

Turnitin_33885 Kreano 16(2).pdf

 Universitas Negeri Semarang - iTh

Document Details

Submission ID**trn:oid:::3618:126840207****14 Pages****Submission Date****Jan 25, 2026, 11:32 AM GMT+7****6,574 Words****Download Date****Jan 27, 2026, 12:17 AM GMT+7****36,356 Characters****File Name****Turnitin_33885 Kreano 16(2).pdf****File Size****397.9 KB**

5% Overall Similarity

The combined total of all matches, including overlapping sources, for each database.

Filtered from the Report

- ▶ Bibliography

Match Groups

- **20** Not Cited or Quoted 4%
Matches with neither in-text citation nor quotation marks
- **5** Missing Quotations 1%
Matches that are still very similar to source material
- **0** Missing Citation 0%
Matches that have quotation marks, but no in-text citation
- **0** Cited and Quoted 0%
Matches with in-text citation present, but no quotation marks

Top Sources

- 3% Internet sources
- 4% Publications
- 0% Submitted works (Student Papers)

Integrity Flags

0 Integrity Flags for Review

No suspicious text manipulations found.

Our system's algorithms look deeply at a document for any inconsistencies that would set it apart from a normal submission. If we notice something strange, we flag it for you to review.

A Flag is not necessarily an indicator of a problem. However, we'd recommend you focus your attention there for further review.

Match Groups

- 20 Not Cited or Quoted 4%
Matches with neither in-text citation nor quotation marks
- 5 Missing Quotations 1%
Matches that are still very similar to source material
- 0 Missing Citation 0%
Matches that have quotation marks, but no in-text citation
- 0 Cited and Quoted 0%
Matches with in-text citation present, but no quotation marks

Top Sources

- 3% Internet sources
- 4% Publications
- 0% Submitted works (Student Papers)

Top Sources

The sources with the highest number of matches within the submission. Overlapping sources will not be displayed.

Rank	Source	Percentage
1	Internet	<1%
2	journal.unnes.ac.id	<1%
3	Publication	<1%
4	Saolina , Muhtarom , FX Didik Purwosetiyono. "Outdoor Learning Mathematics in ...	<1%
5	Publication	<1%
6	Kasan, Rusnadi A.. "Integrating Technology-Enhanced Language Learning for the ...	<1%
7	Publication	<1%
8	"Augmented and Virtual Reality in Mathematics Education", Springer Science and...	<1%
9	Publication	<1%
10	Ade Gafar Abdullah, Vina Adriany, Cep Ubud Abdullah. "Borderless Education as a...	<1%
11	Publication	<1%
12	Mailizar Mailizar, Manahel Alafaleq, Lianghuo Fan. "A historical overview of math...	<1%
13	Publication	<1%
14	K N S Effendi, Zulkardi, R I I Putri, P Yaniawati. "The development of mathematics...	<1%
15	Publication	<1%
16	SA Saskiyah, RII Putri. "Jumping task using the context of kain jumputan on the fr...	<1%
17	Publication	<1%
18	Uswatun Hasanah, Ratu Ilma Indra Putri, Zulkardi Zulkardi. "Development of lear...	<1%
19	Publication	<1%
20	Zakaria Zakaria, Andi Harpeni Dewantara. "Understanding multiplication concept...	<1%

11 Publication

Abdul Rahim, Samsul Hadi, Marlina Marlina, Dyah Susilowati, Muti'ah Muti'ah, Irh... <1%

12 Internet

doaj.org <1%

13 Internet

ejournal.universitasmandiri.ac.id <1%

14 Internet

www.fisme.science.uu.nl <1%

15 Publication

Robinson Putra, Irwan Efendi, Yuniar Aviati Syarief, Helvi Yanfika, Indah Listiana. ... <1%

16 Internet

journal.unj.ac.id <1%

17 Publication

Arthur Bakker. "Design Research in Education - A Practical Guide for Early Career ... <1%

18 Internet

id.123dok.com <1%

19 Internet

jurnal.radenfatah.ac.id <1%

20 Publication

"International Reflections on the Netherlands Didactics of Mathematics", Springer... <1%

1 Preliminary Design of an Outdoor Mathematics Learning Model through Math Trails in the
2 Cultural Tourism Context of Putri Pinang Masak Park Jambi

3
4 **Ainun Mardia¹, Zulkardi^{2*}, Ratu Ilma Indra Putri³, and Kamid⁴**

5
6 ^{1,2,3}Mathematics Education, Sriwijaya University, Palembang, Indonesia

7 ⁴Mathematics Education, Jambi University, Jambi, Indonesia

8
9 Correspondence should be addressed to Author: zulkardi@unsri.ac.id.

10
11 **Abstract**

12 In Indonesia, mathematical learning designs that integrate outdoor learning with the
13 context of local tourism are still very limited, despite the authentic opportunities such
14 environments provide for relating mathematics to real life. The objective of this study is to
15 design an outdoor learning-based mathematics learning model using the Indonesian
16 Realistic Mathematics Education (PMRI) approach, in the context of the Putri Pinang Masak
17 Park cultural tourism destination in the city of Jambi. The approach adopted was design
18 research at the preliminary design stage, which encompassed curriculum analysis,
19 exploration of the mathematical context at the location, and development of a math trail
20 blueprint. The results of this study will show that the tourist environment provides a rich
21 context for geometry, measurement, and proportional reasoning, thereby rendering
22 learning more meaningful, mindful, and joyful. This design contributes to the development
23 of contextual pedagogy and forms the basis for the prototyping and validation stages.
24 Further research is necessary to ascertain the effectiveness of the design in learning practice.

25
26 **Keywords:** outdoor learning; PMRI; math trail; design research; cultural tourism

27
28 **Abstract**

29 *Desain pembelajaran matematika di Indonesia yang telah mengintegrasikan outdoor learning*
30 *dengan konteks pariwisata lokal masih sangat minim, sedangkan lingkungan tersebut*
31 *menyediakan peluang yang autentik untuk mengaitkan matematika dengan kehidupan nyata.*
32 *Tujuan dari penelitian adalah merancang model pembelajaran matematika berbasis outdoor*
33 *learning dengan pendekatan Pendidikan Matematika Realistik Indonesia (PMRI), yang*
34 *dikontekstualisasikan pada destinasi wisata budaya Putri Pinang Masak Park di Kota Jambi.*
35 *Metode yang digunakan design research pada tahap preliminary design, yang memuat analisis*
36 *kurikulum, eksplorasi konteks matematis di lokasi, serta pengembangan blueprint math trail.*
37 *Hasil dari penelitian ini akan menunjukkan bahwa lingkungan wisata menyediakan konteks*
38 *kaya untuk geometri, pengukuran, serta penalaran proporsional sehingga pembelajaran lebih*
39 *meaningful, mindful, and joyfull. Desain ini memberikan kontribusi pada pengembangan*
40 *pedagogi kontekstual dan menjadi dasar bagi tahapan prototyping serta validasi. Penelitian*
41 *selanjutnya dapat menguji efektivitas desain dalam praktik pembelajaran.*

42
43
44 **Mathematics Clasification: ---- must be filled ----**

45 *Please check Mathematics Clasification here:*

46 <https://mathscinet.ams.org/msc/msc2010.html?t=97-XX&s=&btn=Search&ls=s>

1 **Metadata of Author**

2 First author: SCOPUS ID: - optional - | ORCID ID: - mandatory - | Google Scholar: - optional -
3 Co-author: SCOPUS ID: - optional - | ORCID ID: - mandatory - | Google Scholar : - optional -
4

5 **INTRODUCTION**

6 Mathematics learning at the junior high school level continues to encounter obstacles,
7 particularly in students' inadequate capacity to relate mathematical concepts with real-
8 world circumstances. Several studies have indicated that children often rely on procedural
9 understanding and struggle to use geometry, measurement, and proportional reasoning
10 skills when confronted with authentic scenarios (Cahyono, Sukestiyarno, Asikin, Miftahudin,
11 et al., 2020). In formal education in Indonesia, mathematics learning ideally is not only
12 directed at understanding concepts and calculation processes but also focuses on
13 mathematical literacy, problem-solving abilities, and mathematical communication skills
14 (Rahayu & Putri, 2021). The independent curriculum emphasizes that learning should focus
15 on developing the real competencies students need. This orientation is reflected in the
16 mathematics learning outcomes (CP) of phase D at the junior high school level, which not
17 only target conceptual understanding but also encourage students to interpret and apply
18 mathematics in everyday situations. Within this framework, Elements of geometry and
19 measurement an essential role as a learning space where students explore various shape,
20 determine area, perimeter, and volume of both flat and spatial shapes, use congruence and
21 symmetry, understand the Pythagorean theorem, and relate measurement to scale in real
22 contexts (Fauzi & Arisetyawan, 2020; Susanti et al., 2023; Wati & Nurcahyo, 2023).
23 Normatively, learning mathematics in junior high school must be able to prepare students to
24 not only master concepts but also be able to apply them in everyday life and the socio-
25 cultural environment around students.

26 The facts in the field show that there is a gap between the ideal conditions to be
27 designed in the curriculum and the reality of learning in schools. Many studies describe that
28 mathematics learning in Indonesia is still dominated by conventional approaches that are
29 teacher-centered, focused on memorizing formulas, and lack of integration with the real
30 context around students (Zulkardi, 2025; Zulkardi et al., 2019). Initial observations of
31 researchers in Jambi City junior high schools showed that teachers still used textbooks as a
32 source and routine problem exercises in explaining geometry and measurement concepts.
33 Students can do area, perimeter, or volume calculation problems but have difficulty when
34 asked to connect concepts with real objects around students. When students were asked to
35 estimate the height of a building, calculate the volume of a water container, and determine
36 the diameter of a circle with simple measurements, students showed limitations in using
37 mathematical concepts as a tool to understand real-world applications.

38 This condition shows that there is a gap between the ideal goal of learning
39 mathematics in the independent curriculum and the practice of ongoing learning. It should
40 be in accordance with the paradigm of modern mathematics education, students who learn
41 mathematics from meaningful contextual experiences, not merely through abstract
42 symbols and procedures (Freudenthal 1992, gravemeijer 1994) this is in line with the
43 government program, namely deep learning, namely meaningful, mindful, and joyful
44 learning activities. Vygotsky (1978) emphasized the importance of social interaction and

1 cultural context in building knowledge, Bruner (1964) said that learning should move from
2 the enactive stage ((Brown, 2021; Kedikli & Katrancı, 2024)direct experience), iconic (using
3 visual representations, to symbolic which uses abstract symbols . This ideal condition has
4 not been fully implemented in the practice of learning mathematics in junior high schools /
5 MTs.

6 The gap between ideal and reality shows the need for innovation in mathematics
7 learning design. An alternative that can be used as an option is outdoor learning as a learning
8 model. Outdoor learning places the environment around students as a place to learn, where
9 students interact directly with real objects to build concepts (Nugraha et al., 2023). This
10 model can be a more active, collaborative, and meaningful learning because students are
11 not only dealing with abstract symbols but also doing exploration, measurement, and
12 discussion activities based on real experiences. This is in accordance with Thorndike's 1914
13 view of connectionism, that learning will be stronger when the stimulus has a direct
14 relationship with the response (Doni et al., 2024).

15 In an effort to ensure a directed learning experience and in accordance with
16 pedagogical principles, outdoor learning in this study is combined with the Indonesian
17 Realistic Mathematics Education (PMRI) approach. PMRI which stems from Freudenthal's
18 Realistic Mathematics Education (RME) emphasizes that mathematics should be taught
19 through real contexts, guided reinvention, and horizontal and vertical mathematization
20 processes (Zulkardi, 2002). In this PMRI approach, students are invited to rediscover
21 mathematical concepts through contextual problems that are relevant to their lives.
22 Vygotsky (1978) emphasized the importance of social and cultural contexts as zones of
23 proximal development that facilitate knowledge construction (Liu, 2024; Nardo, 2021).
24 Bruner (1964) added that effective learning occurs when students go through the stages of
25 enactive (direct experience), iconic (using representations), to symbolic (abstracting)
26 (Quane, 2024; J. Zhou, 2020; X. Zhou, 2024). The connection between the outdoor learning
27 model and the PMRI approach allows mathematics learning to be more contextual,
28 meaningful, and in line with the cognitive development characteristics of junior high school
29 students.

30 Outdoor learning, strongly aligned with PMRI concepts, offers significant possibilities
31 for children to interact directly with tangible items and real-world situations in their
32 environment. This approach identifies Math Trails as a pertinent and efficacious strategy. A
33 Math Trail converts designated locations into a sequence of "mathematical task posts,"
34 directing students to investigate, quantify, discern trends, and resolve issues in real-world
35 scenarios. Students learn how to use mathematics to make sense of common things through
36 these structured exercises, which makes the learning process more relevant, engaging, and
37 fun. This method aligns closely with PMRI's focus on real-world settings and advanced
38 mathematization.

39 In this perspective, the local environment of Jambi City offers a significant opportunity
40 to apply outdoor learning by leveraging its abundant tourism potential. Putri Pinang Masak
41 Park is a notable green park and urban landmark, showcasing several physical artifacts of
42 historical and mathematical importance. Features include the temple-like pillars, the Putri
43 Pinang Masak boat, the Ka'bah-shaped prayer room, the photo-spot stairway, and the
44 prominent city-symbol gong can be converted into Math Trail task stations, enabling
45 students to participate in practical arithmetic exercises.

1 For example, students might assess the height of a pillar by tallying the bricks arranged
2 along its structure, ascertain the circumference of a circular feature by analyzing the tiled
3 patterns surrounding the pool, or gauge the pool's depth at several locations to compute its
4 average depth. These exercises enable students to immediately engage with the practical
5 application of geometry and measurement in a real-world context, enhancing
6 comprehension and rendering mathematics more significant, captivating, and enjoyable.

7 Previous research supports the effectiveness of this strategy. In accordance with
8 research (Fessakis et al., 2018) found that the use of math trail improves mathematical
9 literacy and problem-solving skills. (Jablonski, 2022) in Germany showed that outdoor
10 learning based on the surrounding location can strengthen the relationship between
11 mathematical concepts and students' real life. Indonesian research (Zulkardi & Putri,
12 2019) proved that local cultural contexts in PMRI, such as in the context of batik and
13 traditional markets, can improve students' conceptual understanding. But research
14 specifically using cultural tourism context as the basis of mathematics learning design is
15 still limited. This research comes to fill the gap and design mathematics learning based on
16 outdoor learning as a model and PMRI as an approach, namely the pedagogical foundation
17 in Putri Pinang masak park Jambi.

18 The significance of this work can be comprehended from both theoretical and practical
19 viewpoints. Theoretically, through integrating PMRI to the field of educational tourism, this
20 study expands its application. In doing so, it transcends conventional everyday contexts such
21 as traditional games or market activities and integrates learning into cultural spaces that
22 possess historical and mathematical significance. This study provides a learning design that
23 junior high school teachers can reference for applying the Independent Curriculum in a more
24 contextual, meaningful, and culturally relevant manner. The Math Trail created in this
25 research aims to reconcile the disparity between the optimal expectations of geometry and
26 measurement learning outcomes and the actual challenges encountered in classroom
27 practice, while concurrently promoting the Pancasila Student Profile, especially in cultivating
28 critical and creative thinking and an appreciation for local culture.

29 This research aims to develop the inaugural prototype of an outdoor mathematics
30 learning pathway a Math Trail comprising a series of contextual exercises located in Putri
31 Pinang Masak Park. More specifically, this study wants to find out how to make a Math Trail
32 that is useful for outdoor math learning in a cultural tourism setting; which types of
33 contextual tasks can use real objects in the park to demonstrate geometry and
34 measurement; and how the resulting design aligns with the PMRI principles and the
35 Independent Curriculum's requirements. This design initiative aims to provide pedagogical
36 insights and practical guidance pertinent to modern mathematics teaching.

37

38 **METHOD**

39 This research uses a design research method with the type of development studies.
40 According to (Akker et al., 2006), this design research consists of three main stages, namely
41 preliminary design, prototyping phase, and retrospective analysis. This article focuses on the
42 first stage, namely preliminary design, which aims to produce an initial design of outdoor
43 learning-based mathematics learning through math trail in Jambi City. This approach was

1 chosen because it is in accordance with the characteristics of PMRI which emphasizes
2 contextual starting points in learning (Zulkardi, 2002), provides space for interactive and real
3 context-based design development, and is able to produce a design product in the form of
4 an initial prototype of a math trail that can be tested in the next stage.

5 The subjects of this research were junior high school students in Grade IX, selected in
6 accordance with the mathematics content scope, which covers geometry, comparison,
7 scale, and measurement. The study involved participants throughout three stages of the
8 design research process: three students and one mathematics teacher in the one-to-one
9 stage, six students in the small group stage, and twenty-four students, along with six
10 mathematics teachers, in the field test stage. The contextual setting of the investigation was
11 Putri Pinang Masak Park in Jambi City. This location was chosen due to its historical and
12 cultural significance, as well as the diversity of real objects that could serve as Math Trail task
13 posts, such as the temple-like pillars, the Ka'bah-shaped prayer room, the Putri Pinang
14 Masak boat, the black-and-white staircase, and the iconic Jambi city gong.

15 The research procedure at the preliminary design stage was carried out with the
16 following stages: curriculum and competency analysis, local context analysis, math activity
17 formula, preparation of initial prototype of math trail, and self evaluation. The research
18 instruments used in the preliminary design stage were field observation sheets used to
19 record the mathematical context in tourist sites, curriculum analysis documents to replace
20 tourist objects with basic mathematics competencies, and self evaluation to assess aspects
21 of suitability, clarity, and feasibility of math trail design. The data analysis in this research is
22 with a descriptive qualitative approach, namely the results of field observations are analyzed
23 to find opportunities for contextualization of mathematics, curriculum analysis is used to
24 compile the linkage between tourist objects and learning outcomes. The output at the
25 preliminary design stage is in the form of a mat trail route map at Putri Pinang Masak Park,
26 the design of mathematical activities at each post, and teacher notes.

27 This research yielded three key outputs as an initial Math Trail prototype: a Math Trail
28 route map, mathematical work sheets, and teacher notes. The route map provides the trip
29 route and the location of each task station in Putri Pinang Masak Park as a guide for outdoor
30 learning implementation. Mathematical task sheets contain contextual exercises derived
31 from real things at the place, including task descriptions, directions, and mathematical
32 reasoning needs based on geometric, measurement, comparison, and scale competences.
33 Meanwhile, the teacher's notes give implementation instructions, explanations of learning
34 objectives, and ways for directing students to ensure the learning process is effective and
35 conforms with the concepts of PMRI. These three components comprise Prototype 1 as the
36 basis for the next development step.

37

38

39 RESULTS AND DISCUSSION

40 Results

41 The research focuses on the preliminary design stage, which focuses on the initial
42 design of outdoor learning-based mathematics learning with the PMRI approach. The
43 location of this research is Putri Pinang masak park in Jambi, a cultural tourist spot that

1 contains historical values and has physical objects that contain mathematical potential. The
2 learning design is expected to be a blueprint before going to the prototype and
3 implementation stages.

4 Curriculum analysis is the first step in this study, which examines the junior high school
5 (SMP) mathematics curriculum, namely the independent curriculum to find learning
6 outcomes that are relevant to the outdoor learning context. The analysis shows that some
7 learning outcomes that can be combined with the context of Putri Pinang masak park tour
8 more specifically are as follows.

9 **Table 1. Junior High School Learning Outcomes**

Elements	Learning Outcomes (CP)
Geometry and Measurement	<ol style="list-style-type: none">1. Determine area, perimeter, and volume of flat and spatial shapes.2. Relate changes in length, area, and volume to scale factors.3. Explain and use similarity and congruence in solving problems.4. Apply the Pythagorean theorem to real situations5. Determine the circumference, area of a circle, and the relationship between diameter and radius6. Use indirect measurement in determining height or distance with the help of comparison.

10
11

Table 3. Relevance to outdoor learning activities (Math Trail)

Student Activity	Related geometry and measurement concepts	Corresponding CP
Students measure the height and width of the window, for the height of the window students measure from the bricks arranged beside the window.	Indirect measurement of length, the relationship between small units (bricks and the size of large objects).	Use comparison and congruence in measuring length and height of real objects.
Students measure the depth of the pool at 5 different points to ensure that the height of the pool is not the same. Next, students measure the diameter of the pool by looking at the length of the tiles arranged next to the pool along the diameter of the pool.	Volume and depth of a space (tube), diameter and area of a circle.	Determining the size of spatial figures and understanding the relationship between diameter, radius, and area of a circle

	Students measure the height and width of the temple pillars by measuring the height of the bricks that make up the temple pillars and counting how many bricks are arranged as high as the temple.	Consanguinity, measurement, surface area of spatial figures.	length	Determining the size of a space through indirect measurement and proportion.
4	Students measure the height of the stairs by measuring the unit height of the tiles that cover the surface of the stairs.	Gradient/slope, right triangles, and the concept of comparison	Apply the Pythagorean theorem and comparison to determine the height of a real figure.	
1	Students measure the diameter of a circle by counting the tiles arranged on the circle.	Circles: circumference, diameter, radius, and area	Determine the circumference and area of a circle using real measurements	

1 The gap analysis in curriculum analysis is that the independent curriculum has
2 emphasized measurement and geometry based on abstract concepts in schools, but it is still
3 rare to use real contexts and local culture as learning resources, and the design of a math
4 trail with measurement activities in Putri Pinang masak park bridges this research gap, so
5 that learning outcomes can be achieved through learning based on real experiences. The
6 implication on the learning design that will be designed is that student activities when
7 measuring objects such as temple pillars, prayer room windows, stairs, and circles directly
8 integrate CP geometry and measurement. Students not only understand and apply formulas
9 but also learn to use real units, proportions, congruence, and spatial relationships. This is in
10 accordance with the principles of PMRI, namely from real context to concrete models and
11 concept formalization. The results of the curriculum analysis confirmed that integration with
12 the tourism context allows for more contextualized mathematics learning without leaving
13 the demands of national learning outcomes.

14 Field observations were conducted to identify real objects in Putri Pinang masak park
15 that can serve as tasks on the math trail. The results show that there are five potential points
16 in Putri Pinang masak park, namely the muaro jambi temple pillar can be used to calculate
17 the height of the pillar made of bricks, the Putri Pinang masak boat pool used to measure
18 the volume of the pool, the black and white stairs used for the context of the gradient and
19 the relationship between the height and length of the inclined plane, the ka'bah mushola
20 window to measure the window area around the mushola wall, and the gong on the logo of
21 the city of Jambi in the park made like a floor used to measure the floor area that forms a
22 gong like a circle. Each task point is photographed by first activating the GPS, then taking
23 data on each object by measuring and recording the data needed to produce a draft
24 question.

1 Based on the curriculum analysis and field exploration, a math trail blueprint was
2 developed. The blueprint contains descriptions of the stations, math activities, and targeted
3 competencies, along with the activities that have been designed.

Table 4. Math activities

Post Name	Photo	Activity
Kaaba Musholah		<p>Students measure the height and width of the window, for the height of the window students measure from the bricks arranged next to the window.</p> <p>Learning Outcomes: students are able to explain the effect of changes in length, area, or volume and understand the relationship between flat and spatial shapes.</p>
Boat in the Pond		<p>Students measure the depth of the pool at 5 different points to ensure that the height of the pool is not the same Furthermore, students measure the diameter of the pool by looking at the length of the tiles arranged next to the pool along the diameter of the pool.</p> <p>Learning Outcomes: students are able to determine the surface area and volume of a space, able to collect, present, and analyze measurement data (mean), and explain the area of a circle and diameter.</p>
Temple Pillar		<p>Students measure the height and width of the temple pillar by measuring the height of the bricks that make up the temple pillar and counting how many bricks are arranged as high as the temple.</p> <p>Learning Outcomes: students are able to explain how to calculate the surface area and volume of spatial figures, use congruence, and scale factor in determining the size of real spatial figures.</p>

Black and White
Staircase

Students measure the height of the staircase by measuring the unit height of the tiles covering the staircase surface.

Learning Outcomes: students are able to use the concepts of ratio, proposition, and scale in calculating the total height of a building based on repetition of the smallest unit.

Gong Floor

Students measure the diameter of a circle by counting the tiles arranged in the circle.

Learning Outcomes: students are able to explain how to determine the area of a circle, diameter length, circumference of a circle, as well as use the relationship between radius, diameter, and circumference.

1
2

3 The resulting blueprint then proceeds through a self-evaluation stage, which is an internal
4 assessment performed by the researcher to evaluate the quality of the design that has been
5 generated. The self-evaluation method includes issues such as the suitability of the content with
6 the curriculum utilized, the relevance of the context to students' daily routines, the clarity of
7 instructions for each activity, and the practicality of the design in outdoor learning situations.
8 The review results indicate that the design is considered feasible, but there are some notes: the
9 language used in some questions needs clarification as there are still ambiguous words, the
10 estimated time for each station needs to be added, and the suitability and feasibility of the
11 images used at each station need to be reviewed.

12 The research results at the preliminary design stage demonstrate that Putri Pinang
13 Masak Park can be a rich source of learning for mathematics, both curriculum-wise and
14 contextually relevant.

15 16 Discussion

17 The findings of this study demonstrate that mathematics learning can be innovatively
18 structured through the merging of outdoor learning as a pedagogical model and PMRI as a
19 contextual approach. By utilizing appropriate artifacts in a cultural tourist setting, students
20 are encouraged to engage with mathematics in a manner that is contextual, authentic, and
21 linked with their lived experiences. This coincides with the approach of Realistic Mathematics
22 Education (Freudenthal, 1991; Gravemeijer & Cobb, 2006), which stresses guided
23 reinvention through meaningful scenarios. The Math Trail established in this study gives
24 opportunities for students to mathematize real objects such as pillars, staircases, and
25 symbolic structures thereby increasing both conceptual knowledge and spatial thinking.

20

1 These findings resonate with international studies, such as Fessakis et al. (2018), who
2 built a Math Trail in natural areas assisted by digital gadgets (Cahyono, Sukestiyarno, Asikin,
3 & ..., 2020; Cahyono & Ludwig, 2019). Both studies underscore the relevance of outdoor
4 learning in developing discovery, inquiry, and authentic mathematical reasoning. However,
5 the present study varies in its integration of cultural tourism as the principal background
6 rather than natural habitats, bringing a new layer of cultural and historical relevance to
7 mathematical activities. In addition, while prior studies mostly focused on boosting
8 engagement or digital-supported exploration, the present research embeds PMRI concepts
9 to ensure students are not only performing tasks but are actively reinventing mathematical
10 ideas through local cultural settings. This reinforces the enhanced pedagogical advantage of
11 placing outdoor learning within a formal design research framework (Cochrane et al., 2023;
12 Cochrane & Munn, 2020; Rüttmann, 2019).

13 In the Indonesian context, various research have employed local culture inside
14 mathematics education such as batik patterns, traditional markets, local games, and woven
15 crafts (Sari et al., 2021; Zulkardi et al., 2019). However, most of these research use cultural
16 contexts in classroom settings rather than outside locations. The present work fills this gap
17 by proving that cultural and historical tourism locations can serve as rich mathematical
18 contexts when translated into systematic Math Trail designs. This emphasizes a new avenue
19 in PMRI-based research: extending local settings beyond classroom items into real-world
20 cultural areas with actual mathematical structures (Hendriana et al., 2025; Nabila et al., 2024;
21 Putra et al., 2023).

22 The uniqueness of this work rests in three primary aspects. First, it mixes cultural
23 tourism with outdoor learning and PMRI, widening the terrain of contextual mathematics
24 education in Indonesia. Second, it offers a systematically developed Math Trail blueprint that
25 is ready for subsequent prototyping inside the design research cycle. Third, it contributes to
26 the worldwide debate by showing that tourism-based learning environments can serve as
27 powerful contexts for mathematization, spatial thinking, and guided reinvention. This
28 validates existing demands in the literature for more diversified, authentic, and place-based
29 mathematics learning experiences (Ariyanti et al., 2023; Lusiana, 2025; Sukasno et al., 2024).

30 The theoretical contribution of this research reveals that PMRI can be expanded
31 beyond ordinary activities into culturally and historically rich tourism situations, which
32 broadens the range of authentic materials available for meaningful learning. Practically, the
33 study presents a Math Trail template that can be changed by instructors in various settings,
34 facilitating the implementation of the Independent Curriculum through contextual, inquiry-
35 driven learning. This blueprint can serve as a reference for building comparable learning
36 experiences in other parks, heritage sites, or local tourism regions, thereby pushing
37 educators to exploit their surroundings more imaginatively as a mathematical learning
38 space.

39

40 **Implication of Research**

1 The ramifications of this research cover practical, theoretical, and policy dimensions.
2 Practically, the research results provide recommendations for teachers and schools to exploit
3 the tourism environment around children as a living classroom that can boost their
4 mathematical learning experiences through authentic activities. The resulting Blueprint Math
5 Trail can serve as a model for constructing contextual assignments, developing outdoor
6 learning settings, and incorporating real objects to increase students' reasoning,
7 measurement, and spatial literacy skills. Schools are also urged to work with local tourism
8 site operators so that outdoor learning activities can be carried out in a structured, safe, and
9 sustainable manner.

10 Theoretically, this research enhances the development of PMRI by proving that its
11 concepts are not only relevant to regular classroom contexts but can also be effectively
12 utilized in cultural tourist settings. Integrating PMRI with outdoor learning in cultural settings
13 gives new paths for exploring how directed reinvention, mathematization, and context-
14 based learning processes might occur in dynamic outdoor situations. This research enriches
15 the theoretical framework of context-based mathematics education and emphasizes the
16 promise of place-based mathematics education in Indonesia.

17 From a policy viewpoint, this research suggests the need for policy assistance to
18 enhance cross-sector collaboration between schools, local governments, and tourism site
19 management. This relationship is vital in providing secure learning access, encouraging the
20 use of tourist sites as learning resources, and establishing unique learning programs based
21 on local culture. Policies also need to support cultural and tourism integration as a setting for
22 learning mathematics to increase mathematical literacy while also boosting students'
23 cultural awareness.

24 Moving forward, further study is needed to assess the practicality and possible
25 impacts of the Math Trail prototype in real-world deployment with students, including
26 examining the learning process, student engagement, and the development of conceptual
27 understanding.

28

29 **Limitation**

30 This study has various limitations that need to be acknowledged. First, the research
31 only covered the early design stage and was still not through to the implementation stage
32 with students, therefore the feasibility, student response, and possible learning impacts of
33 the Math Trail design could not be examined. Second, the tourist area utilized is limited to
34 one location, namely Putri Pinang Masak Park, so generalizing the design to other tourist
35 locations—whether cultural or natural—is still constrained. Third, this research has not
36 directly involved participants in the field implementation, so variations in student planning,
37 group dynamics, and potential learning challenges have not been empirically seen. Fourth,
38 external elements such as weather conditions, crowd levels, and location accessibility have
39 not been investigated, even though these aspects have the potential to impact the practicability
40 and sustainability of outdoor learning.

9 To address these constraints, future study has to extend this design to the one-to-one, small group, and field test stages in order to assess its feasibility, acceptance, and possible impact on students' learning processes. Further research is also advised to widen the context by adapting Math Trails to numerous tourist places with different cultural and natural aspects, making the concept more adaptive and usable. Additionally, real-world implementation will allow researchers to examine student engagement, teacher facilitation tactics, and environmental obstacles, like weather and visitor density, and optimize the design for wider applicability. Thru these steps, the Math Trail prototype could potentially be thoroughly validated and developed into a scalable outdoor learning approach.

10

11 CONCLUSION

12 The purpose of this study is to design outdoor-based mathematics learning that is relevant
13 and contextual to the tourism potential of Jambi City. The conclusion of this preliminary
14 stage is that the math trail with the PMRI approach at Putri Pinang Masak Park produces a
15 learning blueprint that is clearly mapped out in five posts and is closely related to the learning
16 outcomes of geometry, measurement, scale comparison, and the Pythagorean Theorem. It
17 is therefore suggested that the activities of observing, measuring, and model building
18 proceed from a real context to the formulation of concepts. The relevance of tourism and the
19 potential for meaningful, mindful, and joyful learning. In the theoretical domain, this design
20 has the potential to extend the application of PMRI to the context of cultural tourism, with
21 authentic learning resource utilisation as a fundamental element. In practical terms, this
22 research provides a prototype model that can be adapted by researchers or teachers to be
23 integrated into the local context in lesson plans and authentic assessments.

24

25 REFERENCES

26 Akker, J. Van Den, Gravemeijer, K., McKenney, S., & Nieveen, N. (2006). *Educational
27 Design Research*. Routledge.

28 Ariyanti, N., Azizah, N. L., & Latifah, F. N. (2023). Mathematics Village: An Effective
29 Educational Tourism for Increasing Children's Motivation and Changing Their
30 Perspective of Mathematics. *Indonesian Journal of Cultural and Community
31 Development*, 14(2). <https://doi.org/10.21070/ijccd.v14i2.965>

32 Brown, H. (2021). Moments of Intersectionality: Moving Invitational Theory Into Practice
33 Through a Constructivist Approach. *Journal of Invitational Theory and Practice*, 22,
34 48–67. <https://doi.org/10.26522/jitp.v22i.3503>

35 Cahyono, A. N., & Ludwig, M. (2019). Teaching and Learning Mathematics around the City
36 Supported by the Use of Digital Technology. *EURASIA Journal of Mathematics,
37 Science and Technology Education*, 15(1). <https://doi.org/10.29333/ejmste/99514>

38 Cahyono, A. N., Sukestiyarno, Y. L., Asikin, M., & ... (2020). Learning Mathematical
39 Modelling with Augmented Reality Mobile Math Trails Program: How Can It Work? ...
40 *Mathematics Education*. <https://eric.ed.gov/?id=EJ1252004>

41 Cahyono, A. N., Sukestiyarno, Y. L., Asikin, M., Miftahudin, M., Ahsan, M. G. K., &
42 Ludwig, M. (2020). Learning Mathematical Modelling With Augmented Reality Mobile
43 Math Trails Program: How Can It Work? *Journal on Mathematics Education*, 11(2),
44 181–192. <https://doi.org/10.22342/jme.11.2.10729.181-192>

45 Cochrane, T., Galvin, K. M., Buskes, G., Lam, L., Rajagopal, V., Glasser, S., Osborne, M. S.,
46 Loveridge, B., Davey, C. E., John, S., Townsin, L., & Moss, T. (2023). Design-Based
47 Research. *Asclite Publications*, 351–356. <https://doi.org/10.14742/apubs.2023.489>

1 Cochrane, T., & Munn, J. (2020). Integrating Educational Design Research and Design
2 Thinking to Enable Creative Pedagogies. *Pacific Journal of Technology Enhanced*
3 *Learning*, 2(2), 1–14. <https://doi.org/10.24135/pjtel.v2i2.58>

4 Doni, D., Kalsum, U., & Rashid, R. A. A. (2024). Implementation of Behavioristic Learning
5 Theory in Learning Islamic Religious Education (PAI) at Labschool Cibubur High
6 School. *Al Hikmah Journal of Education*, 5(1), 133.
7 <https://doi.org/10.54168/ahje.v5i1.300>

8 Fauzi, I., & Arisetyawan, A. (2020). Analisis Kesulitan Belajar Siswa Pada Materi Geometri
9 Di Sekolah Dasar. *Kreano Jurnal Matematika Kreatif-Inovatif*, 11(1), 27–35.
10 <https://doi.org/10.15294/kreano.v11i1.20726>

11 Fessakis, G., Karta, P., & Kozas, K. (2018). The Math Trail as a Learning Activity Model for
12 M-Learning Enhanced Realistic Mathematics Education: A Case Study in Primary
13 Education. *Advances in Intelligent Systems and Computing*, 715, 323–332.
14 https://doi.org/10.1007/978-3-319-73210-7_39

15 Hendriana, H., Ristiana, N., Kusaka, S., Peni, N. R. N., & Prahmana, R. C. I. (2025).
16 Integrating Indigenous Number Systems and Indefinite Units Into Mathematics
17 Learning: A Study on Javanese Language and Culture. *Infinity Journal*, 14(3), 797–816.
18 <https://doi.org/10.22460/infinity.v14i3.p797-816>

19 Jablonski, S. (2022). Mathematical reasoning outside the classroom—A case study with
20 primary school students solving math trail tasks. ... *Society for Research in Mathematics*
21 *Education* <https://hal.science/hal-03746867/>

22 Kedikli, D., & Katrancı, Y. (2024). Examination of Inquiry Learning Skills Toward
23 Geometry in Terms of Various Variables. *Kastamonu Eğitim Dergisi*, 370–382.
24 <https://doi.org/10.24106/kefdergi.1473681>

25 Liu, X. (2024). The Analysis of Distance Learning Based on Vygotsky's Learning Theory.
26 *SHS Web of Conferences*, 183, 03016. <https://doi.org/10.1051/shsconf/202418303016>

27 Lusiana, R. (2025). Teacher Noticing as a Catalyst for Students' Mathematical Thinking: A
28 Perspective From Educational Literature. *Bhinneka Int. Conf.*, 1(1), 408–412.
29 <https://doi.org/10.29100/bicone.v1i1.89>

30 Nabila, S., Putri, R. I. I., & Zulkardi, Z. (2024). Development of Learning Video Comparison
31 Using Palembang Jumputan Context to Determine Students' Mathematical Reasoning.
32 *Jurnal Elemen*, 10(2), 199–221. <https://doi.org/10.29408/jel.v10i2.23987>

33 Nardo, A. (2021). Exploring a Vygotskian Theory of Education and Its Evolutionary
34 Foundations. *Educational Theory*, 71(3), 331–352. <https://doi.org/10.1111/edth.12485>

35 Nugraha, A. A., Rizal, N., & Cahyono, A. N. (2023). Mathematical Modelling Ability in
36 Outdoor Learning with Mobile Math Trails. *International Journal on Emerging*
37 *Mathematics Education*, 7(1), 1. <https://doi.org/10.12928/ijeme.v7i1.24771>

38 Putra, A., Zulkardi, Z., Putri, R. I. I., Susanti, E., & Nusantara, D. S. (2023). Teaching the
39 Rule of Product Using Nature Tourism Routes. *Tarbawi Jurnal Ilmu Pendidikan*, 19(2).
40 <https://doi.org/10.32939/tarbawi.v19i2.3168>

41 Quane, K. (2024). The Confluence of Attitudes Towards Mathematics and Pedagogical
42 Practice: Evaluating the Use of Mathematical Manipulatives. *Mathematics Education*
43 *Research Journal*, 37(2), 369–398. <https://doi.org/10.1007/s13394-024-00494-0>

44 Rahayu, P., & Putri, R. I. I. (2021). Project-Based Mathematics Learning: Fruit Salad Recipes
45 in Junior High School. *Journal on Mathematics Education*, 12(1), 181–198.
46 <https://doi.org/10.22342/jme.12.1.13270.181-198>

47 Rüütmann, T. (2019). Engineering Pedagogy as the Basis for Effective Teaching
48 Competencies of Engineering Faculty. *Vysshee Obrazovanie v Rossii = Higher*
49 *Education in Russia*, 28(12), 123–131. <https://doi.org/10.31992/0869-3617-2019-28-12-123-131>

1 Sukasno, Zulkardi, Z., Putri, R. I. I., & Somakim. (2024). Students' Cognitive Processes in
2 Understanding Fractions Through the Tourist Context. *Jurnal Pendidikan Matematika*,
3 18(1), 27–38. <https://doi.org/10.22342/jpm.v18i1.pp27-38>

4 Susanti, S. A., Budiarto, M. T., & Setianingsih, R. (2023). Analisis Kemampuan Pemecahan
5 Masalah Numerasi Siswa Berdasarkan Tingkat Kecemasan Matematis. *JRPM (Jurnal*
6 *Review Pembelajaran Matematika)*, 8(1), 18–32.
7 <https://doi.org/10.15642/jrpm.2023.8.1.18-32>

8 Wati, R., & Nurcahyo, A. (2023). Kemampuan Numerasi Siswa Dalam Menyelesaikan Soal
9 Geometri Pada Asesmen Kompetensi Minimum. *Jurnal Cendekia Jurnal Pendidikan*
10 *Matematika*, 7(2), 1689–1699. <https://doi.org/10.31004/cendekia.v7i2.2380>

11 Zhou, J. (2020). A Critical Discussion of Vygotsky and Bruner's Theory and Their
12 Contribution to Understanding of the Way Students Learn. *Review of Educational*
13 *Theory*, 3(4), 82. <https://doi.org/10.30564/ret.v3i4.2444>

14 Zhou, X. (2024). Sociocultural Theory in Early Childhood Education. *Lecture Notes in*
15 *Education Psychology and Public Media*, 51(1), 190–196.
16 <https://doi.org/10.54254/2753-7048/51/20240981>

17 Zulkardi. (2002). *Developing a learning environment on realistic mathematics education for*
18 *Indonesian student teachers*. University of Twente.

19 Zulkardi. (2025). In Memory of Jan De Lange and Kees Hoogland: Honoring Their Legacy
20 and Contributions to Mathematics Education in Indonesia. *Journal on Mathematics*
21 *Education*, 16(2), 753–764. <https://doi.org/10.22342/jme.v16i2.pp753-764>

22 Zulkardi & Putri, R. I. I. (2019).
23 *New School Mathematics Curricula, PISA and PMRI in Indonesia*. In Lam T. T et.al (Eds)
24 *School Mathematics Curricula: Asian Perspective and Glimpses of Reform*. Springer.

25 Zulkardi, Z., Putri, R. I. I., & Wijaya, A. (2019). *Two Decades of Realistic Mathematics*
26 *Education in Indonesia*. 325–340. https://doi.org/10.1007/978-3-030-20223-1_18

27