

Turnitin_33904 Kreano 16(2).pdf

 Universitas Negeri Semarang - iTh

Document Details

Submission ID**trn:oid:::3618:126840206****16 Pages****Submission Date****Jan 25, 2026, 11:32 AM GMT+7****7,589 Words****Download Date****Jan 27, 2026, 12:15 AM GMT+7****46,113 Characters****File Name****Turnitin_33904 Kreano 16(2).pdf****File Size****442.1 KB**

5% Overall Similarity

The combined total of all matches, including overlapping sources, for each database.

Filtered from the Report

- ▶ Bibliography

Match Groups

- **17** Not Cited or Quoted 2%
Matches with neither in-text citation nor quotation marks
- **16** Missing Quotations 2%
Matches that are still very similar to source material
- **0** Missing Citation 0%
Matches that have quotation marks, but no in-text citation
- **0** Cited and Quoted 0%
Matches with in-text citation present, but no quotation marks

Top Sources

3%	Internet sources
4%	Publications
0%	Submitted works (Student Papers)

Integrity Flags

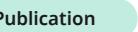
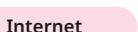
1 Integrity Flag for Review

- **Hidden Text**
177 suspect characters on 2 pages
Text is altered to blend into the white background of the document.

Our system's algorithms look deeply at a document for any inconsistencies that would set it apart from a normal submission. If we notice something strange, we flag it for you to review.

A Flag is not necessarily an indicator of a problem. However, we'd recommend you focus your attention there for further review.

Match Groups



- **17** Not Cited or Quoted 2%
Matches with neither in-text citation nor quotation marks
- **16** Missing Quotations 2%
Matches that are still very similar to source material
- **0** Missing Citation 0%
Matches that have quotation marks, but no in-text citation
- **0** Cited and Quoted 0%
Matches with in-text citation present, but no quotation marks

Top Sources

- 3% Internet sources
- 4% Publications
- 0% Submitted works (Student Papers)

Top Sources

The sources with the highest number of matches within the submission. Overlapping sources will not be displayed.

1	Internet	
	www.diva-portal.org	<1%
2	Internet	
	journal.unnes.ac.id	<1%
3	Publication	
	Anastasia Sofroniou, Mansi Harsh Patel, Bhairavi Premnath, Julie Wall. "Advancin...	<1%
4	Publication	
	Desi Sulastri, Iik Nurhikmayati, Dexter C Aligaya. "Bridging Technology and Cogni...	<1%
5	Internet	
	paee.dps.uminho.pt	<1%
6	Internet	
	e-journal.stkipswiliwangi.ac.id	<1%
7	Internet	
	brill.com	<1%
8	Internet	
	orca.cardiff.ac.uk	<1%
9	Internet	
	www.e-journal.stkipswiliwangi.ac.id	<1%
10	Internet	
	iiari.org	<1%

11 Publication

McLaughlin, Alison. "Instructional Designers' Perceptions on Generative AI Integr... <1%

12 Internet

eeu.edu.ge <1%

13 Publication

Halkiyo, Jemal Bedane. "Investigating Educational Equity and Inclusivity in Highe... <1%

14 Publication

Rafael Martínez-Planell, Maria Trigueros, Vahid Borji. "The role of topology in the ... <1%

15 Publication

Rafiq Zulkarnaen, Asya Khaula Aziza. "Analyzing Structural Gaps in Mathematical ... <1%

16 Publication

Topping, Nyoka M.. "Collaboration Between College Instructors and Instructional... <1%

17 Internet

jscholarship.library.jhu.edu <1%

18 Internet

repository.usd.ac.id <1%

19 Internet

rise.teknologi.edu.my <1%

20 Internet

slejournal.springeropen.com <1%

21 Internet

www.irrodl.org <1%

22 Publication

Acevedo-Nazario, Naomi. "Successful Strategies for Retaining Charter High Schoo... <1%

23 Internet

www.repository.cam.ac.uk <1%

24 Publication

"Reimagining Transformative Educational Spaces", Springer Science and Business... <1%

25

Publication

Sianturi, Iwan Andi Jonri. "Charting the Mathematical Mind: Future Educators' Nu... <1%

26

Publication

Silkowitz, Jonathan Lewis. "Elementary Teachers' Perceptions of Pandemic's Impa... <1%

1 **Visualization of Multivariable Calculus: Learning Needs Analysis for GeoGebra-Assisted Teach-
2 ing Material Development**

3

4 **Dini Andiani^{1*}, Siti Dwi Rahayu Septiani¹, and Cecep Suwanda¹**

5

6 ¹Universitas Bale Bandung

7

8 Correspondence should be addressed to Author: dini_andianio3@unibba.ac.id

9

10 **Abstract**

11 Students often struggle to visualize multivariable functions, interpret partial derivatives, and apply
12 extrema, yet systematic needs analyses for designing meaningful Multivariable Calculus learning
13 environments remain limited. This study aims to identify students' learning needs as a foundation for
14 developing GeoGebra-assisted materials. Using a qualitative descriptive approach within the
15 Gravemeijer and Cobb design research framework, data were collected through a needs-analysis
16 questionnaire administered to eight purposively selected university students who had completed the
17 course. Results show that six of the eight students experienced moderate to high levels of difficulty,
18 especially in visualizing multivariable functions and understanding partial derivatives. Students also
19 reported that videos and lecturer explanations were helpful, and all expressed readiness to use
20 GeoGebra-based materials. The findings indicate the importance of designing structured learning
21 environments that integrate dynamic visualizations. This study provides the groundwork for
22 subsequent teaching experiment and retrospective analysis cycles in developing valid and
23 generalizable instructional designs.

24 **Keywords:** Multivariable Calculus; GeoGebra; learning needs; learning design; *design research*

25

26 **Abstrak**

27 *Mahasiswa sering mengalami kesulitan dalam memvisualisasikan fungsi multivariabel, menafsirkan
28 turunan parsial, dan menerapkan konsep nilai ekstrem, namun analisis kebutuhan yang sistematis
29 untuk merancang lingkungan belajar Kalkulus Peubah Banyak masih terbatas. Penelitian ini bertujuan
30 mengidentifikasi kebutuhan belajar mahasiswa sebagai dasar pengembangan bahan ajar berbantuan
31 GeoGebra. Dengan pendekatan deskriptif kualitatif dalam kerangka penelitian desain Gravemeijer dan
32 Cobb, data dikumpulkan melalui angket analisis kebutuhan yang diberikan kepada delapan mahasiswa
33 terpilih yang telah menyelesaikan mata kuliah tersebut. Hasil menunjukkan bahwa enam dari delapan
34 mahasiswa mengalami tingkat kesulitan sedang hingga tinggi, terutama dalam visualisasi fungsi
35 multivariabel dan pemahaman turunan parsial. Mahasiswa juga menyatakan bahwa video dan
36 penjelasan dosen membantu pemahaman, dan seluruhnya siap menggunakan bahan ajar berbasis
37 GeoGebra. Temuan ini menjadi dasar bagi pelaksanaan teaching experiment dan analisis retrospektif
38 untuk menghasilkan desain pembelajaran yang valid dan tergeneralisasi.*

39

40 **Mathematics Clasification: ---- 97D70 ----**

41 *Please check Mathematics Clasification here:*

42 <https://mathscinet.ams.org/msc/msc2010.html?t=97-XX&s=&btn=Search&ls=s>

43

44 *Metadata of Author*

1 Dini Andiani: ORCID ID: - <https://orcid.org/0009-0005-2722-7744> - | Google Scholar: -
2 VmAIN5YAAAAJ -
3 Siti Dwi Rahayu Septiani: ORCID ID: - <https://orcid.org/0009-0006-0839-5459> - | Google Scholar: -
4 VmrOooQAAAAJ -
5 Cecep Suwanda: ORCID ID: - <https://orcid.org/0009-0002-9375-0558> - | Google Scholar: -
6 Ozj5aL4AAAAJ -
7

8 INTRODUCTION

9 In ideal conditions, learning Multivariable Calculus should foster not only procedural fluency but also
10 deep conceptual understanding supported by coherent symbolic, graphical, numerical, and verbal
11 representations (Al Dehaybes et al., 2025; Altindis et al., 2024; Andiani, 2016; Andiani et al., 2020,
12 2025; Bedada & Machaba, 2022; Hahn & Klein, 2025; Milenković & Vučićević, 2024). Students are
13 expected to connect key multivariable concepts such as functions of two variables, gradients, partial
14 derivatives, and multiple integrals through strong representational and spatial reasoning, particularly
15 supported by 3D visualization tools (Cheong et al., 2023, 2024; Herrera et al., 2024; Jones et al., 2022).
16 Ideal learning also emphasizes active engagement, where students rediscover concepts through
17 exploration and modeling while lecturers act as facilitators who guide reflection rather than transmit
18 procedures (Andiani et al., 2025; Biehler et al., 2024; Johnson et al., 2025; Ribeiro-Silva et al., 2022;
19 Song & Cai, 2024; Weinhandl et al., 2025). Assessment, accordingly, should measure conceptual,
20 representational, and application skills rather than calculations alone (Andiani et al., 2020, 2024;
21 Vízek et al., 2024).

22 However, gaps persist between these ideals and classroom realities. Research reports that
23 many students struggle to visualize 3D surfaces and interpret symbolic changes geometrically,
24 leading to weak conceptual understanding (Borji et al., 2022; Herrera et al., 2024). Although virtual
25 reality, GeoGebra 3D, and other dynamic visualization tools have proven effective, they remain
26 underused in practice, leaving instruction dominated by symbolic procedures (Cheong et al., 2023;
27 Herrera et al., 2024; Schoenherr et al., 2024). Furthermore, visual tools are often implemented
28 without adequate scaffolding, limiting their pedagogical impact (Abraham & Prediger, 2025; Huang
29 et al., 2024; Malone et al., 2023; Nickl et al., 2024a, 2024b; Wang et al., 2025). Assessments in many
30 calculus courses also still emphasize procedural skills, widening the gap between intended and actual
31 learning outcomes (Ballon et al., 2024; Castillo et al., 2025; Spencer-Tyree et al., 2024). Consistent
32 with previous studies, preliminary questionnaire results in this study confirm that students
33 experience difficulties in visualizing multivariable concepts and express readiness to engage with
34 GeoGebra-based materials (Abuhassna & Alnawajha, 2023; Andiani et al., 2025; Leung et al., 2024).

35 To reduce these disparities, the integration of technological visualization particularly
36 GeoGebra with well designed instructional strategies becomes essential. GeoGebra enables dynamic
37 exploration of multivariable functions and has been shown to improve conceptual understanding and
38 representation skills (Bedada & Machaba, 2022; Hevardani et al., 2025). Combining this technology
39 with active learning approaches further enhances students' spatial reasoning and engagement
40 (Cheong et al., 2023; Herrera et al., 2024). Additionally, the design research approach by Gravemeijer
41 and Cobb (2006) offers a systematic framework for developing instructional materials through
42 iterative cycles of design, teaching experiments, and retrospective analysis, ensuring that
43 innovations align with students' real learning needs (Komatsu et al., 2024; Mackey et al., 2023;
44 Prediger et al., 2015). Although prior studies have examined visualization tools or design research

15 1 separately, research that integrates both in the context of Multivariable Calculus especially in
2 Indonesian higher education remains limited.

13 3 Based on the ideal conditions, empirical gaps, and students' expressed needs, the main
4 problems identified in Multivariable Calculus learning include limited visualization skills, minimal
5 experience with interactive technologies such as GeoGebra, and the dominance of procedural
6 instruction that undermines conceptual understanding. Therefore, this study aims to develop a
7 theoretically grounded and technology-assisted instructional design that addresses these issues.
8 Specifically, the objectives are: (1) to identify students' difficulties and learning needs related to
9 representation and visualization; (2) to analyze students' perceptions and readiness toward
10 GeoGebra-assisted materials; and (3) to provide an empirical and conceptual foundation for
11 designing a GeoGebra-based Multivariable Calculus learning model using the Gravemeijer and Cobb
12 approach.

13 This study contributes empirically by documenting students' learning needs; practically by
14 offering a conceptual basis for technology-supported instructional design relevant to Indonesian
15 higher education; and theoretically by integrating visualization tools with the Gravemeijer and Cobb
16 design research framework, thereby advancing the literature and laying groundwork for future
17 validation studies. Taken together, these contributions highlight the urgency of developing an
18 instructional design that is both empirically grounded and theoretically informed. The persistent gap
19 between ideal conceptual understanding and current learning practices in Multivariable Calculus,
20 combined with students' demonstrated need for visualization-based support, underscores the
21 necessity of a systematic and integrated approach. By merging the strengths of technological
22 visualization and design research, this study aims to provide a sustainable foundation for improving
23 learning outcomes and informing future instructional development.

24
25 **METHOD**

26 This study employed a qualitative descriptive approach to identify students' learning needs as
27 the basis for developing GeoGebra-assisted teaching materials for Multivariable Calculus. Eight
28 fourth-semester mathematics education students from a university in West Java were selected
29 through purposive sampling, as their prior completion of the Multivariable Calculus course provided
30 relevant and context-rich insights for a needs analysis study. Data were collected using an online
31 questionnaire developed in Google Forms, consisting of sections on participant identity, learning
32 experiences and needs, availability of GeoGebra-based resources, and expectations for teaching
33 material design. The instrument included closed ended rating scale items and open ended prompts
34 and was validated by two experts one in mathematics and one in information technology who
35 reviewed the items for clarity, relevance, and representativeness; minor revisions were made
36 accordingly, and the final version was pilot tested with two students outside the main sample to
37 ensure clarity and technical usability.

38 Data collection was conducted asynchronously, allowing students to respond reflectively and
39 ensuring complete and manageable digital records. The analysis used qualitative descriptive
40 techniques in which numerical ratings were converted into percentages to illustrate general trends,
41 while open ended responses were coded thematically to identify recurring issues such as difficulties
42 in visualizing multivariable functions, limited understanding of partial derivatives and extrema, and
43 the need for interactive visual tools to support conceptual comprehension. Trustworthiness was
44 strengthened through iterative comparison of codes, repeated category checking, and alignment
45 with prior literature on technology-supported calculus learning. The researcher acted as the primary

1 instrument of the study, designing the questionnaire, coordinating expert validation, managing data
2 collection, and conducting the thematic coding and interpretation, while taking measures to
3 minimize bias through iterative reflection and expert consultation.

4 The methodological procedure was also positioned within the Gravemeijer and Cobb design
5 research framework by aligning the needs analysis with the three interconnected stages of
6 preliminary design, teaching experiment, and retrospective analysis. In this first year cycle,
7 preliminary design involved identifying learning difficulties from existing studies and constructing the
8 questionnaire to investigate initial conjectures; the teaching experiment was adapted into a
9 systematic needs assessment activity in which students' responses were used to refine those
10 conjectures; and retrospective analysis consisted of examining and interpreting the questionnaire
11 data to generate thematic findings and form early design principles for developing GeoGebra-
12 assisted instructional materials. Altogether, this methodological design provides a systematic and
13 empirically grounded foundation for understanding students' learning needs and informing the initial
14 stage of a broader instructional design developed through the design research paradigm.

15 In this qualitative descriptive study, the researcher served as the primary instrument
16 responsible for designing the questionnaire, validating its content with experts, administering the
17 data collection process, and conducting the thematic analysis. The researcher interpreted students'
18 responses through iterative coding, continuously comparing emerging categories with existing
19 literature to minimize subjective bias. To enhance trustworthiness, the researcher engaged in
20 repeated checks of the coding scheme, consulted experts during validation, and ensured that
21 interpretations remained aligned with the empirical focus of the needs-analysis phase within the
22 design research framework.

23

24 RESULTS AND DISCUSSION

25 **Results**

26 The analysis of the questionnaire responses provides a detailed overview of students' learning
27 challenges in Multivariable Calculus and clarifies the specific conceptual and procedural aspects that
28 require strengthened instructional support. A majority of students (75%) categorized the course as
29 moderately to highly difficult across core topics involving limits of two variables, visualization of sur-
30 faces, partial derivatives, and extreme values. The area reported as most challenging was partial de-
31 rivatives, with 50% of students stating that they experienced persistent difficulties not only in carry-
32 ing out the symbolic computations but also in interpreting what the derivatives represent in a multi-
33 variable context. Visualization of multivariable functions emerged as another major source of diffi-
34 culty for 37.5% of respondents, who indicated that they struggled to interpret three-dimensional sur-
35 faces, understand the meaning of contour curves, and recognize how directional changes relate to
36 gradients. Students' written comments further illuminate the depth of these difficulties. For exam-
37 ple, one student noted, "*I can compute the partial derivatives, but I still cannot picture the shape of the*
38 *surface,*" while another remarked, "*Contour lines are confusing because I cannot see how they represent*
39 *the height or slope of the graph.*" These statements describe the specific difficulties students
40 encountered when working with geometric representations.

41 Additionally, 25% of students reported difficulties with limits and continuity of functions of
42 two variables, often citing uncertainty about how a function behaves when approaching a point from
43 infinitely many directions. Meanwhile, 37.5% struggled with extreme values, particularly in under-
44 standing the relationship between critical points, gradients, and the geometric structure of the sur-
45 face. The proportions of these reported difficulties indicate that partial derivatives had the highest

percentage of students experiencing challenges compared with the other topics. Table 1 presents a detailed overview of the proportion of students who reported experiencing difficulties across four key conceptual areas in Multivariable Calculus. Partial derivatives emerged as the most challenging topic, with 50% of students indicating that they struggle to understand both the geometric interpretations and the practical applications of these concepts. Visualization of multivariable functions was also a notable difficulty, reported by 37.5% of respondents, who specifically mentioned problems in accurately representing three dimensional surfaces, interpreting contour curves, and understanding gradients. Difficulties with limits and continuity in two variables were reported by 25% of students. In addition, 37.5% of students reported difficulties in applying extreme value concepts.

Table 1. Percentage of Student Difficulties Based on Learning Aspects

Learning Aspects	Percentage of Students Experiencing Difficulties	Information
Partial derivatives	50%	The main obstacle is the difficulty in understanding geometric and applicative concepts.
Visualization of multivariable functions	37.5%	Weak in drawing 3D surfaces, contour curves, and gradients
Limit & continuity	25%	Difficulty generalizing the concept of limit from 1 variable to many variables
Extreme values	37.5%	Understand the procedure, but have difficulty applying the concept

In terms of learning resources used by students in studying Multivariable Calculus, 87.5% of students identified lecturer explanations as their primary source of support. Students reported that explanations delivered during lectures were the resource they relied on most frequently when attempting to understand course concepts and solve related problems. Additionally, 75% of students indicated that learning videos were helpful in supporting their study of Multivariable Calculus. Students noted that they used these videos to review examples, revisit explanations, and follow procedural steps demonstrated in the materials. A similar proportion, 75%, reported that visual tools such as GeoGebra were beneficial for their learning. These students mentioned that the tools assisted them when working with graphical representations, examining surfaces, or checking the structure of multivariable functions. However, several students stated that they used these tools only occasionally and primarily when such tools were introduced or demonstrated during classroom sessions.

Based on the questionnaire responses, Table 2 summarizes the percentage of students who identified each type of learning medium as helpful. The table includes data on lecturer explanations, learning videos, visual tools such as GeoGebra, textbooks, online tutorials, and other supplementary resources. The distribution shows the frequency with which each medium was selected by students as supportive for their understanding of the material. The table also indicates whether students used these resources independently, during lessons, or both. The results further show the range of resources students accessed: some relied solely on lecturer explanations, some combined videos with visualization tools, while others used multiple resources including textbooks and online materials. The data also record variations in usage patterns, such as students who reported regular use of visual tools compared to those who used them only when assigned. Additionally, a portion of students indicated that they supplemented primary resources with external materials such as YouTube tutorials or online mathematics forums. These patterns are further detailed in Table 2, which presents a

1 summary of the learning media used by students and the corresponding proportions of students who
2 reported each medium as helpful.

3 Table 2. Percentage of Students Based on Learning Media

Instructional Media	Percentage of Students	Information
Lecturer's explanation	87.5%	Still, the primary source of learning
Learning videos	75%	Supports repetition and independent understanding
GeoGebra	75%	Interactive media, but the student experience is limited
Previous GeoGebra experience	62.5% never, 37.5% limited	Demonstrates the gap between technological potential and real-world experience.
Readiness for using GeoGebra-based teaching materials	100%	Strong signal of acceptance of technological innovation

4
5 Students report limited prior experience with GeoGebra. The data show that 62.5% of respondents
6 have never used GeoGebra in any mathematics course, while 37.5% have used the software only
7 to a limited extent. Several participants provided comments regarding their experience. One student
8 states, "*I know GeoGebra exists, but I have never used it in class.*" Another student reports, "*I tried using*
9 *GeoGebra before, but I did not understand how to manipulate the 3D view.*" In terms of perceived use-
10 fulness, 75% of respondents indicate that GeoGebra could help them learn material related to Multi-
11 variable Calculus. Furthermore, all respondents (100%) report that they are willing to use GeoGebra-
12 based teaching materials in future learning activities. The responses were recorded consistently
13 across all participants, and prior studies by Schoenherr et al. (2024) are cited to provide contextual
14 reference for patterns of technology acceptance (Schoenherr et al., 2024).

15 Students' expectations for learning materials varied, but most emphasized the need for
16 interactive visualizations. Respondents suggested 3D graphics, GeoGebra-based mini-projects, and
17 exploration activities that allow for active learning. Some respondents requested more dynamic
18 representations, noting, for instance, "*It would help if I could rotate the surface and see the contour*
19 *lines at the same time.*" In addition to visualization, students desire a connection between learning
20 materials and real world contexts. Several respondents stated that they preferred GeoGebra
21 visualizations to be connected to everyday life applications or case studies.

22 Based on the findings from the questionnaire, Table 3 summarizes students' expressed needs
23 and expectations regarding Multivariable Calculus teaching materials. The table lists specific features
24 and components identified by students as relevant to their learning. These features include the use
25 of interactive visualizations to represent three-dimensional concepts, the inclusion of diverse types
26 of learning media, the presence of problems and examples connected to practical or real world con-
27 texts, and the availability of exploratory and inquiry-based activities that require students' active par-
28 ticipation. The responses recorded in Table 3 indicate the number and proportion of students who
29 mentioned each type of resource or activity. For instance, the table shows how many students re-
30 quested interactive visualizations, the frequency with which students mentioned the need for multi-
31 ple learning media, and the number of students highlighting the importance of problem examples
32 from real-world contexts. The table also presents the proportion of students who indicated a prefer-
33 ence for exploratory or inquiry-based activities as part of their learning process.

34 Table 3. Questionnaire Findings

Aspect	Questionnaire Findings	Implications for Teaching Materials
--------	------------------------	-------------------------------------

Visualization	37.5% difficulty with 3D visualization	Module with interactive 3D graphics
Interactive media	75% found GeoGebra useful	GeoGebra-based mini project
Learning activities	Students want active classes	Exploration activities, guided reinvention
Real context	Students want everyday life applications	Case studies related to KPB
Lecturer support	87.5% rely on lecturers	GeoGebra structured instructions & guides

1 Students reported expectations regarding the availability of diverse learning media for studying Multivariable Calculus. The responses show that students considered multiple types of media as relevant to their learning. Specifically, students mentioned traditional textbooks, instructional videos, and technology based resources such as interactive simulations or software tools. The questionnaire recorded how many students referred to each type of media, including cases where students preferred a combination of several resources. Several participants provided comments about lecturer explanations. Students reported expectations regarding the availability of diverse learning media for studying Multivariable Calculus. The responses show that students mentioned multiple types of media, including traditional textbooks, instructional videos, and technology-based resources such as interactive simulations or software tools. The questionnaire recorded how many students referred to each type of media, including cases where students preferred a combination of several resources.

2 Several students provided comments about lecturer explanations. Some students noted that detailed and inclusive explanations were important, particularly in relation to differences in prior educational experiences. Students also reported variations in their foundational understanding of Multivariable Calculus, referring to varied types of prior secondary education. In addition, students identified a need for more active learning activities. The responses included references to hands-on classroom exercises, exploratory problem-solving activities, and collaborative tasks. The questionnaire data recorded the proportion of students mentioning each type of activity and whether they expressed a preference for multiple types of active learning approaches simultaneously.

3 Regarding students' experiences and needs in studying Multivariable Calculus, the questionnaire collected information on demographic and educational backgrounds. The respondents included both male and female students, all of whom had previously taken a Multivariable Calculus course. Students reported varying levels of difficulty in understanding the material, with some describing it as moderately difficult and others as very challenging. In terms of specific learning challenges, several students mentioned difficulties in visualizing multivariable functions, understanding limits and continuity, performing partial derivatives, and applying extreme values.

4 Students described the types of learning resources they found most helpful. Many referred to lecturer explanations and learning videos, while others mentioned textbooks, interactive applications such as GeoGebra, and group discussions. Regarding prior experience with GeoGebra, some students indicated they had never used it, while others had only limited exposure. One student commented, "I know GeoGebra exists, but I have never used it in class," and another added, "I tried using GeoGebra before, but I did not understand how to manipulate the 3D view." Most students agreed that instructional materials should include interactive GeoGebra visualizations, and all respondents expressed willingness to use GeoGebra-based teaching materials developed with the Gravemeijer & Cobb approach. Students also reported preferences for learning activities and features in instructional materials. These included interactive 3D visualizations, mini-projects using GeoGebra, videos for repeated individual study, contextual exploration with real-life case studies, and detailed lecturer explanations, highlighting the variety of approaches students considered supportive of their learning.

1 Student responses were collected through a questionnaire to document learning difficulties,
2 prior experience, and preferences related to Multivariable Calculus. The responses identified specific
3 challenges in visualizing multivariable functions, understanding limits and continuity, performing
4 partial derivatives, and applying extreme values. Students reported preferences for learning media,
5 including lecturer explanations, instructional videos, textbooks, GeoGebra, and group discussions.
6 Prior experience with GeoGebra varied, with 62.5% of students reporting that they had never used it
7 and 37.5% indicating limited experience. All students expressed willingness to use GeoGebra-based
8 teaching materials. Students also mentioned desired features for instructional materials, including
9 interactive 3D visualizations, mini-projects using GeoGebra, videos for repeated individual study,
10 contextual exploration with real-life case studies, and detailed lecturer explanations. Additionally,
11 hands-on classroom exercises, exploratory problem-solving activities, and collaborative tasks were
12 cited. These responses provide the empirical basis for the preliminary design phase in which
13 instructional materials are developed.

14 The questionnaire collected information on students' experiences, difficulties, and preferences
15 in studying Multivariable Calculus. Several students reported difficulties in visualizing multivariable
16 functions, understanding limits and continuity, performing partial derivatives, and applying extreme
17 values. One student noted, "*I can compute the partial derivatives, but I still cannot picture the shape of*
18 *the surface,*" while another commented, "Contour lines are confusing because I cannot see how they
19 represent the height or slope of the graph." Regarding learning activities, a few students mentioned
20 a preference for hands-on classroom exercises, exploratory problem-solving activities, and collabora-
21 tive tasks. One respondent stated, "*I understand better when I can try things myself rather than only*
22 *listening,*" highlighting the importance of active engagement. Some students suggested mini-pro-
23 jects using GeoGebra, and several expressed interest in interactive 3D visualizations, with comments
24 such as, "*Seeing the graph in 3D helps me connect the formulas to the shape of the surface.*"

25 In terms of learning media, most students identified lecturer explanations and learning videos
26 as helpful, while others mentioned textbooks, GeoGebra, or group discussions. Regarding prior ex-
27 perience with GeoGebra, some students had never used it, while others reported limited experience.
28 One student shared, "*I know GeoGebra exists, but I have never used it in class,*" while another added,
29 "*I tried using GeoGebra before, but I did not understand how to manipulate the 3D view.*" When asked
30 about the inclusion of GeoGebra visualizations in teaching materials, the majority of students agreed
31 that such visualizations would be useful. All respondents indicated willingness to use GeoGebra-
32 based teaching materials developed using the Gravemeijer & Cobb approach.

33 Students' expectations for interactive 3D visualizations, mini projects, and multimedia
34 materials align with Gravemeijer's principle of *guided reinvention*. Through designed exploratory
35 activities, students receive information and can rediscover multivariable concepts through
36 interaction with visual media and mathematical discussions. Thus, this study's theoretical
37 contribution lies in strengthening the argument that the Gravemeijer & Cobb framework can be
38 adapted for advanced calculus learning, which has been relatively understudied. Applying this
39 framework in the context of CDE not only enriches the international literature but also broadens the
40 scope of *design research applications* to the realm of Multivariable Calculus.

41 From a research perspective, the questionnaire data serve as the basis for the preliminary
42 design phase in the second year. These results will be used to develop a prototype GeoGebra-based
43 teaching material that targets explicitly students' key challenges, namely partial derivatives, extreme
44 values, and visualization of multivariable functions. Thus, the research goes beyond describing needs
45 and continues to design innovative solutions. The initial implementation phase (teaching

1 experiment) will utilize these empirical findings as a reference. For example, the gap between
2 procedural and conceptual skills will be tested through GeoGebra-based exploration activities. At the
3 same time, student preferences for lecturer explanations will be considered when designing a
4 combination of instructional strategies to ensure that the developed design remains contextual and
5 aligned with the students' learning culture.

6 Next, the results of the initial implementation will be analyzed retrospectively to evaluate the
7 appropriateness of the teaching materials. New findings from this phase will inform the next
8 development cycle. Using an iterative approach, this research aims to produce increasingly mature
9 teaching material designs over the years until they are ready for widespread implementation in the
10 regular curriculum. Ultimately, this study provides empirical contributions through detailed data on
11 student learning needs and offers both practical and theoretical value through the application of a
12 design based research approach. Building on these empirical results, this study also delineates the
13 long term research agenda within the Gravemeijer and Cobb (2006) design research framework. The
14 needs analysis presented here constitutes the starting point for a multi-year trajectory aimed at
15 developing a comprehensive set of Multivariable Calculus learning materials. The planned outputs
16 include a printed instructional module, an interactive digital module supported by GeoGebra-based
17 3D visualizations, and a sequence of guided reinvention activities aligned with departmental
18 curriculum standards. In the second year, a preliminary prototype of these materials will be
19 constructed and refined through iterative teaching experiments, followed by successive cycles of
20 revision and classroom implementation in subsequent years. The long term goal of this research
21 agenda is to produce a validated, scalable, and curriculum integrated learning resource that
22 systematically addresses the conceptual difficulties identified in this study.

23
24 **Discussion**
25 The findings of this study confirm that students experience persistent difficulties in Multivariable
26 Calculus, particularly regarding partial derivatives, extreme values, and the visualization of
27 multivariable functions. These results are consistent with Borji et al. (2022), who reported that
28 students often fail to connect procedural manipulation with the conceptual meaning of mathematical
29 symbols. While Borji's work emphasizes symbolic-conceptual gaps, the present study extends this
30 understanding by showing that such difficulties are intertwined with weaknesses in three-
31 dimensional visualization. This indicates that conceptual errors identified in symbolic tasks cannot be
32 separated from students' limited capacity to mentally represent surfaces, contours, and directional
33 changes.

34 An important implication emerging from these findings concerns the role of needs-based
35 instruction. The trend highlighted by Herrera et al. (2024) shows that mathematics learning aligned
36 with students' actual needs tends to increase engagement and conceptual depth (Herrera et al.,
37 2024). In this study, needs analysis plays a central role in interpreting student difficulties, especially
38 in the context of technology based learning. Rather than serving as a preliminary administrative step,
39 needs analysis becomes a strategic foundation for determining which aspects of the Multivariable
40 Calculus curriculum require reinforcement, particularly in visual conceptual domains.

41 The difficulty in three-dimensional visualization experienced by 37.5% of students also aligns
42 with Cheong et al. (2023), who found that weak spatial reasoning hinders understanding of gradients
43 and the behavior of multivariable functions (Cheong et al., 2023). The present study, however,
44 contributes a more specific insight: students' inability to visualize surfaces directly influences their
45 conceptual misunderstanding of two-variable limits and partial derivatives. For example, several

1 students misinterpreted the behavior of functions approaching a point from multiple directions—an
2 error tied closely to how gradients and directional derivatives are conceptualized. This suggests that
3 visualization difficulties form a chain of interconnected conceptual weaknesses that collectively
4 obstruct students' understanding of multivariable ideas.

5 Students' preference for lecturer explanations (87.5%) demonstrates the continued dominance
6 of traditional teaching methods in KPB learning. Nevertheless, their strong interest in adopting
7 instructional videos and visual applications (75%) indicates readiness for blended learning. These
8 findings reinforce Hevardani et al. (2025), who emphasized that the combination of traditional and
9 digital strategies is more effective than either approach alone (Hevardani et al., 2025). The present
10 study adds nuance by revealing *why* students prefer blended learning: their conceptual challenges
11 especially those involving spatial visualization demand dynamic technological tools that cannot be
12 addressed through conventional lectures.

13 Students' limited experience with GeoGebra (62.5% had never used it) contrasts with their
14 positive perceptions of its potential benefits. Consistent with Schoenherr (2024), technology
15 adoption in mathematics learning appears driven more by perceived usefulness than prior exposure
16 (Schoenherr et al., 2024). This finding underscores the importance of designing learning materials
17 that directly respond to student needs, particularly interactive modules such as 3D visualizations,
18 context-based mini projects, and multimedia explanations. These preferences echo the conclusions
19 of Medina Herrera et al. (2024), who reported that interactive technology enhances cognitive
20 engagement and motivation (Herrera et al., 2024). The present study extends these insights by
21 identifying specific components that students find most essential particularly 3D visualization and
22 contextual tasks elements that directly support key concepts in Multivariable Calculus.

23 Integrating needs analysis into the Gravemeijer & Cobb design research framework further
24 strengthens the contribution of this study. Previous research tends to focus either on student
25 difficulties or on the benefits of learning media, without connecting empirical student needs to the
26 *preliminary design* stage of instructional development. This study provides such a bridge by using
27 students' expressed needs to inform the early phases of design, thereby reinforcing the theoretical
28 coherence of the framework and ensuring that pedagogical choices are empirically grounded.
29 Consequently, needs analysis should be regarded not as a secondary diagnostic step but as a core
30 component of designing effective teaching materials for advanced mathematics.

31 Finally, the findings of this study open opportunities for developing more targeted GeoGebra-
32 based learning materials for Multivariable Calculus. Unlike previous research which examined
33 student difficulties (Borji et al., 2022) or explored the benefits of visual media separately (Cheong et
34 al., 2023; Herrera et al., 2024) this study directly connects empirical needs analysis with the
35 Gravemeijer & Cobb design research framework. This explicit linkage has not been addressed in
36 earlier studies and therefore represents the main novelty of the present work. By integrating
37 students' conceptual difficulties, their technological needs, and the principles of guided reinvention,
38 this study provides a systematic foundation for designing, implementing, and validating GeoGebra-
39 supported Multivariable Calculus materials in the Indonesian higher education context.

40

41 **Implication of Research**

42 The findings of this study have important implications in three main domains. Theoretically, these
43 results extend the application of the Gravemeijer & Cobb framework in learning Multivariable Calculus,
44 confirming that needs analysis can serve as a foundation for *preliminary design* relevant to stu-
45 dents' real-world difficulties. Practically, the questionnaire data indicate the need to develop

1 GeoGebra-based teaching materials that provide interactive visualizations and facilitate exploration
2 activities, mini-projects, and links to real-world applications. This study provides an initial foundation
3 for further research cycles in the form of implementation (*teaching experiments*) and retrospective
4 analysis, which are expected to produce valid, instructionally meaningful, and generalizable teaching
5 materials for advanced mathematics learning in higher education.

6

7 **Limitation**

8 This study has several limitations that should be noted. First, there were only eight respondents, so
9 the data obtained is not representative of the broader student population. Second, the online
10 questionnaire instrument provided a general overview of students' difficulties, perceptions, and
11 expectations. However, it did not delve deeply into their learning experiences through interviews or
12 direct observation. Third, this study is only at the needs analysis stage, so the instructional impact of
13 the intervention in the form of GeoGebra-based teaching materials cannot yet be verified. These
14 limitations open up opportunities for further research involving larger samples, incorporating
15 qualitative data collection methods, and testing the validity of the learning design through classroom
16 experiments and retrospective analysis.

17

18 **CONCLUSION**

19 This study highlights that students' primary challenges in Multivariable Calculus lie in visualizing
20 multivariable functions, interpreting partial derivatives, and integrating multiple mathematical
21 representations. These findings indicate that traditional instructional approaches, which often
22 emphasize procedural fluency over conceptual understanding, may not fully address students'
23 cognitive needs. The positive perceptions toward GeoGebra suggest that technology mediated
24 tools, when thoughtfully integrated, can enhance conceptual comprehension and support active,
25 exploratory learning. The main contribution of this research is the demonstration that a needs-based
26 analysis, combined with the Gravemeijer & Cobb design research framework, provides a systematic
27 foundation for developing instructional materials tailored to students' conceptual and
28 representational challenges. Building on these results, future research should focus on iterative
29 teaching experiments using GeoGebra-based materials, assess their meaningful in improving spatial
30 reasoning and conceptual understanding, and refine blended learning strategies to optimize
31 engagement and learning outcomes in Multivariable Calculus.

32

33 **ACKNOWLEDGMENTS**

34 The authors gratefully acknowledge the students who actively participated in completing the
35 questionnaire, enabling this learning needs analysis to be successfully conducted. Appreciation is also
36 extended to the Mathematics Study Program, Faculty of Mathematics and Natural Sciences,
37 Universitas Bale Bandung, for providing facilities and access to the research. Special
38 acknowledgment is given to the Ministry of Education, Culture, Research, and Technology
39 (Kemendikbudristek) through its Research and Community Service Information Base (BIMA)
40 program, the official platform supporting research proposals and reporting. Access to BIMA has
41 streamlined the administrative process for this research and facilitated systematic data
42 management. The authors thank their colleagues for constructive feedback, methodological
43 suggestions, and encouragement while preparing this manuscript. The support and collaboration of
44 all parties will likely contribute positively to the advancement of calculus education in Indonesia.

45 **REFERENCES**

1 Abraham, M., & Prediger, S. (2025). Scaffolding fifth graders' learning with a digital multi-
2 representation applet: Design research on focusing multiplicative structures with dynamic dot
3 arrays. *Digital Experiences in Mathematics Education*, 11(2), 219–246.
4 <https://doi.org/10.1007/s40751-024-00156-7>.

5 Abuhassna, H., & Alnawajha, S. (2023). Instructional design made easy! Instructional design models,
6 categories, frameworks, educational context, and recommendations for future work. *European
7 Journal of Investigation in Health, Psychology and Education*, 13, 715–735.
8 <https://doi.org/10.3390/ejihpe13040054>.

9 Al Dehaybes, M., Deprez, J., Van Kampen, P., & De Cock, M. (2025). Students' understanding of two-
10 variable calculus concepts in mathematics and physics contexts. I. the partial derivative and the
11 directional derivative. *Physical Review Physics Education Research*, 21(1), 1.
12 <https://doi.org/10.1103/PhysRevPhysEducRes.21.010131>.

13 Altindis, N., Bowe, K. A., Couch, B., Bauer, C. F., & Aikens, M. L. (2024). Exploring the role of disciplinary
14 knowledge in students' covariational reasoning during graphical interpretation. *International
15 Journal of STEM Education*, 11(1), 1–23. <https://doi.org/10.1186/s40594-024-00492-5>.

16 Andiani, D. (2016). Meningkatkan Kemampuan Representasi, Disposisi Matematis melalui
17 Pembelajaran Berbasis Masalah Teknik Mind Map. *Pasundan Journal of Mathematics Education
18 (PJME)*, 6(2), 48–60. <https://journal.unpas.ac.id/index.php/pjme/article/view/2652/1399>.

19 Andiani, D., Darhim, & Nurlaelah, E. (2025). *Local Instruction Theory Perbandingan Trigonometri
20 dengan Pendekatan Pendidikan Matematika Realistik untuk Mengembangkan Kemampuan
21 Representasi Matematis* [Thesis, Universitas Pendidikan Indonesia].
22 <http://repository.upi.edu/134627/>.

23 Andiani, D., Hajizah, M. N., & Dahlan, J. A. (2020). Analisis Rancangan Assesmen Kompetensi Minimum
24 (Akm) Numerasi Program Merdeka Belajar. *Majamath: Jurnal Matematika Dan Pendidikan
25 Matematika*, 4(1), 80–90.
26 <https://ejurnal.unim.ac.id/index.php/majamath/article/view/1010/544>.

27 Andiani, D., Ruhiyat, D., & Yuningsih, E. K. (2024). Analysing Diagnostic Assessment on the
28 Trigonometric Ratios. *Proceedings International Building The Future of Global Education Through
29 Innovation and Collaboration*, 1–6. <https://prosiding.idipri.or.id/index.php/PWI>.

30 Ballon, E. M. M., Gomez, F. L. R., Castro, A. E. L. F., & Linares, M. R. F. C. (2024). Evaluating problem-
31 solving and procedural skills of first-year students in a Peruvian higher education institution.
32 *Eurasia Journal of Mathematics, Science and Technology Education*, 20(2), 1.
33 <https://doi.org/10.29333/ejmste/14154>.

34 Bedada, T. B., & Machaba, M. F. (2022). The Effect of GeoGebra on Students' Abilities to Study
35 Calculus. *Hindawi Education Research International*, 2022, 1–14.
36 <https://doi.org/10.1155/2022/4400024>.

1 Biehler, R., Durand-Guerrier, V., & Trigueros, M. (2024). New trends in didactic research in university
2 mathematics education. *ZDM - Mathematics Education*, 56(7), 1345–1360.
3 <https://doi.org/10.1007/s11858-024-01643-2>.

4 Borji, V., Martínez-Planell, R., & Trigueros, M. (2022). Student Understanding of Functions of Two
5 Variables: A Reproducibility Study. *The Journal of Mathematical Behavior*, 66.
6 <https://doi.org/10.1016/j.jmathb.2022.100950>.

7 Castillo, D., Carrión, J., Chamba, C., Jiménez-Gaona, Y., Rodríguez-Álvarez, M. J., & Lakshminarayanan,
8 V. (2025). Didactic strategies for conceptual understanding and motivation in university
9 mathematics: A systematic review. *Frontiers in Education*, 10, 1–18.
10 <https://doi.org/10.3389/feduc.2025.1536470>.

11 Cheong, K. H., Chen, J. S., Kang, K., & Yeo, D. J. (2023). Supporting students' visualization of
12 multivariable calculus partial derivatives via virtual reality. *Mathematics*, 11(4), 1–11.
13 <https://doi.org/10.3390/math11040831>.

14 Cheong, K. H., Chu, C. E., Ng, W. K., & Yeo, D. J. (2024). Implementing GeoGebra 3D Calculator With
15 Augmented Reality in Multivariable Calculus Education. *IEEE Access*, 12, 85455–85464.
16 <https://doi.org/10.1109/ACCESS.2024.3394531>.

17 Hahn, L., & Klein, P. (2025). The impact of multiple representations on students' understanding of
18 vector field concepts: Implementation of simulations and sketching activities into lecture-based
19 recitations in undergraduate physics. *Frontiers in Psychology*, 16, 1–13.
20 <https://doi.org/10.3389/fpsyg.2025.1544764>.

21 Herrera, L. M. M., Ordóñez, S. J., & Ruiz-Loza, S. (2024). Enhancing Mathematical Education with
22 Spatial Visualization Tools. *Frontiers in Education*, 9, 1–13.
23 <https://doi.org/10.3389/feduc.2024.1229126>.

24 Hevardani, K. A., Ambiyar, Yerizon, & Yarman. (2025). Evaluation of the Implementation of GeoGebra-
25 assisted Advanced Calculus Courses Using the CIPP Model. *Rangkian Mathematics Journal,
26 Journal of Mathematics and Mathematics Education*, 4(1), 32–41.
27 <https://math.ppi.unp.ac.id/index.php/RMJ/article/view/61/60>.

28 Huang, X., Lo, C. K., He, J., Xu, S., & Kinshuk. (2024). Scaffolding-informed design of open educational
29 resources in Chinese secondary school mathematics: insights from multi-cycle formative
30 evaluation. *Smart Learning Environments*, 11(1), 1–23. <https://doi.org/10.1186/s40561-024-00337-2>.

32 Johnson, E., Weber, K., Fukawa-Connelly, T. P., Mahmoudian, H., & Carbone, L. (2025). Collaborating
33 with mathematicians to use active learning in university mathematics courses: the importance
34 of attending to mathematicians' obligations. *Educational Studies in Mathematics*, 119(1), 145–
35 161. <https://doi.org/10.1007/s10649-024-10381-x>.

36 Jones, S. R., Long, N. E., & Becnel, J. J. (2022). Design of virtual reality modules for multivariable
37 calculus and an examination of student noticing within them. *Research in Mathematics
38 Education*, 25(2), 219–242. <https://doi.org/10.1080/14794802.2022.2045625>.

1 Komatsu, K., Murata, S., Stylianides, A. J., & Stylianides, G. J. (2024). Introducing Students to the Role
2 of Assumptions in Mathematical Activity. *Cognition and Instruction*, 42(2), 327–357.
3 <https://doi.org/10.1080/07370008.2023.2293695>.

4 Leung, S. K. Y., Wu, J., & Li, J. W. (2024). Children's knowledge construction of computational thinking
5 in a play-based classroom. *Early Child Development and Care*, 194(2), 208–229.
6 <https://doi.org/10.1080/03004430.2023.2299405>.

7 Mackey, M., Drew, S. V., Nicoll-Senft, J., & Jacobson, L. (2023). Advancing a theory of change in a
8 collaborative teacher education program innovation through universal design for learning. *Social
9 Sciences and Humanities Open*, 7(1). <https://doi.org/10.1016/j.ssaho.2023.100468>.

10 Malone, S., Escobar, J. P., Hoyer, C., Hahn, L., & Klein, P. (2023). The impact of multiple representations
11 on students' understanding of vector field concepts: Implementation of simulations and
12 sketching activities into lecture-based recitations in undergraduate physics. *Front. Psychol*,
13 13:1012787, 1–8. <https://doi.org/https://doi.org/10.3389/fpsyg.2022.1012787>.

14 Milenković, A., & Vučićević, N. (2024). Advancing Students' Achievements in Multivariable Calculus
15 Education through CSCL. *International Electronic Journal of Mathematics Education*, 19(2), 1–13.
16 <https://doi.org/10.29333/iejme/14472>.

17 Nickl, M., Sommerhoff, D., Radkowitsch, A., Huber, S. A., Bauer, E., Ufer, S., Plass, J. L., & Seidel, T.
18 (2024a). Effects of real-time adaptivity of scaffolding: Supporting pre-service mathematics
19 teachers' assessment skills in simulations. *Learning and Instruction*, 94.
20 <https://doi.org/10.1016/j.learninstruc.2024.101994>.

21 Nickl, M., Sommerhoff, D., Radkowitsch, A., Huber, S. A., Bauer, E., Ufer, S., Plass, J. L., & Seidel, T.
22 (2024b). Effects of real-time adaptivity of scaffolding: Supporting pre-service mathematics
23 teachers' assessment skills in simulations. *Learning and Instruction*, 94, 1–12.
24 <https://doi.org/10.1016/j.learninstruc.2024.101994>.

25 Prediger, S., Gravemeijer, K., & Confrey, J. (2015). Design research with a focus on learning processes:
26 An overview on achievements and challenges. *ZDM - Mathematics Education*, 47(6), 877–891.
27 <https://doi.org/10.1007/s11858-015-0722-3>.

28 Ribeiro-Silva, E., Amorim, C., Aparicio-Herguedas, J. L., & Batista, P. (2022). Trends of active learning
29 in higher education and students' well-being: A literature review. *Frontiers in Psychology*,
30 13:844236, 1–10. <https://doi.org/10.3389/fpsyg.2022.844236>.

31 Schoenherr, J., Strohmaier, A. R., & Schukajlow, S. (2024). Learning with Visualizations Helps: A Meta-
32 Analysis of Visualization Interventions in Mathematics Education. *Educational Research Review*,
33 45. <https://doi.org/10.1016/j.edurev.2024.100639>.

34 Song, H., & Cai, L. (2024). Interactive learning environment as a source of critical thinking skills for
35 college students. *BMC Medical Education*, 24(1). <https://doi.org/10.1186/s12909-024-05247-y>.

36 Spencer-Tyree, B., Bowen, B. D., & Olaguro, M. (2024). The Impact of computational labs on
37 conceptual and contextual understanding in a business calculus course. *International Journal of*

1 *Research in Undergraduate Mathematics Education.* <https://doi.org/10.1007/s40753-024-00255-1>.

3 Vízek, L., Samková, L., & Star, J. R. (2024). Assessing the quality of conceptual knowledge through
4 dynamic constructions. *Educational Studies in Mathematics*, 117(2), 167–191.
5 <https://doi.org/10.1007/s10649-024-10349-x>.

6 Wang, X. M., Wang, J. L., Xu, S. Y., & Xu, S. J. (2025). Concept mapping in STEM education: a meta-
7 analysis of its impact on students' achievement (2004–2023). *International Journal of STEM
8 Education*, 12(30), 1–20. <https://doi.org/10.1186/s40594-025-00554-2>.

9 Weinhandl, R., Baldinger, S., & Riegler, V. (2025). Design characteristics for discovery learning within
10 digital mathematics learning environments from students' Perspectives. *International Journal of
11 Science and Mathematics Education*, 1–29. <https://doi.org/10.1007/s10763-025-10619-x>.

12
13

1