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Abstract 
Understanding the concept of a tangent line to a parabola is an important topic but often a challenge for 
prospective mathematics teacher students when learning emphasizes procedures over conceptual 

understanding. This research aims to design a STEM-based learning trajectory (Hypothetical Learning 
Trajectory) to enhance students' mathematical flexibility skills. The research method uses design research with 
three stages: initial design, learning experiment (pilot and full implementation), and retrospective analysis. The 
research subjects consisted of pre service mathematics teacher students from two classes. The learning path 

includes three STEM activities: exploring the crossbar challenge video in soccer, algebraic analysis and 
visualization using Desmos, and constructing and verifying tangents analytically and graphically. Data were 
obtained through classroom observation, interviews, worksheets, and videos, and were analyzed qualitatively 

using triangulation and the constant comparison method. The results show that students move from intuitive 
reasoning toward formal understanding thru transitions in contextual, symbolic, and graphical representations. 
Revising the HLT results in a Local Instructional Theory (LIT) that strengthens students' thinking flexibil ity and 
conceptual understanding. The results suggest that subsequent studies could refine and implement this LIT 

across diverse mathematical topics or STEM-integrated learning environments to examine its broader impact 
on students’ representational and reasoning flexibility. 
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Abstrak 
Pemahaman tentang konsep garis singgung pada parabola merupakan topik yang penting namun sering menjadi 

tantangan bagi mahasiswa calon guru matematika ketika pembelajaran lebih menekankan pada prosedur 
daripada pemahaman konseptual. Penelitian ini bertujuan untuk merancang lintasan belajar berbasis STEM 
(Hypothetical Learning Trajectory) guna meningkatkan kemampuan fleksibilitas matematis mahasiswa. Metod e 
penelitian yang digunakan adalah design research yang terdiri atas tiga tahap: desain awal, eksperimen 

pembelajaran (uji coba awal dan implementasi penuh), serta analisis retrospektif. Subjek penelitian terdiri atas 
mahasiswa calon guru matematika dari dua kelas. Lintasan belajar yang dikembangkan meliputi tiga aktivitas 
berbasis STEM, yaitu mengeksplorasi video crossbar challenge dalam sepak bola, melakukan analisis aljabar dan 
visualisasi menggunakan Desmos, serta membangun dan memverifikasi garis singgung secara analitik dan grafis. 

Data diperoleh melalui observasi kelas, wawancara, lembar kerja mahasiswa, dan rekaman video, ke mudian 
dianalisis secara kualitatif dengan teknik triangulasi dan metode perbandingan konstan. Hasil penelitian 
menunjukkan bahwa mahasiswa mengalami pergeseran dari penalaran intuitif menuju pemahaman formal 

melalui transisi representasi kontekstual, simbolik, dan grafis. Revisi terhadap HLT menghasilkan Loca l 
Instructional Theory (LIT) yang memperkuat keluwesan berpikir dan pemahaman konseptual mahasiswa. Hasil ini 
juga menunjukkan bahwa penelitian lanjutan dapat menyempurnakan dan mengimplementasikan LIT  tersebu t 
pada berbagai topik matematika atau lingkungan pembelajaran berbasis STEM untuk menelaah dampak yang 

lebih luas terhadap fleksibilitas representasional dan penalaran mahasiswa. 
 

INTRODUCTION 

Background 

The topic of tangent lines to parabolas is 
not merely a subtopic within analytic 

geometry but a crucial component that 
underpins the development of students’ 
analytical and representational reasoning 
((Biza, 2021; Kondratieva & Bergsten, 
2021) Through this topic, learners are 

guided to understand the relationship 
between the quadratic curve and its 

algebraic representation—an essential 
foundation for advanced mathematical 

thinking. Previous studies have 
emphasized that coordinating visual and 

algebraic reasoning in quadratic functions 
enables students to generalize and 

connect symbolic forms with graphical 
meaning (Wilkie, 2024), while curriculum 

analyses highlight that many learning 
difficulties stem from the lack of such 

representational coherence (Reid 
O’Connor & Norton, 2024). Integrating 
geometric visualization and algebraic 

structure within quadratic contexts 
supports higher-order reasoning and 

flexible mathematical thinking (Wilkie, 
2022). According to Kemendikbudristek 

(2022), the teaching of analytic geometry 
encompasses quadratic curves (parabolas 

and circles), and the gradient of tangent 
lines serves as a key concept for building 

representational connections and solving 
real-world problems such as analyzing ball 

trajectories, designing parabolic 
antennas, and calculating signal 

reflections (Santos-Trigo et al., 2024; Suci 
Wulandari et al., 2024). 

 
Problem Identification 
Despite its importance, students often 
struggle to understand the tangent line to 
a parabola conceptually. While some can 
apply analytical formulas or derivatives, 
many fail to relate them to the geometric 
meaning or real-world context of the 
parabola (García-García et al., 2025b). 
They tend to perceive the tangent merely 
as “a line that touches,” without 

understanding the condition of equal 
gradients or the role of the tangency 

point. Only a small percentage of students 
can define the tangent line as the limit of 

secant lines approaching the point of 
contact (Borji et al., 2024; García-García 
et al., 2025b). These misconceptions are 
often reinforced by instructional practices 
that focus on procedural calculation 
rather than conceptual understanding 
(Rahayuningsih et al., 2025). 
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Theoretical Foundation 
A major challenge in understanding 
parabolic concepts lies in the limited use 
of real-world contexts that connect 
abstract mathematics to concrete 
experiences. Mathematical flexibility—
the ability to creatively and adaptively 
employ multiple representations and 
strategies to solve problems—develops 
when instruction encourages transitions 
between geometric, algebraic, and 
contextual forms (Bolat & Arslan, 2024; 
Hickendorff et al., 2022; Jóelsdóttir et al., 
2024). Studies show that representational 
transitions enhance conceptual 

understanding and problem-solving 
(Ayyıldız Altınbaş et al., 2025; Sproesser 
et al., 2022). The integration of authentic 
contexts is particularly effective in 
teaching tangent lines, as it allows 
students to link visual and algebraic 
representations (Bos & Wigmans, 2023; 
Kondratieva & Bergsten, 2021). A relevant 
real-world example is soccer, where the 
parabolic trajectory of a kicked ball can be 
analyzed to determine whether it will 
strike the goal crossbar—a context that 
vividly illustrates the geometric meaning 
of tangency (Santos-Trigo et al., 2024). 
Similarly, Nopriyanti et al., (2025) 
emphasizes that embedding real-world 
phenomena in geometry instruction 

enhances conceptual reasoning and 
engagement by allowing students to 
visualize mathematical ideas 
meaningfully. Thus, authentic contexts 
act not only as motivational tools but also 
as conceptual bridges that deepen 
understanding of tangency, slope, and the 
relationship between curves and 
equations. 
 
Research Gap 
Existing studies on tangent lines have 
largely focused on diagnosing 
misconceptions (Biza & Zachariades, 
2010; García-García et al., 2025a) or 

examining STEM approaches for 
improving conceptual understanding 
(Portillo-Blanco et al., 2025; Roehrig et al., 
2021). However, few have integrated 
these two strands—conceptual 
development and STEM-based design—
within a coherent instructional 
framework. Moreover, research in the 
Indonesian context indicates a need for 
pre-service teachers to experience 
meaningful learning that connects formal 
mathematics with contextual reasoning, 
rather than relying solely on procedural 
methods (Hartini, 2020; Rahayuningsih et 
al., 2025). 

 
Research Contribution 
This study addresses these gaps by 
developing a STEM-based Hypothetical 
Learning Trajectory (HLT) for tangent 
lines to parabolas, designed through a 
design research approach. The HLT aims 
to guide students from intuitive (visual) 
reasoning to formal (symbolic) 
understanding through technological 
exploration. It also fosters mathematical 
flexibility by integrating design-based and 
real-world problem-solving activities that 
require students to shift between 
graphical, analytical, and numerical 
strategies. The framework aligns with the 
five principles of integrated STEM 

learning—cross-disciplinary integration, 
real-world problems, design-based 
learning, inquiry, and collaboration 
(Portillo-Blanco et al., 2025). Within this 
framework, activities such as the “crossbar 
challenge” in soccer serve as engaging 
contexts for modeling parabolic 
trajectories and determining tangent lines 
through geometric analysis. Ultimately, 
this study contributes a Local 
Instructional Theory (LIT) that bridges 
contextual STEM experiences with 
conceptual understanding, advancing 
both theoretical and practical insights into 
the development of mathematical 
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flexibility among pre-service teachers. 
 

METHOD 

Research Approach 
This study employs a design research 
approach of the validation study type as 
outlined by (Gravemeijer and Cobb 
(2006). Design research was chosen 

because it provides a systematic 
framework for designing, implementing, 

and revising learning trajectories through 
iterative cycles of design and analysis. The 

primary aim is to produce a Learning 
Trajectory (LT) that can serve as a guide 

for lecturers or other educators in 
teaching similar concepts across different 

contexts. According to Gravemeijer and 

Cobb (2006) and Bakker (2018), the 
design research process consists of three 

main phases. It can be seen in Figure 1. 
In addition to Gravemeijer and 

Bakker, this study also draws on the 
principles of Hypothetical Learning 

Trajectories (Simon, 1995), which 
emphasize the relationship between 

learning goals, learning activities, and the 
anticipated progression of students’ 

understanding (the hypothetical learning 
process). Within this framework, the HLT 

on tangent lines to parabolas was 
designed to guide pre-service teacherss 

from context-based intuitive 
understanding (e.g., the crossbar 
challenge in soccer) toward the formal 

representation of the tangent line 
equation of a parabola, supported by 

STEM-based learning. 
The STEM approach employed in 

this study follows the integration 
framework described by (Bybee ,2013; 

Roehrig et al., 2021;  Portillo-Blanco et al. 
2025), which highlights five principles: (1) 
cross-disciplinary integration, (2) the use 
of real-world problems, (3) design-
oriented solutions, (4) evidence-based 
inquiry, and (5) collaboration. Integrating 
these principles into the HLT is expected 
to foster mathematical flexibility, as 
defined by Hickendorff et al. (2022), 
namely the ability to creatively and 
adaptively shift across strategies and 
representations in solving mathematical 
problems. 
Research Subject 
The subjects of this study consisted of 22 

seventh-semester prospective 
mathematics teachers in the pilot 
experiment who had completed the 

Geometry course, and 27 third-semester 
prospective mathematics teachers in the 
teaching experiment who were currently 
taking the same course. The selection of 
these subjects was based on academic 
and theoretical considerations in design 
research, which emphasizes the 
importance of involving participants who 
possess relevant prior knowledge or are in 

the process of developing it (Gravemeijer 
& Cobb, 2006) In this context, students 
who had taken or were taking the Analytic 
Geometry course were deemed 
appropriate because they had been 
introduced to the fundamental concepts 
of curves, slopes, and tangent lines—
knowledge essential for engaging 
meaningfully in the designed learning 
trajectory. 
 
Data Collection 
Data collection was carried out through 
interviews, observations, student activity 
sheets, and documentation in the form of 

 

Figure 1. Design Research Process According to Gravemeijer and Cobb (2006) and Bakker (2018)  
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video recordings. Interviews were 
conducted with the course lecturer to 
review the learning process and to gain 
insights into students’ ways of thinking. 
Observations focused on the 
implementation of instruction and 
student interactions during classroom 
discussions. Student activity sheets were 
developed based on the HLT designed 
with STEM principles as the foundation 
and were then used to evaluate the 
progress of the learning activities. After 
the instructional activities, students were 
given a test to assess their learning 
achievements from the designed tasks, 

which subsequently served as a basis for 
revising the HLT activities. In addition, 
documentation in the form of 
photographs and video recordings was 
conducted during both the pilot 
experiment and the teaching experiment 
to capture the learning process 
throughout the study. 
 
Data Analysis 
Data were analyzed retrospectively with 
reference to the HLT using interviews, 
classroom observations, student activity 
sheets, and documentation. The 
qualitative analysis emphasized validity 
and reliability. Validity was ensured 
through triangulation (interviews, 

observations, documents, and video 
recordings) and process traceability, 
allowing readers to follow the learning 
trajectory and reasoning behind each 
conclusion. Reliability was maintained 
through detailed procedural descriptions 
and cross-interpretation across data 
sources. 

Data from activity sheets, 
interviews, and observations were directly 
linked to each phase of the initial HLT. 
Students’ responses and strategies 
provided evidence for confirming or 
revising the conjectures of each activity, 
while patterns from the data guided 

adjustments to better align the HLT with 
students’ actual learning processes. 

This approach is consistent with 
Creswell & Creswell (2018) who 
emphasize that qualitative validity 
ensures interpretations reflect 
participants’ experiences, and reliability 
concerns consistency in reporting. It also 
aligns with Miles, Huberman, and Saldaña 
(2014), whose framework of data 
reduction, display, and verification was 
realized through systematic triangulation. 
To ensure trustworthiness, Lincoln and 
Guba’s (1985) criteria—credibility, 
transferability, dependability, and 

confirmability—were applied so that the 
conclusions remained credible and 
accountable. 
 

RESULT AND DISCUSSION 

Results  

Preliminary Design 

At this stage, the researcher developed an 

initial HLT to be used in the learning 
process. The researcher then engaged in 

discussions with the Geometry course 
lecturer regarding the initial HLT design. 

The activities designed for the tangent 
line topic consisted of three activities and 

employed the Desmos application as a 
tool for visual verification. Desmos is a 

web-based mathematical visualization 
platform that enables students and 

teachers to explore mathematical 
concepts through interactive graphs, 

digital manipulatives, and real-time 

modeling activities. Beyond functioning 
as a graphing calculator, Desmos has 
evolved into an interactive learning 
medium that supports student-centered 

and inquiry-based learning approaches. 
Its use in mathematics instruction 

promotes students’ flexibility of thought 
by allowing them to explore multiple 

representations of concepts, select 
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diverse problem-solving strategies, and 
enhance conceptual understanding 
through interactive visualization 
(Alabdulaziz & Higgins, 2025; Chien et al., 
2025; Christie et al., 2025; Jumaniyazov et 
al., 2025). 

 
Teaching Eksperimen 
 
The STEM-based learning activities were 
developed based on the initially designed 

Hypothetical Learning Trajectory (HLT) 

and aimed to foster students’ 
mathematical flexibility. The pilot 

experiment served as the initial 
implementation stage to test the 

designed HLT and examine its feasibility 
in guiding students’ conceptual 

development. Findings from this stage 
provided critical feedback for revising the 

HLT and resulted in an Adjusted Learning 
Trajectory (ALT), which was then used in 

the subsequent teaching experiment. 
Learning activities for the tangent line 
material were divided into three main 
stages, each designed to help students 
deepen their understanding of tangent 
lines and apply related concepts to real-
world situations. The relationship 
between the STEM-based learning 
activities and the tangent line material is 
presented in Table 1. 
 

Activity 1: Observing and Analyzing the 

Crossbar Challenge Video 
 

The first activity in this learning trajectory 
begins with the context of the Crossbar 

Challenge, where a player attempts to 
kick the ball so that its trajectory hits the 

crossbar. This phenomenon is chosen 
because it is highly relatable to students’ 

everyday experiences and directly 
connected to the mathematical idea of a 

Table 1. The Relationship Between STEM-Based Learning and the Concept of Tangent Lines 

Learning Path Learning Activity  Tangent Lines equation of 
Parabola 

Activity 1 
Observing and 
analyzing the crossbar 

challenge video 

1. Watching a video about the crossbar 
challenge. 

2.  Concluding that the point of tangency 

is the meeting point between the 
ball’s trajectory and the crossbar, 
which occurs at exactly one point. 

Understanding the concept 
of a tangent point in the 
context of the crossbar 

challenge. 

Activity 2 

Determining the 
tangent line equation of 
a parabola in the 

context of the ball’s 
trajectory 

1. Presenting the problem of a ball’s 

trajectory in the form of a parabolic 
equation. 

2. Determining whether the ball will hit 

the crossbar by analyzing the 
trajectory equation. 

3. Students find the equation of the 
tangent line at the meeting point of 

the ball and the crossbar. 
4. Students sketch the tangent line and 

the ball’s trajectory using the Desmos 

application. 

Determining the tangent line 

equation of a parabola. 

Activity 3 
Predicting the tangent 
line equation 

1. Students open the Desmos 
application and plot a parabola using 
its general equation. 

2. Students select a point on the 
parabola curve and discuss how to 
determine the slope of the tangent 
line analytically. 

Determining the tangent line 
equation from the graph or 
from a given point. 
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tangent line. From a pedagogical 
perspective, using the context of a 
popular sport such as soccer not only 
enhances learning motivation but also 
provides a realistic learning experience 
aligned with the principles of PMRI. 
Through this contextual exploration, 
students are guided to observe and 
analyze the parabolic motion of the ball, 
recognize the point of contact between 
the trajectory and the crossbar as a 
tangency point, and gradually connect 
this understanding to the formal equation 
of a tangent line to a parabola. 

From a STEM perspective, the 

Crossbar Challenge serves as the starting 

point for integrating science, technology, 

engineering, and mathematics. 
Scientifically, students analyze the 

parabolic motion of the ball influenced by 

gravity. The technological aspect 
emerges when students use the Desmos 
application to visualize the ball’s 
trajectory and verify the tangent point. 
From the engineering perspective, 
students design strategies or simulations 
of how the ball can hit the crossbar. 
Meanwhile, the mathematical aspect 
focuses on exploring the tangent point, 
which in this context appears as the 
intersection between the parabolic 
trajectory of the ball and the horizontal 
line of the crossbar. Figure 2 illustrates 
students’ activities related to the crossbar 
challenge. 

 

Through this activity, students are 

encouraged to observe a video of the 
crossbar challenge and then connect it 

with geometric concepts. Guiding 

 
 

Figure 2. Students’ Activity Display on the Crossbar Challenge 

 

English Version 

1.  What can you conclude from the video 
above? 
Answer: The crossbar video shows the concept 
of tangent lines in everyday life, especially in 

football when the ball hits the crossbar. The 
video illustrates how the ball bounces according 
to the tangent line direction. 

2. What are the possible outcomes if the ball hits 
the crossbar? 
Answer: If the ball hits the crossbar, there are 
several possibilities: 

a. The ball goes into the goal and results in a 
score 

b. The ball bounces outside the field without 
scoring 

c. The ball bounces and falls back into the 

field 

 Figure 3. Students’ Responses to Activity 1 
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questions such as “What are the possible 
outcomes when a crossbar occurs?” or 
“What geometric term is used to describe 
the intersection of the ball’s trajectory with 
the goalpost?” prompt students to 
develop intuitive understanding before 
moving on to more formal mathematical 
representations. In this way, the activity 
serves as a bridge between real (concrete) 
experiences and abstract concepts (the 
tangent line), in line with the goals of 
STEM-based learning that emphasize the 

integration of practical experiences with 
scientific reasoning. 

Based on the students’ responses  
Figure 3, it can be seen that they 
understood the mathematical concept of 
a tangent line through a real-life example 
in soccer, namely when the ball hits the 
crossbar. They were able to explain that 

the point of tangency determines the 
direction of the ball’s rebound, which 

reflects an accurate conceptual 
understanding. In addition, the students 

also demonstrated flexibility in thinking, 

by recognizing that a single event (the ball 
touching the crossbar) can lead to 

multiple possible outcomes— a goal, a 
miss, or the ball returning to the field. The 
ability to consider various possibilities 
rather than being fixated on a single 
outcome is an important indicator of 
flexible thinking. This shows that the 
students not only understood the concept 
theoretically but were also able to 
connect it to real situations and think 
openly about different possibilities. Figure 
4 below presents the students’ responses 
to the subsequent question in Activity 1. 

 Based on the students’ responses  in 
Figure 4, it can be seen that they 
demonstrated a good understanding of 
the tangent line concept, particularly in 
explaining that the point of tangency is 
the point where the ball touches the 
crossbar before bouncing, in accordance 
with the principle of reflection. In 

addition, the students also displayed 
flexibility by explaining that a crossbar 

event may occur due to various factors, 
such as the angle of elevation and the 

speed of the kick. This reflects flexible 

thinking, as the students were able to 
view a single phenomenon from multiple 

 

English Version 

4. What kind of situation causes a crossbar to 
happen? 
Answer: 

A crossbar occurs when a kicked ball has a trajectory 
that is high enough but does not exceed the height of 
the goal. This usually happens if the kick has a steep 
elevation angle or enough speed to reach the 
crossbar. 

5. In geometry, what term is used to describe the 
point where the ball's path meets the goalpost? 
Answer: 
The term used is tangent point, which refers to the 
point where the ball touches the crossbar before 
bouncing. 
6. Based on the activity you did, what can you 
conclude about a tangent line? 
Answer: 
A tangent line is a line that touches a curve at exactly 
one point without crossing it. In this context, the 
tangent point occurs when the ball touches the 
crossbar before changing direction according to the 
law of reflection. 

 

Figure 4. Responses of Students in Activity 1 
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possible causes and relate it contextually 
to mathematical concepts. 

After conducting the pilot 
experiment and analyzing the findings 
during the learning process as well as the 
students’ work in completing Activity 1, 
the researcher held discussions with the 
lecturer to revise the HLT so that it 
became more focused and aligned with 
the learning objectives. Table 2 presents a 
comparison between the HLT and ALT in 
Activity 1. 

Activity 2: Tangent Line Equation of a 

Parabola in the Context of Ball 
Trajectoty 
 
In the design experiment phase of the 

second activity, the learning was focused 
on applying the context of soccer to 
understand the concept of a tangent line 

to a parabola. This activity was designed 
so that students would not only be able to 

determine the equation of a tangent line, 
but also interpret real-life situations on 

the field through mathematical 
representations. With this approach, 

students were encouraged to connect 
contextual problems—such as the 

trajectory of a ball hitting the crossbar or 
the position of a photographer’s camera—

with algebraic and calculus skills in 
determining tangent points and the 
gradient of a parabola. 

In the process, the integration of 
STEM elements became evident: science 
through the analysis of the ball’s 
trajectory as a parabolic motion 
phenomenon; technology through the 
use of the Desmos application for 
visualization and verification; engineering 
through the mathematical modeling of 
contextual events; and mathematics 

through the application of derivatives and 

systems of equations to determine the 
tangent line of a parabola. 

The results of this pilot experiment 
provided an initial picture of how 

students’ learning trajectories developed 
as they connected sports phenomena 
with analytic geometry concepts, while 

also demonstrating the potential of STEM 
integration in facilitating more 

meaningful learning. Figure 4 below 
illustrates the second activity given to the 

students. 
 

 
 

 
 

Table 2. Comparison Between HLT and ALT in Activity 1 

Learning Activity HLT ALT 

1. Watching and 

analyzing a video 

about the crossbar 

challenge. 

2. Concluding that the 

point of tangency is 

the meeting point 

between the ball’s 

trajectory and the 

crossbar, which 

occurs at exactly 

one point. 

1. Students are able to analyze a video 

about the crossbar challenge and 

relate it to the concepts of the 

parabola and the tangent line. 

2. Students are able to conclude that 

the point of tangency is the 

intersection between the ball’s 

trajectory and the crossbar, which 

occurs at exactly one point 

Students are able to 
explicitly connect the 
phenomenon with geometric 

concepts: 
1. “What term is used in 

geometry to refer to the 

intersection point 

between the ball’s 

trajectory and the 

goalpost?”  

2. “If the point on the 

crossbar forms a straight 

line, then how is that line 

positioned relative to the 

ball’s trajectory?” 
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In the implementation of the 
second activity, students were engaged in 
analyzing the trajectory of a soccer ball 

modeled by a parabolic equation. The 
contextual problem addressed was the 
situation in which a ball is kicked toward 
the goal with the possibility of hitting the 
crossbar. Students were asked to sketch 
the trajectory of the ball and then 
determine mathematically whether the 
ball touches the crossbar. Through this 
series of tasks, students not only carried 
out algebraic and calculus procedures but 
also developed a conceptual 

understanding that the tangent line is a 
mathematical representation of the real 

interaction between the ball’s trajectory 
and another object on the field. 

Based on the results of this pilot 
experiment, several important findings 
were obtained regarding students’ 
thinking patterns, problem-solving 
strategies, and the difficulties they 
encountered when connecting contextual 
phenomena with mathematical concepts. 
These findings will be presented in the 
following section to provide a more 

detailed picture of the students’ learning 
trajectories in this activity. 

 

Figure 5. Worksheet 2 

 

Figure 6. Student Group Discussion Result of Activity 2 
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Based on the analysis of Activity 2, 
the students have understood that the 
tangent line to a parabola is a line that 
touches the curve at exactly one point. 
Although in this case the ball did not hit 
the crossbar, the students still 
demonstrated an important 
understanding: to determine a tangent 
line, it is necessary to identify the point of 
tangency on the parabola that is parallel to 
a given line (in this case, the horizontal line 
of the crossbar). Thus, their understanding 
has progressed from mere numerical 
calculations to conceptual skills in 
connecting real-world phenomena, 

algebraic representations, and graphical 
visualizations. After completing Activity 2, 
the researcher conducted interviews with 
the students to examine the effectiveness 
of the activity. The following section 
presents the results of the student 
interviews. 

Lecturer : What do you think about the 
problem in the second 
activity regarding the ball’s 
trajectory toward the goal? 

Student A : In my opinion, the problem 
was interesting because it 
was directly connected to 
soccer. But when we 
calculated it, it turned out 
the ball did not touch the 
crossbar, so we could only 
conclude that the ball fell 
earlier. 

Lecturer : Did that help you 
understand the concept of 
the tangent line to a 
parabola? 

Student A : It did help, but not 
completely. Because we 
didn’t get the chance to find 
the tangent line that 
actually touches the 
parabola at the point on the 
goal. So, it felt like 
something was missing, as if 
the concept did not fully 
appear. 

Lecturer : What do you think could be 
added to make the 
understanding of the 
tangent line clearer? 

Student B : Maybe there should be an 
additional problem where 
the ball’s trajectory really 
touches the crossbar. If we 
had that case, we could 
prove the tangent line, not 
just stop at the conclusion 
that the ball did not reach. 

Lecturer : How about the problem-
solving methods—was there 
a particular method that 
helped you more? 

Student B : If we used only one method, 
sometimes we weren’t sure. 
But when we were asked to 
try both derivatives and 
elimination, we could 
compare the results. That 
made us more confident that 
the tangent line equation 
was correct. 

 

Based on the results of the pilot 
experiment and student interviews, it was 

found that the initial problem in activity 2 
only produced a ball trajectory that did 

not touch the crossbar, preventing 
students from experiencing the process of 

determining a tangent line in a real 
situation. To address this, discussions 

with the model lecturer led to a revised 
scenario in which the ball’s trajectory 

actually touched the crossbar, allowing 
students to authentically explore the 
tangent line by identifying the exact point 

of tangency. The revision also aimed to 
enrich students’ problem-solving 

strategies through two complementary 
approaches: the elimination method, 

involving a quadratic–linear system, and 
the derivative method for determining 

the slope of the tangent. Students were 
guided to compare both methods to see 

how they converge on the same tangency 
point—the former emphasizing algebraic 
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relationships and the latter the geometric 
interpretation of slope. This reflective 
comparison helped students perceive the 
methods as conceptually interconnected 
rather than procedural alternatives, 
thereby strengthening their learning 
trajectory and enhancing the quality of 
STEM integration. Table 3 presents the 
comparison between the HLT and ALT in 
activity 2. 

Activity 3: Determining the Equation of 
a Tangent Line from a Graph or from a 
Given Point 
 

The third activity aimed to deepen 
students’ understanding of slope and 
tangent line equations on a parabola 

through the integration of technology and 
analytical approaches. Using the Desmos 

application, students explored the graph 
of a parabola, selected a specific point, 
and determined the tangent line equation 
analytically. This process exemplified 
STEM-based learning: science in 
interpreting slope as a derivative, 

technology through Desmos visualization 
and verification, engineering in designing 

predictive methods from point data, and 
mathematics in applying differential 
techniques. Students verified their results 
using Desmos’ tangent feature and 
engaged in group discussions to evaluate 
accuracy and construct arguments across 
visual and symbolic representations. The 
activity trained students to think flexibly 
by shifting between representations and 
formulating coherent justifications, 

thereby linking procedural understanding 
with conceptual reasoning through 
technology-supported exploration. Figure 
7 illustrates Activity 3 on tangent lines to a 

parabola. 
In the third activity in Figure 7, the 

design focused on developing students’ 

conceptual understanding of slope and 
the equation of a tangent line to a 

parabola through a STEM-based, inquiry-
oriented approach. Students were guided 
to use the Desmos application to 
represent the graph of a parabola, select a 
point on the curve, and then predict the 
tangent line equation analytically based 

on the principles of derivatives. 
The science aspect was reflected in 

Table 3. Comparison Between HLT and ALT in Activity 2 

Learning Activity HLT ALT 

1. Presenting the problem of 

the ball’s trajectory in the 

form of a parabolic 

equation. 

2. Determining whether the 

ball will hit the crossbar by 

analyzing the trajectory 

equation. 

3. Students find the 

equation of the tangent 

line at the intersection 

point of the ball and the 

crossbar. 

4. Students sketch the 

tangent line and the ball’s 

trajectory using the 

Desmos application. 

1. Students determine the 

ball’s trajectory from 

the given equation. 

2. They attempt to 

determine whether the 

ball hits the crossbar by 

using substitution and 

simple manual 

calculations. 

3. Students determine the 

equation of the tangent 

line. 

4. Students use the 

Desmos application for 

verification. 

1. Students first predict whether 

the ball will hit the crossbar, 

then verify it through 

mathematical calculations and 

graphs. 

2. Students are asked to 

determine the equation of the 

tangent line at the crossbar 

point as a representation of the 

trajectory’s direction at that 

point. 

3. Students use two explicit 

approaches. 

4. Students compare the results 

from both approaches and draw 

conclusions. 

5. Students use Desmos to 

connect algebra and geometry. 
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the understanding of derivatives as rates 
of change, technology in the use of 

Desmos as an exploratory and verification 
tool, engineering in designing predictive 

strategies to determine the slope of the 
line, and mathematics in the symbolic 

formulation of the tangent line equation. 

The predicted results were then 
compared with direct visualizations 

through the tangent line feature in the 
application, enabling students to revise 

their approaches reflectively. 
Group discussions encouraged 

them to evaluate the accuracy of their 
calculations, construct coherent 

mathematical arguments, and compare 
different problem-solving strategies. This 

activity aimed to foster students’ 
mathematical flexibility through 

transitions across representations 
(graphical, symbolic, technological), while 

also deepening their understanding of the 

relationship between differential 
geometry and functional visualization in 

the context of technology-enhanced 
learning. The following section presents 

the results of student group discussions 
for the third activity. 

Analysis of students’ responses 

revealed a growing understanding of the 
tangent line as a mathematical object 

linking geometric and analytical 
representations. Through exploring 

points on a parabola and using derivatives 
to determine slopes, students recognized 

that the gradient at a given point is 
defined by the local properties of the 

function, not chosen arbitrarily. This 
understanding reflects a shift from 

viewing the tangent merely as a “touching 
line” to conceiving it as the limit of secant 

lines approaching the tangency point, 
consistent with the formal definition in 

calculus. Moreover, students’ ability to 

 

Figure 7. Activity 3 

 

Figure 8. Students’ Responses in the Third Activity 
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construct tangent line equations from a 
point and slope indicated mastery of 
linear equations and their analytic 
justification through derivatives. 
Verification using Desmos strengthened 
the link between symbolic and visual 
reasoning, as students compared 
predicted and actual graphs, reflected on 
discrepancies, and deepened their 
conceptual insight—understanding that 
mathematical validity involves both 
procedural accuracy and geometric 
meaning. 

In addition, students’ responses to 
conceptual questions about the effect of 

the coefficient a in the parabola equation 
on the slope of the tangent line indicated 
a functional understanding of the role of 
parameters in altering the properties of 
the curve and the rate of change at a given 
point. They also understood that a 
tangent line parallel to the x-axis occurs at 
the vertex of the parabola, showing that 
they had internalized the idea that a zero 
derivative marks the extreme point of a 
function. After the third activity, the 
researcher conducted interviews with 
students to examine whether the STEM-
based learning that took place supported 
their understanding of the tangent line 
topic. 

Lecturer : After completing the third 
activity, how did you find the 
process of determining the 
tangent line to a parabola? 

Student A : In my opinion, the process 
was quite clear. We started 
from the parabola graph in 
Desmos, then chose a point 
on the curve and determined 
the gradient using 
derivatives. From there, we 
were able to construct the 
tangent line equation. 

Lecturer : How did Desmos help you in 
understanding this? 

Student C : Desmos was very helpful. 
We could immediately see 
whether the line we 

predicted truly touched the 
curve at a single point. If it 
didn’t match, we knew we 
had to check our calculations 
again. The visualization 
made us more confident 
about the concept. 

Lecturer : Do you think this STEM-
based learning made the 
lesson more engaging? 

Student A : Yes, because we weren’t just 
calculating; we also 
analyzed scientifically, used 
technology, and discussed 
together to solve the 
problem. We even tried other 
scenarios to see how 
changes in the curve 
affected the tangent line. 

Student B : I also felt that we learned 
more comprehensively. 
There was the science aspect 
when discussing curve 
changes, technology 
through Desmos, 
mathematics in the 
formulas, and engineering 
when designing solution 
strategies. 

Lecturer : In that case, do you think this 
activity helped you 
understand the tangent line 
concept better compared to 
previous lessons? 

Student C : Much more helpful, Sir. We 
didn’t just memorize 
formulas; we truly 
understood how the tangent 
line works. And we could 
explain why the results 
turned out that way, not just 
present the final answer. 

 

The reflections drawn from the 

findings during the learning process, 
student interviews, and activity results 

were discussed in an FGD with the model 
lecturer. It was concluded that some 

students had not yet fully understood the 
role of coefficients in influencing the 

shape of the curve. Therefore, in the 
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discussion process, it was necessary to 
guide students in determining the 
appropriate values of a, b, and c to 
produce a clear parabola graph. 

 
Restrospective Analysis 
 

The retrospective analysis focused on 
evaluating the alignment between the 

designed Hypothetical Learning 
Trajectory (HLT) and the Actual Learning 

Trajectory (ALT) observed during the pilot 
and teaching experiments. Overall, the 

findings revealed both consistencies and 
necessary revisions that contributed to 

the refinement of the Local Instructional 
Theory (LIT). 

In Activity 1, students were able to 
relate the crossbar challenge video to the 
concept of tangent lines. Their responses 
demonstrated intuitive recognition that 
the tangent point determined the ball’s 
rebound direction. This confirmed the 
initial HLT prediction that contextual 

phenomena could bridge everyday 
experiences with abstract geometric 

reasoning. However, classroom 
discussions also indicated the need to 

include more guiding questions so that 
students could explicitly articulate the 

connection between the observed 
context and the mathematical concept. 

This revision contributed to the LIT by 
emphasizing the pedagogical value of 
contextual anchoring as the entry point 
for developing conceptual understanding. 

In Activity 2, the initial problem 
produced a ball trajectory that did not 
touch the crossbar. Although students 

correctly concluded that the ball fell 
before reaching the goal, they did not 

experience the process of deriving a 
tangent line from a real contact point, 

limiting the realization of the HLT’s 
conceptual goals. The revised task 

introduced a scenario where the ball’s 
trajectory actually touched the crossbar, 

enabling students to construct and 
compare tangent equations using both 

system elimination and derivative 
methods. This comparison strengthened 
the LIT by illustrating how dual-solution 
strategies can promote representational 
flexibility and deepen conceptual 
coherence. 

In Activity 3, students demonstrated 

significant progress in transitioning from 
visual to symbolic representations. They 

recognized the tangent line not merely as 
“a line that touches” but as the limit of 

secant lines approaching a single point, 
consistent with the formal definition in 

calculus. The integration of Desmos 
facilitated verification and reflection, 

Table 4. Comparison Between HLT and ALT in Activity 3 

Learning Activity HLT ALT 

1. Plotting a parabola 

using the general 

equation. 

2. Selecting a point on 

the parabola curve 

and discussing how 

to determine the 

slope of the tangent 

line analytically. 

1. Students plot a 

parabola using the 

general equation. 

2. Students select a 

point on the parabola 

curve and discuss how 

to determine the 

slope of the tangent 

line analytically. 

1. Students first predict whether the ball 

will hit the crossbar, then verify it 

through mathematical calculations and 

graphs. 

2.  Students are asked to determine the 

equation of the tangent line at the 

crossbar point as a representation of 

the trajectory’s direction at that point. 

3. Students use two explicit approaches. 

4. Students compare the results of both 

approaches and draw conclusions. 

5. Students use Desmos to connect 
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allowing students to test their predictions 
graphically and analytically. However, 
some students still struggled to interpret 
the influence of coefficients (a, b, c) on the 
shape of the parabola, which led to the 
inclusion of additional scaffolding tasks in 
the refined LIT to support symbolic 
reasoning. 

Taken together, the retrospective 
analysis shows that each iterative 
revision—from contextual anchoring 
(Activity 1), dual-method exploration 
(Activity 2), to representational 
integration (Activity 3)—contributed 
directly to the formulation of a 

contextually grounded LIT. The cycle of 
testing, feedback, and refinement 
between the HLT and ALP thus produced 
a coherent theoretical framework that 
integrates STEM principles to foster both 
conceptual understanding and 
mathematical flexibility. 

 
Discussion 

This study reveals that a STEM-based 

learning trajectory effectively supports 
the development of prospective 

mathematics teachers’ mathematical 
flexibility in understanding the concept of 

the tangent line to a parabola. These 
findings align with prior research 

emphasizing that flexibility emerges 
when learners engage with multiple 
representations and connect contextual, 

symbolic, and graphical reasoning 
(García-García et al., 2025b; Hickendorff 

et al., 2022). By embedding realistic 
contexts, mathematical modeling, and 

technology integration, the learning 
trajectory not only fostered deeper 

conceptual understanding but also 
provided evidence of how iterative design 

can bridge procedural and conceptual 
knowledge. This suggests that 

incorporating STEM principles within a 
structured HLT framework can serve as a 

powerful pedagogical model for 
cultivating adaptive and connected 
mathematical thinking among pre-service 
teachers. 

In the first activity, the use of the 
Crossbar Challenge video proved effective 
as a contextual entry point. This finding 
complements the perspective of Santos-
Trigo et al., (2024), who emphasized the 
importance of dynamic contexts, by 
demonstrating that a familiar soccer 
phenomenon can stimulate students’ 
geometric intuition toward the parabola. 
Students’ recognition of the tangent point 
as the unique intersection between the 

ball’s trajectory and the crossbar 
confirmed the initial conjecture that 
contextual experiences can activate 
intuitive reasoning, forming a foundation 
for formal exploration. 

The second activity built upon this 
intuition by guiding students to 
analytically determine the tangent line 
through two complementary approaches: 
the system elimination and derivative 
methods. The inclusion of a revised 
scenario where the ball’s trajectory 
actually touched the crossbar enabled 
students to compare these methods 
critically. Unlike previous studies that 
treated strategy selection as independent 
choices (Hickendorff et al., 2022; 

Jóelsdóttir et al., 2024), this research 
demonstrated that flexibility can be 
fostered through reflection on how both 
strategies converge toward the same 
mathematical idea. This reinforces the 
novelty of the design, in which problem-
solving diversity serves as a scaffold for 
representational coherence. 

The third activity consolidated 
learning by transitioning from visual 
reasoning to formal symbolic 
representation. Students began to 
interpret the tangent line not only as a 
touching line but as the limit of secant 
lines—addressing a misconception 
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highlighted by Biza & Zachariades (2010). 
With the support of Desmos, they linked 
the coefficients of the parabola’s equation 
with the slope of its tangent, illustrating a 
more integrated understanding between 
algebraic form and geometric meaning. 
This use of technology provided empirical 
evidence that visualization tools can 
accelerate conceptual progression from 
concrete to abstract reasoning. 

Viewed collectively, the three 
activities functioned as an interconnected 
sequence within the HLT—each stage 
preparing the conceptual groundwork for 
the next. The contextual exploration 

(Activity 1) evoked intuition, the analytical 
dual-method investigation (Activity 2) 
deepened reasoning, and the 
technological formalization (Activity 3) 
solidified understanding. Together, they 
formed a coherent learning trajectory that 
advanced students’ transition from 
intuitive to formal mathematical thinking. 
The study’s main contribution lies in 
demonstrating how integrating STEM 
principles—science through analyzing 
parabolic motion, technology through 
Desmos, engineering through problem 
design, and mathematics through 
formalization—within a unified HLT 
framework can promote both conceptual 
understanding and mathematical 

flexibility, representing a state-of-the-art 
approach to geometry learning in 21st-
century education (Portillo-Blanco et al., 
2025; Rahayuningsih et al., 2025) 
 

Implication of Research 

The findings of this study provide several 
important implications for various 
stakeholders in mathematics education. 
For future researchers, the Learning 
Trajectory (LT) developed in this study 
can serve as a reference framework for 
designing and refining learning 
trajectories in other mathematical topics, 

such as calculus, geometry, or algebra, 
which likewise demand flexibility in 
shifting between representations. The 
design research methodology, with its 
iterative cycles, also opens opportunities 
for comparative studies across different 
educational levels and diverse cultural 
contexts. 

 For practitioners—lecturers or 
teachers—the STEM-based learning 
trajectory designed in this study offers a 
practical model for integrating real-world 
contexts, such as the soccer crossbar 
challenge, with the mathematical concept 
of tangent lines. The structured activities 

encourage students to progress from 
intuitive reasoning to formal 
understanding through multi-
representational tasks, thereby providing 
educators with concrete strategies to 
foster students’ flexibility in thinking and 
depth of conceptual understanding. 

 For policymakers and curriculum 
developers, this study underscores the 
importance of embedding STEM 
principles and realistic contexts within 
teacher education programs. By 
supporting the integration of technology 
(e.g., Desmos) and inquiry-based 
learning, educational policies can better 
prepare pre-service teacherss to deliver 
meaningful and flexible mathematics 

learning that aligns with 21st-century 
competency demands. 

Overall, the implications of this 
study affirm that a STEM-based learning 
trajectory is not only relevant for 
enhancing students’ conceptual 
understanding of tangent lines, but also 
holds potential to enrich teaching 
practices, strengthen curriculum design, 
and open new directions for research. 
Thus, the results of this study are 
expected to make a tangible contribution 
to the development of theory, practice, 
and policy in mathematics education. 
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Limitation 

This study has several limitations that 

should be acknowledged. In terms of 
participants, the study involved only 49 

prospective mathematics teachers from 
two classes, so the findings cannot yet be 

generalized broadly. In terms of content, 
the focus was limited to the concept of 

tangent lines to parabolas, meaning that 
the effectiveness of the designed STEM-

based learning trajectory may not 
necessarily apply to other mathematical 

topics without adaptation. In terms of 
context, the learning activities were 

carried out in classrooms with the support 
of specific technology (Desmos), which 
may not fully represent school conditions 

with limited access to technology. In 
terms of time, the research was 

conducted within a single semester, 
which does not capture the long-term 

impact on students’ development of 
mathematical flexibility. In terms of 

design, this study employed a design 
research approach of the validation study 

type, emphasizing internal validity 
through the testing of the HLT, but it did 

not compare the effectiveness of this 
learning trajectory with other approaches 

in an experimental manner. 
 

CONCLUSION  

This study highlights a coherent pattern 
showing that a STEM-based learning 

trajectory, developed through a design 
research approach, can serve as an 

effective framework for fostering 
mathematical flexibility and conceptual 
understanding among prospective 
mathematics teachers. The integration of 
contextual phenomena, symbolic 
reasoning, and technology demonstrated 
how authentic contexts can bridge 
intuitive and formal thinking within 
mathematics learning. The core 
contribution of this research lies in 

formulating a Local Instructional Theory 
(LIT) that connects STEM principles with 
the progressive development of 
geometric reasoning, offering both 
theoretical and practical implications for 
mathematics teacher education. This LIT 
can be adapted to other calculus and 
geometry topics—such as derivatives of 
trigonometric functions, optimization 
problems, or the study of circle and ellipse 
tangency—by maintaining the integration 
of contextual modeling, technology-
based visualization, and analytical 
reasoning. Moreover, its implementation 
in secondary school settings could provide 

students with meaningful experiences 
that connect mathematical abstraction to 
real-world phenomena, thereby 
promoting flexible and connected 
mathematical thinking. Future research 
may further explore these adaptations to 
evaluate their effectiveness in diverse 
educational contexts. 
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