 Dewey, J. (1993). *How we think : a restatement of the relation of reflective thinking to the educative
19 process*. Chicago: Henry Regnery Company.

20 Egara, F. O., & Mosimege, M. (2024). Exploring the Integration of Artificial Intelligence-Based
21 ChatGPT into Mathematics Instruction: Perceptions, Challenges, and Implications for
22 Educators. *Education Sciences*, 14(742), 1–20. <https://doi.org/10.3390/educsci14070742>

23 Fauskanger, J., & Bjuland, R. (2018). Deep Learning as Constructed in Mathematics Teachers'
24 Written Discourses. *International Electronic Journal of Mathematics Education*, 13(3), 149–160.
25 <https://doi.org/10.12973/iejme/2705>

26 Fullan, M., & Langworthy, M. (2013). *Towards a New End: New Pedagogies for Deep Learning*. USA:
27 Collaborative Impact. www.newpedagogies.org

28 Fullan, M., & Langworthy, M. (2014). *A Rich Seam How New Pedagogies Find Deep Learning*.
29 Pearson.

30 Fullan, M., & Quinn, J. (2020). *How Do Disruptive Innovators Prepare Today's Students to Be
31 Tomorrow's Workforce? Deep Learning: Transforming Systems To Prepare Tomorrow's Citizens*.
32 Inter-American Development Bank. <https://doi.org/10.18235/0002959>

33 Fullan, M., Quinn, J., & McEachen, J. (2018). *Deep Learning Engage the World Change the World*.
34 Corwin A SAGE Company.

35 Gadelha, R. (2018). Revolutionizing Education: The Promise of Virtual Reality. *Childhood Education*,
36 94(1), 40–43. <https://doi.org/10.1080/00094056.2018.1420362>

37 Gilster, P. (1997). *Digital Literacy*. Wiley Computer Pub, New York.

38 Glogar, M. O., Sutlovic, A., Matijevic, I., & Hajsan-Dolinar, V. (2017). PREFERENCES OF COLORS
39 AND IMPORTANCE OF COLOR IN WORKING SURROUNDING OF ELEMENTARY SCHOOL
40 CHILDREN. *ICERI2017 Proceedings*. <https://doi.org/10.21125/iceri.2017.1268>

41 Hasanah, N. R., Fajriah, N., & Suryaningsih, Y. (2023). Pengembangan LKPD Berbasis HOTS Materi
42 Segi Empat Konteks Rumah Adat Baanjung Gajah Baliku Untuk Siswa Kelas VII SMP/MTs.
43 *EDU-MAT: Jurnal Pendidikan Matematika*, 11(1), 24–38.
44 <https://doi.org/10.20527/edumat.v11i1.15308>

45 Hattie, J. A. C., & Donoghue, G. M. (2016). Learning strategies: a synthesis and conceptual model.
46 *Science of Learning*, 1(1), 1–13. <https://doi.org/10.1038/npscilearn.2016.13>

47 Hobri. (2021). *Metodologi Penelitian Pengembangan: Aplikasi Pada Penelitian Pendidikan
48 Matematika*. Pena Salsabila.

49 Hussin, A. A. (2018). Education 4.0 Made Simple: Ideas For Teaching. *International Journal of
50 Education & Literacy Studies*, 6(3), 92–98. <https://doi.org/10.7575/aiac.ijels.v.6n.3p.92>

51 Ilyas, A., Akbar, S. S., Wajid, S. H., Joghee, S., Fatima, A., & Mago, B. (2023). The Growing

1 Importance of Modern Technology in Education. *The Growing Importance of Modern*
2 *Technology in Education. 2nd International Conference on Business Analytics for Technology and*
3 *Security (ICBATS), 1–4.*

4 Kong, C., & Hao, W. (2022). Research on The Teaching Reform of Preschool Education Specialty
5 Based on The Deep Learning Theory From The Perspective of Educational Psychology.
6 *Psychiatria Danubina, 34*(4), 636–637. <https://hrcak.srce.hr/file/409696>

7 Lee, S.-Y. (2021). Revisiting Students' Reflection in Mathematics Learning: Defining, Facilitating,
8 Analyzing, and Future Directions. *Universal Journal of Educational Research, 9*(1), 154–160.
9 <https://doi.org/10.13189/ujer.2021.090117>

10 Makhafola, L., van Deventer, M. J., Holmner, M. A., & van Wyk, B. (2025). A scoping review of digital
11 literacy, digital competence, digital fluency and digital dexterity in academic libraries' context.
12 *Journal of Academic Librarianship, 51*(3), 103053. <https://doi.org/10.1016/j.acalib.2025.103053>

13 Miller, E. C., & Krajcik, J. S. (2019). Promoting deep learning through project-based learning: a
14 design problem. *Disciplinary and Interdisciplinary Science Education Research, 1*(7), 1–10.
15 <https://doi.org/10.1186/s43031-019-0009-6>

16 Mohamed, M. Z. b., Hidayat, R., Suhaizi, N. N. b., Sabri, N. b. M., Mahmud, M. K. H. b., &
17 Baharuddin, S. N. b. (2022). Artificial Intelligence in Mathematics Education: A Systematic
18 Literature Review. *International Electronic Journal of Mathematics Education, 17*(3), em0694.
19 <https://doi.org/10.29333/iejme/12132>

20 Mutmainnah, N., Adrias, & Zulkarnaini, A. P. (2025). IMPLEMENTASI PENDEKATAN DEEP
21 LEARNING TERHADAP PEMBELAJARAN MATEMATIKA DI SEKOLAH DASAR. *Pendas : Jurnal*
22 *Ilmiah Pendidikan Dasar, 10*(01), 858–871. <https://doi.org/10.23969/jp.v10i01.23781>

23 Nababan, E., Hasibuan, S. H. M. H., Mika, S., Putri, T. A., Mailani, E., & Rarastika, N. (2025).
24 Penerapan Pendekatan Deep Learning dalam Pembelajaran Matematika di Sekolah Dasar.
25 *Katalis Pendidikan: Jurnal Ilmu Pendidikan Dan Matematika, 2*(3), 14–20.
26 <https://doi.org/10.62383/katalis.v2i3.1865>

27 Nadjla, A. A. (2024). Pembelajaran Matematika Berbasis Kecerdasan Buatan untuk Meningkatkan
28 Aksesibilitas dan Karakter Peserta. *Prosiding Seminar Nasional Hasil Penelitian Dan Abdimas, 3*,
29 289–297.
30 <https://prosiding.stkippacitan.ac.id/index.php/semnaspenelitianabdimas/article/view/143>

31 Natsir, S. R. (2025). Implementasi Kurikulum Merdeka dalam Pembelajaran Matematika di Sekolah
32 Dasar: Studi Deskriptif Pendekatan Deep Learning dalam Kerangka Kurikulum Merdeka
33 Belajar. *Journal of Innovation Research and Knowledge (JIRK), 4*(9), 7263–7274.
34 <https://bajangjournal.com/index.php/JIRK/article/view/9909>

35 Pokrivcakova, S. (2019). Preparing teachers for the application of AI-powered technologies in
36 foreign language education. *Journal of Language and Cultural Education, 7*(3), 135–153.
37 <https://doi.org/10.2478/jolace-2019-0025>

38 Rahayu, C., Setiani, W. R., Yulindra, D., & Azzahra, L. (2025). Pendidikan Matematika Realistik
39 Indonesia dalam Pembelajaran Mendalam (Deep Learning): Tinjauan Literatur. *Jurnal*
40 *Pendidikan Matematika Universitas Lampung, 13*(1), 9–25.
41 <https://doi.org/10.23960/mtk/v13i1.pp9-25>

42 Reinhold, F., Hoch, S., Werner, B., Richter-Gebert, J., & Reiss, K. (2020). Learning fractions with and
43 without educational technology: What matters for high-achieving and low-achieving
44 students? *Learning and Instruction, 65*, 101264.
45 <https://doi.org/10.1016/j.learninstruc.2019.101264>

46 Rodríguez-Jiménez, C., de la Cruz-Campos, J. C., Campos-Soto, M. N., & Ramos-Navas-Parejo, M.
47 (2023). Teaching and Learning Mathematics in Primary Education: The Role of ICT-A
48 Systematic Review of the Literature. *Mathematics, 11*(272), 1–12.
49 <https://doi.org/10.3390/math11020272>

50 Sari, R. N., Rosjanuardi, R., Herman, T., Isharyadi, R., & Balkist, P. S. (2024). Development of
51 Mathematics Interactive E-Worksheet. *Eurasia Proceedings of Science, Technology, Engineering*

1 *and Mathematics*, 28, 317–325. <https://doi.org/10.55549/epstem.1521959>

2 Setälä, M., Heilala, V., Sikström, P., & Kärkkäinen, T. (2025). The Use of Generative Artificial
3 Intelligence for Upper Secondary Mathematics Education Through the Lens of Technology
4 Acceptance. In *Proceedings of the ACM Symposium on Applied Computing* (Vol. 1, Issue 1).
5 Association for Computing Machinery. <https://doi.org/10.1145/3672608.3707817>

6 Sharma, R. C., Kawachi, P., & Bozkurt, A. (2019). The Landscape of Artificial Intelligence in Open,
7 Online and Distance Education: Promises and Concerns. *Asian Journal of Distance Education*,
8 14(2), 1–2. <https://asianjde.com/ojs/index.php/AsianJDE/article/view/432>

9 Sinaga, P., Setiawan, W., & Liana, M. (2022). The impact of electronic interactive teaching materials
10 (EITMs) in e-learning on junior high school students' critical thinking skills. *Thinking Skills and
11 Creativity*, 46, 101066. <https://doi.org/10.1016/j.tsc.2022.101066>

12 Suyanto, Mubarak, A. , Suryadi, B., Darmawan, C., Wahyudin, D., Qodir, A. , Iskandar, H., Ismah,
13 Kadir, Yulianti, K., Maskur, Faradella, N. E., Herianingtyas, N. L. R., Waspodo, M., Purwahida,
14 R., Indrajit, R. E., Yazid, R., Oktafiana, S., Matakupan, S. , ... Darmajati, T. (2025). *Naskah
15 Akademik Pembelajaran Mendalam Menuju Pendidikan Bermutu Untuk Semua*. Pusat Kurikulum
16 dan Pembelajaran Badan Standar, Kurikulum, dan Asesmen Pendidikan Kementerian
17 Pendidikan Dasar dan Menengah Republik Indonesia.

18 Tempo. (2024). *Mendikdasmen Abdul Mu'ti: Pendekatan Deep Learning Akan Diterapkan di Kurikulum
19 Nasional*. [https://www.tempo.co/politik/mendikdasmen-abdul-mu-ti-pendekatan-deep-
learning-akan-diterapkan-di-kurikulum-nasional-1188242](https://www.tempo.co/politik/mendikdasmen-abdul-mu-ti-pendekatan-deep-
20 learning-akan-diterapkan-di-kurikulum-nasional-1188242)

21 Wahyuni, K. S. P., Candiasa, I. M., & Wibawa, I. M. C. (2021). Pengembangan E-LKPD Berbasis
22 Kemampuan Berpikir Tingkat Tinggi Mata Pelajaran Tematik Kelas IV Sekolah Dasar.
23 *PENDASI: Jurnal Pendidikan Dasar Indonesia*, 5(2), 301–311.
24 https://doi.org/10.23887/jurnal_pendas.v5i2.476

25 Wijaya, A. A., Haryati, T., & Wuryandini, E. (2025). Implementasi Pendekatan Deep Learning dalam
26 Peningkatan Kualitas Pembelajaran di SDN 1 Wulung, Randublatung, Blora. *Indonesian
27 Research Journal on Education*, 5(1), 451–457. <https://doi.org/10.31004/irje.v5i1.1950>

28

29

30