

Turnitin_34069 Kreano 16(2).pdf

 Universitas Negeri Semarang - iTh

Document Details

Submission ID**trn:oid:::3618:126840205****12 Pages****Submission Date****Jan 25, 2026, 11:32 AM GMT+7****5,801 Words****Download Date****Jan 27, 2026, 12:19 AM GMT+7****31,555 Characters****File Name****Turnitin_34069 Kreano 16(2).pdf****File Size****466.1 KB**

17% Overall Similarity

The combined total of all matches, including overlapping sources, for each database.

Filtered from the Report

- ▶ Bibliography

Match Groups

- **59** Not Cited or Quoted 12%
Matches with neither in-text citation nor quotation marks
- **23** Missing Quotations 6%
Matches that are still very similar to source material
- **0** Missing Citation 0%
Matches that have quotation marks, but no in-text citation
- **0** Cited and Quoted 0%
Matches with in-text citation present, but no quotation marks

Top Sources

- 12% Internet sources
- 14% Publications
- 0% Submitted works (Student Papers)

Integrity Flags

0 Integrity Flags for Review

No suspicious text manipulations found.

Our system's algorithms look deeply at a document for any inconsistencies that would set it apart from a normal submission. If we notice something strange, we flag it for you to review.

A Flag is not necessarily an indicator of a problem. However, we'd recommend you focus your attention there for further review.

Match Groups

- **59** Not Cited or Quoted 12%
Matches with neither in-text citation nor quotation marks
- **23** Missing Quotations 6%
Matches that are still very similar to source material
- **0** Missing Citation 0%
Matches that have quotation marks, but no in-text citation
- **0** Cited and Quoted 0%
Matches with in-text citation present, but no quotation marks

Top Sources

- 12% Internet sources
- 14% Publications
- 0% Submitted works (Student Papers)

Top Sources

The sources with the highest number of matches within the submission. Overlapping sources will not be displayed.

Rank	Type	Source	Percentage
1	Internet	proceeding.unnes.ac.id	3%
2	Internet	www.researchgate.net	<1%
3	Publication	Riyadi*, Triana, Triana Jamilatus, Puput Nikmaturrohmah. "Profile of Students' Pr...	<1%
4	Internet	www.eu-jer.com	<1%
5	Internet	ijern.com	<1%
6	Publication	Andi Saparuddin Nur, Stevanus Budi Waluya, Rochmad Rochmad, Wardono Ward...	<1%
7	Internet	files.eric.ed.gov	<1%
8	Publication	Jeri Araiku, Elika Kurniadi, Weni Dwi Pratiwi. "Junior high school students' abilitie...	<1%
9	Internet	eudl.eu	<1%
10	Internet	ojspanel.undikma.ac.id	<1%

11	Internet	repository.unej.ac.id	<1%
12	Publication	Busnawir Busnawir, Mukhsar Mukhsar, Hidayat Ahmad, Kodirun Kodirun. "MEAS...	<1%
13	Publication	Shinta Yuliana, Dian Kurniati, Ervin Oktavianingtyas. "Lack of truth-seeking beha...	<1%
14	Publication	W Widada, S Efendi, D Herawaty, K U Z Nugroho, F R Putri. "The genetic decompo...	<1%
15	Publication	Yunia Jumita Ningrum, Dadan Dasari, Sufyani Prabawanto. "Epistemological Obst...	<1%
16	Internet	etd.lib.metu.edu.tr	<1%
17	Publication	Galih Mahardika Christian Putra, Fitria Dwi Prasetyaningtyas, Isa Ansori, Bagas K...	<1%
18	Publication	Naela Khusna Faela Shufa, Tito Pangesti Adji. "Integrating Local Wisdom in Inde...	<1%
19	Internet	www.readkong.com	<1%
20	Publication	Ari Wahyu Silvana, Dwi Priyo Utomo, Siti Khoiruli Ummah. "THE EFFECTIVENESS O...	<1%
21	Internet	kwpublications.com	<1%
22	Publication	Eda Vula, Fatlume Berisha*. "Using Algebraic Manipulations and Analogical Trans...	<1%
23	Internet	e-journal.unipma.ac.id	<1%
24	Internet	journal.unsika.ac.id	<1%

25	Internet	download.atlantis-press.com	<1%
26	Internet	ejournal.radenintan.ac.id	<1%
27	Internet	www.articlegateway.com	<1%
28	Publication	Ayşe Tuğçe Bodur, Handan Ürek, Mevhibe Kobak Demir. "Investigation of the Ma...	<1%
29	Publication	Firdha Mahrifatul Zana, Cholis Sa'dijah, Susiswo Susiswo. "The cognitive alignme...	<1%
30	Publication	Indah Puspita Sari, Edi Supriyadi, Wahyu Hidayat. "Development of Digital Comics...	<1%
31	Publication	Prida N. L. Taneo, Yaya S Kusumah. "Analysis of Students' Mathematical Problem-...	<1%
32	Publication	W Widada, D Herawaty, A N M T Lubis. "Realistic mathematics learning based on t...	<1%
33	Internet	commons.hostos.cuny.edu	<1%
34	Internet	jurnal.fkip.unila.ac.id	<1%
35	Internet	ojs.fkip.ummetro.ac.id	<1%
36	Publication	Arief Budi Wicaksono, Aprilia Nurul Chasanah, Gunawan Gunawan. "Developmen...	<1%
37	Publication	Fahrur Juhaevhah. "Developing mathematics problems using local wisdom contex...	<1%
38	Publication	Ryan Angga Pratama, Rika Afriani. "The effect of ethnomathematics-based learni...	<1%

39 Publication

Silvi Puspa Widya Lubis, I Gusti Putu Suryadarma, Paidi Paidi, Jatmiko Jatmiko. "L..." <1%

40 Publication

Williams-Taylor, Lisa. "Middle School Special Education Math Teachers' Perception..." <1%

41 Internet

doaj.org <1%

42 Internet

ejournal.iainbengkulu.ac.id <1%

43 Internet

eprints.umm.ac.id <1%

44 Internet

journal.untidar.ac.id <1%

45 Internet

jurnal.unsyiah.ac.id <1%

46 Internet

jurnalftk.uinsby.ac.id <1%

47 Internet

mathline.unwir.ac.id <1%

48 Internet

mtrj.common.gc.cuny.edu <1%

49 Internet

repository.radenintan.ac.id <1%

50 Internet

www.oriens.uz <1%

51 Publication

Hlabane, Alfred Sipho. "Effectiveness of Writing-to-Learn Activities in Enhancing L..." <1%

52 Publication

Y Ningrum, T A Kusmayadi, L Fitriana. "Analysis problem solving about contextua..." <1%

53

Publication

Halimatuzzahra Halimatuzzahra, Isana Supiah Yosephine Louise. "Implementatio... <1%

54

Publication

Jonni Sitorus, Bornok Sinaga, Lili Handayani, Dumora Jenny Margaretha Siagian. "... <1%

55

Publication

Mailen A. Antao, Jr. Ricky S. Morales, Jr. Ricky S. Morales, Charisma C. Samparani-... <1%

1 Students Perspective on How to Construct Local Cultural-Based Ethnomathematics Problem
2 Solving

3 Dwi Erna Novianti¹, Zaenuri^{2*}, Wardono³, Sugiman⁴

4 ^{1,2,3,4} Program Studi Pendidikan Matematika, Universitas Negeri Semarang, Indonesia.

5 Correspondence author: zaenuri.mipa@mail.unnes.ac.id.

6

7 **Abstract**

8 The purpose of this study is to analyze the problem-solving ability of a question in the social and
9 cultural context of local wisdom in Bojonegoro Regency. The current study was qualitative
10 descriptive through problem-solving tests and interviews in collecting the data. The test results are
11 then analyzed and described in relation to their problem-solving ability following Polya's steps. The
12 respondents of this study were 6th-semester students in which they were selected using a purposive
13 sampling technique. Two respondents were selected, namely ST (respondents categorized with
14 high ability) and SR (respondents with low ability). The results of the study showed that the two
15 respondents had different ways in solving the problems in a question, where ST has structured ways
16 in solving problems compared to SR who using Polya's steps. Another finding was that students
17 found non-mathematical information beyond the mathematical information related to the problem.
18 This non-mathematical information refers to the stories related to local cultural wisdom that inherent
19 in the problem. It makes learning more meaningful and provides the students with new experiences.
20 Contextual learning that incorporated ethnomathematics elements that acts as a bridge for the
21 students in understanding interconnection among mathematics and their daily lives. This process
22 comes regarding the respect for cultural diversification, especially to empower the students in the
23 area of cognitive, social, emotional, and political. Through ethnomathematics approach, students'
24 understanding of mathematical concepts can be reconstructed effectively.

25 **Keywords:** construct, problem solving, local cultural

26

27

28 **Abstrak**

29 *Tujuan dari penelitian ini adalah untuk melakukan analisis kemampuan pemecahan masalah pada sosial*
30 *dalam konteks sosial dan budaya kerian lokal yang ada di kabupaten Bojonegoro. Penelitian ini*
31 *merupakan penelitian deskriptif kualitatif dengan teknik pengumpulan data menggunakan tes*
32 *pemecahan masalah dan wawancara. Hasil tes tersebut kemudian dianalisis dan dideskripsikan terkait*
33 *dengan kemampuan pemecahan masalahnya dengan menggunakan langkah Polya. Subjek penelitian ini*
34 *adalah mahasiswa semester 6, kemudian subjek dipilih dengan menggunakan teknik purposive*
35 *sampling. Terpilih dua subjek yaitu ST (subjek dengan kemampuan tinggi) dan SR (subjek dengan*
36 *kemampuan rendah). Hasil penelitian menunjukkan bahwa kedua subjek memiliki perbedaan dalam*
37 *menyelesaikan masalah, dimana subjek ST lebih terstruktur dalam menyelesaikan masalah*
38 *dibandingkan dengan subjek SR dengan menggunakan langkah Polya. Selain itu, temuan penelitian*
39 *yang lain adalah mahasiswa menemukan informasi non matematis diluar informasi matematis yang*
40 *berkaitan dengan soal. Informasi non matematis yang dimaksudkan adalah cerita terkait budaya*
41 *kearifan lokal yang ada pada permasalahan. Hal ini menjadikan pembelajaran lebih bermakna dan*
42 *memberikan pengalaman baru kepada mahasiswa. Pembelajaran kontekstual yang menggabungkan*
43 *unsur etnomatematika berperan sebagai penghubung bagi siswa dalam memahami keterkaitan antara*

1 matematika dan kehidupan mereka sehari-hari. Proses ini dilandasi oleh penghargaan terhadap
2 keberagaman latar belakang budaya, yang bertujuan untuk memberdayakan mahasiswa secara
3 kognitif, sosial, emosional, dan politis. Melalui pendekatan etnomatematika, pemahaman mahasiswa
4 terhadap konsep-konsep matematika dapat dikonstruksi ulang dengan cara yang lebih efektif.

5 **Kata Kunci:** Konstruksi langkah, pemecahan masalah, kearifan lokal

6

7 INTRODUCTION

8 The objectives of 21st-century learning are to develop skills related to communication,
9 collaboration, critical thinking, problem-solving, creativity and innovation, compassion, and
10 computational logic (Szabo et al., 2020). These skills are essential for students to master as part of
11 mathematics learning objectives. (Rizki & Priatna, 2019). It is in line with mathematical problem-
12 solving skills, which are part of 21st-century skills. Critical thinking and problem-solving are essential
13 for students to master as a cognitive process in utilizing information, identifying, and determining
14 problem-solving strategies. (Riyadi, 2021).

15 Problem solving, plays important role in mathematics learning since by having problem-
16 solving skills, the students able to solve a problem starting from understanding the problem to finding
17 the solution. (Tambunan, 2019). Problem solving is also a process where students use the elements
18 of knowledge, concepts and strategies to find solutions to a problem (sondang, 2020). In the process
19 of developing mathematical problem-solving strategies, students require careful steps or stages
20 starting from formulating the problem, representing the problem through appropriate mathematical
21 symbols or models. (Barheem, 2019). These steps or stages will show their understanding level and
22 help them in applying the appropriate techniques in the problem-solving process.

23 Meanwhile (Afnan et al., 2023) stated that by using problems related to everyday life can
24 develop students' problem-solving skills and train to solve these problems in everyday life.
25 Furthermore, according to (Pratama et al., 2018) problem-solving skills and mathematical literacy are
26 two important and interrelated things. This connection lies in how students face problems and
27 develop their problem-solving skills in real life. There was similar focus of discussion between
28 problem-solving and mathematical literacy where both have the same focus on how to use
29 mathematics as a tool to solve real-world problems. Therefore, the relationship between problem-
30 solving skills and mathematical literacy, especially in real-world contexts needs to be analyzed
31 deeply. Moreover, (Andari & Setianingsih, 2021) explain that problems' contexts in mathematical
32 problem solving are very important because it is related to the concepts that had been learned by
33 students. It makes students to be more ready in solving their life's problems. (Kolar & Hodnik, 2021)
34 say that literacy does not only assess someone's ability in recognizing and understanding
35 mathematics, it also assesses his ability in interpreting mathematics into more complex and broader
36 contexts. It can be said that the role of context in mathematical literacy is very important.

37 There are four contexts of problems in mathematical based on PISA, namely personal,
38 occupational, social, and scientific. Furthermore, it is explained that personal context is viewed from
39 individual challenges (Almarashdi & Jarrah, 2023). Occupational context is viewed from work
40 situations. Social context is viewed from individual's life locally, nationally, and globally. Scientific
41 context is based on mathematics implementation in real life. According to (Bolstad, 2020), social
42 context comes from everyday lives by presenting individual perspective. It includes his ways to decide
43 problems' lifes such as financial problem, economics problem, social problem, etc. It also arises from

1 someone's daily activities. Moreover, (Umbara & Suryadi, 2019) explain that mathematical ability is
2 focussed on human's way to use concept, knowledge, and intention in various context, including
3 social context. This context involves changing environmental situations that cause changes in varied
4 mathematical literacy, such as the use of cultural backgrounds.

5 Learning mathematics that incorporating culture in a way is called ethnomathematics.
6 According to (Herawaty & Widada, n.d.), ethnomathematics and mathematical literacy are two main
7 ideas of mathematics. Ethnomathematics emphasizes the competence of people developed in
8 different cultural groups in their daily lives. Furthermore, according to (Utami et al., 2021)
9 ethnomathematics of a culture can be used as mathematical learning approach at schools. The use
10 of ethnomathematics teaches the students to connect culture and mathematics. Several studies have
11 been conducted related to ethnomathematics, including by (Lubis et al., 2022), which stated that
12 local wisdom is oriented to socio-scientific issues to improve conceptual knowledge and
13 environmental literacy. Another study conducted by (Nursyahidah et al., 2018), argued that
14 ethnomathematics is a mathematics that grows and develops in a particular culture, which is
15 perceived as a lens to view and understand mathematics as a cultural product.

16 The idea of ethnomathematics elaborated before shows that ethnomathematics is an
17 approach that can be used to link culture and mathematics applied in the learning process.
18 Furthermore, in mathematics context, cultural objects has relation to geometric shapes in
19 mathematics. These cultural objects can be adopted in ethnomathematics learning, especially in
20 geometry. The problems of local wisdom presented for the students are expected to assist students
21 in their problem-solving process. According to (Sumirattana et al., 2017) it is necessary to intensively
22 develop and enhance students' mathematical literacy. Teachers play an important role in
23 empowering students' mathematical experience to their real lives. Furthermore, according (Olivares
24 et al., 2020), problem-solving is more than one way to define a problem and agrees that facing a
25 problem means that we cannot use a previously given path, experience, or method to find the
26 solution.

27 Polya (1957) in (Barham, 2020) conducted in-depth study of the various techniques used in
28 problem-solving and formulated four main stages: understanding the problem, planning a solution,
29 implementing the plan, and evaluating the results. In the initial stage, students are expected to be
30 able to understand the terms or words contained in the problem, identify the required information,
31 restate the problem in their own words, imagine the illustrations or diagrams that can aid in
32 understanding, and ensure that the available information is sufficient to find a solution. Finally, in the
33 "solution planning" stage, students have to choose the appropriate approach to solve the problem.

34 Meanwhile, according to (Fisher, 2021) there are several stages that can be used as guidelines
35 in assessing students' problem-solving ability. The ones that widely used is the four stages of
36 problem-solving approach proposed by Polya. The first stage is understanding the problem, where
37 the students need to understand of given situation, identify information, and what required to be
38 solved. The second stage involves developing a plan, where students are expected to separate
39 relevant variables, construct a mathematical model, determine a strategy or solution method, and
40 design the steps to be taken. In the third stage, students implement the plan by carry out the
41 calculations or steps that have been designed. The final stage is re-evaluating the results obtained by
42 reviewing and testing the solutions found to ensure their validity.

43 Based on the above situation, ethnomathematics problem-solving based on local wisdom is
44 the area that can be studied more to understand the problem-solving process. Based on this

5 explanation, the purpose of this research is to analyze the construction of mathematical problem-
18 solving steps using ethnomathematics problems based on local wisdom. The problems presented are
3 the result of an exploration of local wisdom found in Bojonegoro Regency.

4

7 **METHOD**

42 This research is a qualitative descriptive study using a case study design. The respondents were sixth-
36 semester students in East Java. Respondents were randomly selected using a purposive sampling
10 method, among students who taking algebra courses. Two respondents were selected: those with
11 high scores, denoted as ST, and those with low scores, denoted as SR. Data collection was conducted
12 by administering a mathematics problem-solving test related to issues in a social and cultural
13 context. Based on the result of the test, respondents were selected for in-depth interviews. The test
results addressed issues in a sociocultural context then analyzed and their problem-solving abilities
were described using Polya's steps.

14 **Data Collection**

28 Data collection was conducted by administering a mathematics test related to problems in a cultural
9 context or ethnomathematics problems to all respondents. Respondents were then selected for
17 interviews. The researcher, acting as the primary instrument, observing students' activities while
18 completing the test. The researcher then interviewing the selected respondents. In the current study,
19 data obtained from the test results were used to select respondents for in-depth interviews to analyze
20 the construction of the steps taken to solve the ethnomathematics problems.

21 **Data Analysis**

55 In this study, to determine the construction of problem-solving steps using Polya's stages, we
22 analyzed the respondents' responses, starting by understanding the problem, planning the solve,
24 implementing the solution plan, and reviewing the result. These stages were conducted by analyzing
13 each selected subject through in-depth interviews. Based on the interview conducted, the
26 construction of the problem-solving steps, in this case using ethnomathematics problems, is
27 described.

28

41 **RESULTS AND DISCUSSION**

8 In this study, the results of a problem-solving test in a cultural context related to students' problem
39 solving abilities were described using Polya's steps. The problem-solving questions used were socio-
32 cultural problems based on the exploration of the local wisdom of Kayangan Api.

25 *Kayangan Api in an Eternal flame phenomenon tourist destination featuring an eternal, unquenchable
flame located in a protected forest area in Sendangharjo Village, Ngasem District, Bojonegoro Regency,
East Java. Around the fire source at the Kayangan Api tourist attraction are four small gates. These gates
have tiered, square-shaped roofs, as shown in the picture. The roof dimensions on each tier differ by 10
cm on each side. The lowest side of the roof is 1 meter.*

38

39

1 Based on the answers from those two respondents, the researchers then explored these responses
2 by conducting interviews to gather relevant information. The following is an excerpt from an
3 unstructured interview with ST and SR regarding the first steps taken with Polya.

4 R : How the way you understand this question?
5 ST : I read the questions carefully, including the story elaborated in the questions
6 R : What about you?
7 SR : I also read the question
8 R : After reading the question completely, what do you do?
9 ST : I wrote down the information on the question, including the dimensions
10 SR : I only wrote the size but didn't read the whole things
11 P : How many times have you read this question?
12 ST : twice
13 SR : once
14

15 In the first Polya step, understanding the problem, ST read carefully and thoroughly so that they
16 could fully understand the information in the question. Meanwhile, SR did not read the question in
17 its entirety then tried to understand the question but incomplete. This can be seen from the answers
18 written by both respondents. ST wrote completely what was known from the question based on the
19 information that ST previously written. Meanwhile, SR wrote from the information known based on
20 what he understood, but there were still some incompleteness. In general, both respondents were
21 able to understand the problem even though the written answer was incomplete. However, after an
22 in-depth interview, both respondents were able to explain what was known in the question. Especially
23 subject SR, although the written answer was incomplete, subject SR was able to explain what was
24 known completely using the available information.

25 The following is a further interview excerpt regarding Polya's second step, namely planning
26 a resolution.

27
28 R : Okay, based on the information you've gathered and explained, what did you do then?
29 SR : I immediately created an answer of the question.
30 ST : I looked at what I'd written earlier, then I thought about how to solve it, using what formula.
31 Then, from that question, I discovered that it falls under the concept of sequences and series.
32 R : Can you explain how to create an answer or solution?
33 SR : Based on what I know, I then created an answer to the question.
34 R : How did you create the answer?
35 SR : I looked at the question, and I immediately solved what was asked.
36

37 Based on the interview excerpt, it can be obtained information that ST is better at developing
38 plans by firstly considering the suitability between the question and the formula or material to be
39 used. ST firstly develop a solution plan as written in subject ST's answer. during the interview process
40 SR explained that in solving the question, directly creates the answer by looking at what is asked
41 without making a plan. This is an evident that SR answer it by directly writes the answer even though
42 the answer written is correct. The researcher then looked at the answer written by SR which
43 contained errors in solving the question. These errors are likely caused by SR is not develop a plan in
44 advance to solve the question. After digging deeper, it was found that SR was unstructured in making
45 the solution, because there was no prior planning.

43 1 The third step of Polya is implementing the solution plan. the researcher continued the
2 interview process to gather relevant information. The following is an excerpt from the interviews with
3 the two respondents.

4
5 R : Based on the previous steps, what did you do then?
6 ST : I plugged the numbers that I known into the appropriate formula, which is a sequence or
7 series.
8 SR : I used a method that I known to find the solution.
9 R : What formula or method did you used?
10 ST : I used a number pattern by listing the lengths of one side at each level, then I used the
11 concept of arithmetic sequences.
12 SR : I also created a pattern, but I didn't use the sequence or series formula. I added them directly.
13

14 12 From the interview excerpt, it was obtained that there were differences between the two
15 respondents in solving the problem. ST understood the concept of the material used to solve the
16 problem using the concept of sequences and series. Therefore, ST used the formula for the sum of
17 the nth term (S_n) in the material on arithmetic sequences and series to find the solution. This is
18 evident from the answer written by ST. Meanwhile, SR did not use the concept of sequences and
19 series in solving the problem. SR used a pattern to solve but did not use the formula for the sum of
20 the nth term (S_n) in the material on arithmetic sequences and series to find the solution. This was
21 caused SR made errors in doing the problem given.

22 The final step in Polya is reviewing the answers obtained. To gather information, researchers
23 conducted interviews related to the Polya steps. The following is the interview excerpts:

24 R : Okay, next I'd like to know whether both of you checked your answer after finding it?
25 ST : Yes, I checked it using the nth term formula, and it turns out the pattern I created was
26 correct.
27 SR : I didn't double-checked it, but I thought my answer was correct because I added all the
28 numbers.
29 R : Then, regarding the SR question, where do you think your answer went wrong?
30 SR : I added it straight away, wasn't thorough, and didn't confirming by doing double-check.
31 R : Okay, thank you. So, what did you gained after solving the problem?
32 SR : I gained information about the Kayangan Api tourist attraction.
33 ST : Yes, I also gained information about the tourist attraction, as well as the data for the
34 problem.
35

36 The interview excerpt shows that ST double-checked what he had done to solve the problem.
37 Meanwhile, SR did not double-checked his answer. SR thought he had already had the correct answer
38 to solve the problem. This led to errors in SR's answer. However, there is an interesting aspect of the
39 interview: both respondents reported that in addition to obtaining information regarding the size of
40 the building's roof, they also obtained information regarding the Kayangan Api tourist attraction..
41

42 Discussion

43 Based on the results of the both respondents responses and further information gathered
44 through interviews, the conclusions were drawn: 1) Both respondents, understood the given problem.

12 27 1 ST and SR understood what was known and what was asked in the problem. 2) ST had a good plan
13 2 for solving the problem and then executed that plan effectively and also understood the relevant
14 3 concepts, in this case, the concepts of sequences and arithmetic series, which would be used to find
15 4 the solution. However, SR did not make a plan for solving the problem. SR directly performs
16 5 additional operations in finding solutions and does not use appropriate mathematical concepts, so
17 6 there are errors in the answers given, and 3) Both respondents got non mathematical information
18 7 related to the tourism and cultural contexts that exist in the problem about Kayangan Api. in addition
19 8 to understanding the problem mathematically, the respondents also gets new information about
20 9 local culture. 4) the use of everyday life problems using social and cultural contexts provides a new
21 10 learning experience for students by obtaining new things or information.

11 According to(Kenedi et al., 2019) who demonstrates that in the process and activities
12 involved in solving mathematical problems, students are indirectly develop their ability to connect
13 the knowledge and concepts to find solutions. These connections will be relevant to solving real-life
14 problems. Meanwhile, according to (Islami et al., 2022) problem-solving is crucial not only for those
15 who studying mathematics but also for its application to other fields of study in their daily lives.
16 Students are required to develop problem-solving skills to address both basic and complex
17 mathematical problems encountered in everyday life. When discussing problem-solving skills,
18 several experts have discussed the steps of problem solving, one of them is Polya's steps. Polya
19 defines four steps in understanding problem-solving skills. According to (Barham, 2020), Polya's four
20 steps are 1) understanding the problem, 2) making a plan, 3) implementing the plan, and 4) reviewing
21 the solution obtained. Further explanations regarding Polya's steps (Fisher, 2021) and (Anjariyah et
22 al., 2022) explain that Polya's first step is to understand the problem, where students are expected to
23 be able to understand the problem and then be able to identify the information contained in the
24 question related to what is known and asked from the given problem. The second step is to determine
25 a plan for solving the problem, in which students are able to determine the concepts relevant to the
26 problem, create a mathematical model, and write down the steps used in solving the problem. The
27 third step is to implement the plan from the previous step, in which students are able to carry out the
28 plan for solving the problem using mathematical calculations. The final step is to re-examine the
29 solution obtained by looking at the initial problem given.

30 Regarding the differences in solving the problems, according to (Simamora et al., 2018) it is
31 stated that students are categorized as those who had problem-solving skills if the student can
32 understand the problem, create a strategy then implement the strategy made and re-examine the
33 results of the problem solving carried out. In addition, students can develop other ways to get
34 solutions to mathematical problems. It is in line with (Tambunan, 2019) who stated that mathematics
35 learning that uses problem-solving strategies indirectly affects students' skills in solving problems,
36 students' academic achievement and the level of student achievement itself when using problem-
37 solving strategies compared to those using conventional learning.

38 The use of contextual problem also influences students' ability to understand mathematics
39 problems. According to (Cai & Hwang, 2020) problem-solving has various meanings depends on the
40 context used. However, the important point is on how the teachers construct useful, meaningful, and
41 relevant problems to support students' problem-solving abilities. Mathematics learning that uses
42 real-life contexts enhance the students to discover the relationship between concepts. The use of
43 problems in local cultural contexts will also help students better understanding the development of

1 mathematics from the perspective of their experiences in everyday life (Noviarsyh Dasaprawira et al.,
2 2019). Furthermore, it is explained that the use of this local cultural context can be used to change
3 habits in giving routine problems to more varied questions. In addition, according to (Sutaphan &
4 Yuenyong, 2019) explains that the use of cultural dimensions in learning enable the students to
5 connect existing knowledge so that relationships are formed between real-world problems and
6 everyday experiences..

7 The results of this study also show that in the mathematics learning process, students are not
8 only taught mathematical concepts but also honed their mathematical skills. According to (Purnomo
9 et al., 2022) several other abilities that are also developed includes creative thinking skills,
10 mathematical connections, and mathematical communication. According to the research conducted
11 by (Widada et al., 2019) students' mathematical problem-solving abilities increased after they were
12 participated in ethnomathematics learning through an outdoor activities approach, compared to
13 before the learning was implemented. This finding is in line with the results of previous research (Rosa
14 & Gavarrete, 2017) which showed that students' who received material-oriented through
15 ethnomathematics-based learning was higher than students who learned using non-
16 ethnomathematics materials by considering students' initial abilities.

17 Contextual learning that integrates ethnomathematics provides a bridge for students to
18 understand how mathematics relates to their daily lives. This learning process respect to the diversity
19 of cultural experiences, thus empowering students intellectually, socially, emotionally, and
20 politically. Through ethnomathematics, students' understanding of mathematical concepts
21 effectively redirected, regardless of their current level of thinking development (Nur et al., 2020).
22 Students also become more confident in using their own chosen methods and demonstrate respect
23 for local culture. This approach enriches problem-solving strategies and helps students gain
24 meaningful understanding of mathematics. Providing challenging and curiosity-provoking tasks is an
25 effective way to observe how students think and increase their interest in learning mathematics
26 (Liljedahl et al., 2016). The importance of mathematics learning provides a strong foundation for
27 maintaining and improving students' thinking skills to a higher level.

28

29 **Implication of Research**

30 This study found that students had a new experience in learning mathematics, gaining information
31 beyond the mathematical information contained in the problem. During the problem understanding
32 stage, students acquired non-mathematical information related to local cultural stories in their region.
33 Based on these findings, further research need to be conducted regarding to the develop other
34 indicators of problem-solving.

35

36 **Limitation**

37 This research is limited to the local socio-cultural context in Bojonegoro Regency. Then. the re-
38 search subject is also limited to one of the collages in Bojonegoro.

39

40 **CONCLUSION**

41 Based on the research results and discussion in the previous section, it can be concluded that solving
42 mathematics problems involves a problem-solving process. Problem-solving plays a role in developing

46

1 students' abilities in several areas, including reasoning, interpreting, and solving problems. Using a
2 local cultural context that is close to students' daily lives will positively impact their problem-solving
3 abilities. Students will easily understand the problems because it is related to real life. Furthermore,
4 by using a real-life and local culture context, students will have different experiences, meaningful
5 learning experiences, and new experiences. Students will gain mathematical and non-mathematical
6 information from the problems presented.

7

8 REFERENCE

9

10 Afnan, R., Munasir, M., Budiyanto, M., & Aulia, M. I. R. (2023). The Role of Scientific Literacy
11 Instruments For Measuring Science Problem Solving Ability. *IJORER : International Journal
12 of Recent Educational Research*, 4(1), 45–58. <https://doi.org/10.46245/ijorer.v4i1.271>

13 Almarashdi, H. S., & Jarrah, A. M. (2023). Assessing Tenth-Grade Students' Mathematical
14 Literacy Skills in Solving PISA Problems. *Social Sciences*, 12(1).
15 <https://doi.org/10.3390/socsci12010033>

16 Andari, R. M., & Setianingsih, R. (2021). Students' Mathematical Literacy in Solving PISA
17 Problem Using Indonesian Cultural Context. *JRPM (Jurnal Review Pembelajaran
18 Matematika)*, 6(1), 52–67. <https://doi.org/10.15642/jrpm.2021.6.1.52-67>

19 Barham, A. I. (2020). Investigating the development of pre-service teachers' problem-solving
20 strategies via problem-solving mathematics classes. *European Journal of Educational
21 Research*, 9(1), 129–141. <https://doi.org/10.12973/eu-jer.9.1.129>

22 Bolstad, O. H. (2020). Secondary teachers' operationalisation of mathematical literacy.
23 *European Journal of Science and Mathematics Education*, 8(3), 115–135.
24 <https://doi.org/10.30935/scimath/9551>

25 Cai, J., & Hwang, S. (2020). Learning to teach through mathematical problem posing:
26 Theoretical considerations, methodology, and directions for future research. *International
27 Journal of Educational Research*, 102(December 2018), 0–1.
28 <https://doi.org/10.1016/j.ijer.2019.01.001>

29 Fisher, D. (2021). Profile of Students' Problem-Solving Skills Viewed from Polya's Four- Steps
30 Approach and Elementary School Students Riyadi*. *European Journal of Educational
31 Research*, 11(1), 69–81.

32 Herawaty, D., & Widada, W. (n.d.). *The ability to solve mathematical problems through realistic
33 mathematics learning based on ethnomathematics The ability to solve mathematical
34 problems through realistic mathematics learning based on ethnomathematics*. 0–6.
35 <https://doi.org/10.1088/1742-6596/1731/1/012050>

36 Islami, S., Zawawi, I., & Khikmiyah, F. (2022). Analysis of Students' Mathematical Problem
37 Solving Ability Based on Self-confidence. *Jurnal Pendidikan MIPA*, 23(4), 1670–1679.
38 <https://doi.org/10.23960/jpmipa/v23i4.pp1670-1679>

1 Kenedi, A. K., Helsa, Y., Ariani, Y., Zainil, M., & Hendri, S. (2019). Mathematical connection of
2 elementary school students to solve mathematical problems. *Journal on Mathematics*
3 *Education*, 10(1), 69–79. <https://doi.org/10.22342/jme.10.1.5416.69-80>

4 Kolar, V. M., & Hodnik, T. (2021). Mathematical literacy from the perspective of solving
5 contextual problems. *European Journal of Educational Research*, 10(1), 467–483.
6 <https://doi.org/10.12973/EU-JER.10.1.467>

7 Liljedahl, P., Santos-Trigo, M., Malaspina, U., & Bruder, R. (2016). *Problem Solving in*
8 *Mathematics Education*. <https://doi.org/10.1007/978-3-319-40730-2>

9 Lubis, S. P. W., Suryadarma, I. G. P., Paidi, & Yanto, B. E. (2022). The Effectiveness of Problem-
10 based learning with Local Wisdom oriented to Socio-Scientific Issues. *International Journal*
11 *of Instruction*, 15(2), 455–472. <https://doi.org/10.29333/iji.2022.15225a>

12 Noviarsyh Dasaprawira, M., Zulkardi, & Susanti, E. (2019). Developing mathematics questions
13 of Pisa type using Bangka context. *Journal on Mathematics Education*, 10(2), 303–314.
14 <https://doi.org/10.22342/jme.10.2.5366.303-314>

15 Nur, A. S., Waluya, S. B., Rochmad, R., & Wardono, W. (2020). Contextual learning with
16 Ethnomathematics in enhancing the problem solving based on thinking levels.
17 *JRAMathEdu (Journal of Research and Advances in Mathematics Education)*, 5(3), 331–
18 344. <https://doi.org/10.23917/jramathedu.v5i3.11679>

19 Nursyahidah, F., Saputro, B. A., & Rubowo, M. R. (2018). A Secondary Student's Problem
20 Solving Ability in Learning Based on Realistic Mathematics with Ethnomathematics.
21 *JRAMathEdu (Journal of Research and Advances in Mathematics Education)*, 3(1), 13.
22 <https://doi.org/10.23917/jramathedu.v3i1.5607>

23 Olivares, D., Lupiáñez, J. L., Segovia, I., & Lupiáñez, J. L. (2020). *International Journal of*
24 *Mathematical Education in Roles and characteristics of problem solving in the*
25 *mathematics curriculum : a review mathematics curriculum : a review*. 5211.
26 <https://doi.org/10.1080/0020739X.2020.1738579>

27 Pratama, A. R., Saputro, D. R. S., & Riyadi, R. (2018). Problem solving of student with visual
28 impairment related to mathematical literacy problem. *Journal of Physics: Conference*
29 *Series*, 1008(1). <https://doi.org/10.1088/1742-6596/1008/1/012068>

30 Purnomo, E. A., Sukestiyarno, Y. L., Junaedi, I., & Agoestanto, A. (2022). Analysis of Problem
31 Solving Process on HOTS Test for Integral Calculus. *Mathematics Teaching-Research*
32 *Journal*, 14(1), 199–214.

33 Rizki, L. M., & Priatna, N. (2019). Mathematical literacy as the 21st century skill. *Journal of*
34 *Physics: Conference Series*, 1157(4). <https://doi.org/10.1088/1742-6596/1157/4/042088>

35 Rosa, M., & Gavarrete, M. E. (2017). An Ethnomathematics Overview: An Introduction. *Springer*
36 *International Publishing AG*, 3–19. https://doi.org/10.1007/978-3-319-59220-6_1

1 Simamora, R. E., Saragih, S., & Hasratuddin, H. (2018). Improving Students' Mathematical
2 Problem Solving Ability and Self-Efficacy through Guided Discovery Learning in Local
3 Culture Context. *International Electronic Journal of Mathematics Education*, 14(1), 61–72.
4 <https://doi.org/10.12973/iejme/3966>

5 Sumirattana, S., Makanong, A., & Thipkong, S. (2017). Kasetsart Journal of Social Sciences Using
6 realistic mathematics education and the DAPIC problem-solving process to enhance
7 secondary school students' mathematical literacy. *Kasetsart Journal of Social Sciences*,
8 38(3), 307–315. <https://doi.org/10.1016/j.kjss.2016.06.001>

9 Sutaphan, S., & Yuenyong, C. (2019). STEM Education Teaching approach: Inquiry from the
10 Context Based. *Journal of Physics: Conference Series*, 1340(1).
11 <https://doi.org/10.1088/1742-6596/1340/1/012003>

12 Szabo, Z. K., Körtesi, P., Guncaga, J., Szabo, D., & Neag, R. (2020). Examples of problem-solving
13 strategies in mathematics education supporting the sustainability of 21st-century skills.
14 *Sustainability (Switzerland)*, 12(23), 1–28. <https://doi.org/10.3390/su122310113>

15 Tambunan, H. (2019). The Effectiveness of the Problem Solving Strategy and the Scientific
16 Approach to Students' Mathematical Capabilities in High Order Thinking Skills.
17 *International Electronic Journal of Mathematics Education*, 14(2), 293–302.
18 <https://doi.org/10.29333/iejme/5715>

19 Umbara, U., & Suryadi, D. (2019). Re-interpretation of mathematical literacy based on the
20 teacher's perspective. *International Journal of Instruction*, 12(4), 789–806.
21 <https://doi.org/10.29333/iji.2019.12450a>

22 Utami, N. W., Sayuti, S. A., & Jailani, J. (2021). Indigenous artifacts from remote areas, used to
23 design a lesson plan for preservice math teachers regarding sustainable education.
24 *Heliyon*, 7(3), e06417. <https://doi.org/10.1016/j.heliyon.2021.e06417>

25 Widada, W., Herawaty, D., Falaq, A., Anggoro, D., Yudha, A., & Hayati, M. K. (2019).
26 *Ethnomathematics and Outdoor Learning to Improve Problem Solving Ability*. 295(ICETeP
27 2018), 13–16.

28