

Turnitin_5934 Kreano 16(2).pdf

 Universitas Negeri Semarang - iTh

Document Details

Submission ID

trn:oid:::3618:126840212

16 Pages

Submission Date

Jan 25, 2026, 11:32 AM GMT+7

6,779 Words

Download Date

Jan 27, 2026, 12:14 AM GMT+7

37,252 Characters

File Name

Turnitin_5934 Kreano 16(2).pdf

File Size

655.4 KB

13% Overall Similarity

The combined total of all matches, including overlapping sources, for each database.

Filtered from the Report

- ▶ Bibliography

Match Groups

- **65** Not Cited or Quoted 10%
Matches with neither in-text citation nor quotation marks
- **20** Missing Quotations 3%
Matches that are still very similar to source material
- **0** Missing Citation 0%
Matches that have quotation marks, but no in-text citation
- **0** Cited and Quoted 0%
Matches with in-text citation present, but no quotation marks

Top Sources

- 8% Internet sources
- 11% Publications
- 0% Submitted works (Student Papers)

Integrity Flags

0 Integrity Flags for Review

No suspicious text manipulations found.

Our system's algorithms look deeply at a document for any inconsistencies that would set it apart from a normal submission. If we notice something strange, we flag it for you to review.

A Flag is not necessarily an indicator of a problem. However, we'd recommend you focus your attention there for further review.

Match Groups

- **65** Not Cited or Quoted 10%
Matches with neither in-text citation nor quotation marks
- **20** Missing Quotations 3%
Matches that are still very similar to source material
- **0** Missing Citation 0%
Matches that have quotation marks, but no in-text citation
- **0** Cited and Quoted 0%
Matches with in-text citation present, but no quotation marks

Top Sources

- 8% Internet sources
- 11% Publications
- 0% Submitted works (Student Papers)

Top Sources

The sources with the highest number of matches within the submission. Overlapping sources will not be displayed.

Rank	Source Type	Source URL	Percentage
1	Publication	Michael Phillips, Evrim Baran, Punya Mishra, Matthew J. Koehler. "Handbook of T...	<1%
2	Internet	researchspace.ukzn.ac.za	<1%
3	Internet	repository.stikesmitrakeluarga.ac.id	<1%
4	Publication	James P. Howard, John F. Beyers. "Teaching and Learning Mathematics Online", C...	<1%
5	Internet	www.uniba.it	<1%
6	Internet	ejournal.unuja.ac.id	<1%
7	Internet	www.researchgate.net	<1%
8	Internet	www.amesa.org.za	<1%
9	Internet	pmc.ncbi.nlm.nih.gov	<1%
10	Internet	www.istes.org	<1%

11 Publication

"Handbook of Digital Resources in Mathematics Education", Springer Science and... <1%

12 Publication

Maila D.H. Rahiem. "Towards Resilient Societies: The Synergy of Religion, Educati... <1%

13 Publication

Nassar, Nahla. "The Development of Preservice English Teachers' Tpack in a Cour... <1%

14 Publication

Hans-Rudolf Wenk, Luca Lutterotti, Pamela Kaercher, Waruntorn Kanitpanyachar... <1%

15 Publication

Yun, Dorothy. "Grade 3-5 Teacher Experiences Using Digital Learning Tools in Mat... <1%

16 Internet

hrmars.com <1%

17 Internet

www.tandfonline.com <1%

18 Publication

Dube, Tsungai. "Grade 10 Mathematics Teachers' Dispositions Towards Using Int... <1%

19 Publication

Mao Li, Colleen Vale, Hazel Tan, Jo Blannin. "Factors influencing the use of digital ... <1%

20 Publication

Suliman, Zuleikha. "Exploring Workplace English Competence : E-Learning Strate... <1%

21 Internet

punyamishra.com <1%

22 Internet

theses.hal.science <1%

23 Publication

Adi Wijayanto. "Yang Terdepan dalam Teknologi Pembelajaran", Open Science Fr... <1%

24 Publication

Paulus, Johannes Natangwe. "The Challenges Faced by Grade 7 Mathematics Teac... <1%

25 Publication

Sunghwan Hwang, Eunhye Flavin, Ji-Eun Lee. "Exploring research trends of techn... <1%

26 Publication

W N Yanuarto, S M Maat, H Husnin. "A measurement model of technological peda... <1%

27 Internet

ideas.repec.org <1%

28 Internet

iieta.org <1%

29 Internet

ijitie.aitie.org.ng <1%

30 Internet

jurnal.univpgri-palembang.ac.id <1%

31 Internet

www.ojcmt.net <1%

32 Publication

Anat Klemer, Ruti Segal. "An Instrumental Approach to Developing Mathematics ... <1%

33 Publication

Asare Bright, Natalie B. Welcome, Yarhands D. Arthur. "The effect of using techn... <1%

34 Publication

D. Alsamiri, Abdulhadi Olaythah. "Saudi High School Mathematics Teachers' Perce... <1%

35 Publication

Harsh Bahadur Chand, Bal Chandra Luitel, Binod Prasad Pant, Shashidhar Belbas... <1%

36 Publication

Jyoti Raina, Gunjan Sharma. "Student-Teacher Research - Insights from India's Ba... <1%

37 Publication

Kasan, Rusnadi A.. "Integrating Technology-Enhanced Language Learning for the ... <1%

38 Publication

Nadi Suprapto, Sukarmin Sukarmin, Rinie Pratiwi Puspitawati, Erman Erman, Dia... <1%

39 Publication

Sanjaya Mishra, Santosh Panda. "Handbook of Open Universities Around the Worl..." <1%

40 Publication

Subhan Zein, Fuad Abdul Hamied. "The Routledge International Handbook of Eng..." <1%

41 Publication

Wiwik Chairiyah, Sriati Usman, Abdul Kamaruddin. "Teachers' Strategies and Chal..." <1%

42 Internet

core.ac.uk <1%

43 Internet

journal.unnes.ac.id <1%

44 Internet

repository.ju.edu.et <1%

45 Internet

repository.uir.ac.id <1%

46 Internet

researchcommons.waikato.ac.nz <1%

47 Internet

www.academypublication.com <1%

48 Internet

www.e-iji.net <1%

49 Internet

www.globalscientificjournal.com <1%

50 Internet

www.humanitiesjournal.net <1%

51 Internet

www.mendeley.com <1%

52 Internet

www.preprints.org <1%

53

Publication

Hawkins, Shaun Jermaine. "Examining the Correlation Between TPACK and Self-Ef... <1%

54

Publication

Kılıç, Selçuk. "Merging Technology and Education: Real-Time Air Quality Monitor... <1%

55

Publication

"Integrated Approaches to STEM Education", Springer Science and Business Medi... <1%

56

Publication

Ergene, Büşra Çaylan. "Developing Pre-Service Mathematics Teachers' Profession... <1%

57

Publication

Mata, Songezo. "Exploring Early-Stage Digital Transformation in Secondary Math... <1%

58

Publication

Si Xu, Pengfei Chen, Ge Zhang. "Exploring Informatizaon Instructional Core Comp... <1%

1 **Investigating Prospective Teachers' Mathematical Technology Understanding Within The
2 TPACK Framework**

3

4

5 **Alpha Galih Adirakasiwi¹, Nanang Priatna², and Siti Fatimah^{3*}**

6

7 ^{1,2,3}*Universitas Pendidikan Indonesia

8

9 Correspondence should be addressed to Author: sitifatimah@upi.edu

10

11 **Abstract**

12 Prospective teachers' understanding of the use of technology in mathematics learning through the
13 TPACK framework. With technology becoming increasingly important in education, a strong

14 understanding of TPACK is crucial for prospective teachers to design effective learning experiences.

15 This study aims to investigate prospective teachers' understanding of the TPACK framework. This

16 study is a qualitative research that used a single case design to investigate prospective teachers'

17 understanding in the TPACK framework and involved teachers ($N = 6$) from mathematics

18 education at Singaperbangsa University in Karawang. Three types of data were collected over 4

19 weeks, namely weekly observations, descriptions of progress reports, and lesson designs developed.

20 The results of this study showed that most of the pre-service teachers had a limited understanding

21 of technology integration in mathematics teaching. They tended to focus on the use of technology

22 without paying attention to relevant mathematical contexts or effective pedagogical strategies.

23 However, some pre-service teachers showed a better understanding of how technology can be used

24 to support meaningful mathematics learning. The finding of this study is the need to develop training

25 programs that strengthen pre-service teachers' TPACK skills, including integrated practical

26 experiences and reflective learning on the use of technology in mathematics contexts. Through this

27 research, it is expected that prospective teachers can deepen their understanding of how to integrate

28 technology when they teach by considering aspects of content, pedagogy, and technology

29 holistically in accordance with the TPACK Framework. The implication of this finding is the need for

30 training programs in developing prospective teachers' TPACK competencies.

31

32 **Keywords:** Prospective Teachers; Mathematical Technology; TPACK Framework

33

34 **Abstrak**

35 *Pemahaman calon guru tentang penggunaan teknologi dalam pembelajaran matematika melalui
36 kerangka TPACK. Dengan teknologi menjadi semakin penting dalam pendidikan. Pemahaman yang
37 kuat tentang TPACK menjadi krusial bagi calon guru untuk merancang pengalaman belajar yang efektif.*

38 *Penelitian ini bertujuan untuk menyelidiki pemahaman calon guru dalam kerangka TPACK. Penelitian*

39 *ini merupakan penelitian kualitatif yang menggunakan desain kasus tunggal untuk menyelidiki
40 pemahaman calon guru dalam kerangka TPACK dan melibatkan guru ($N = 6$) dari Pendidikan
41 matematika di universitas singaperbangsa karawang. Tiga jenis data dikumpulkan selama 4 minggu,*

42 *yaitu observasi mingguan, deskripsi laporan kemajuan, dan desain pembelajaran yang dikembangkan.*

43 *Hasil dari penelitian ini menunjukkan bahwa sebagian besar calon guru memiliki pemahaman yang
44 terbatas tentang integrasi teknologi dalam pengajaran matematika. Calon guru cenderung fokus pada
45 penggunaan teknologi tanpa memperhatikan konteks matematika yang relevan atau strategi*

23

1 *pedagogis yang efektif. Namun, beberapa calon guru menunjukkan pemahaman yang lebih baik*
2 *tentang bagaimana teknologi dapat digunakan untuk mendukung pembelajaran matematika yang*
3 *bermakna. Melalui penelitian ini, diharapkan calon guru dapat memperdalam pemahaman terkait*
4 *bagaimana mengintegrasikan teknologi pada saat mereka mengajar dengan mempertimbangkan aspek*
5 *konten, pedagogi, dan teknologi secara holistic sesuai dengan Framework TPACK. Implikasi dari temuan*
6 *ini perlunya program pelatihan dalam mengembangkan kompetensi TPACK calon guru.*

7

8 INTRODUCTION

9

10 In this modern technological era, technology integration in mathematics teaching has become
11 a necessity. Knowledge of mathematics, technology and effective teaching methods (TPACK) is an
12 important foundation for educators to facilitate powerful and relevant learning for students.
13 Technological Pedagogical Content Knowledge (TPACK) is a theoretical framework that focuses on
14 the knowledge and skills needed by teachers to effectively integrate technology into teaching
15 practices. (Tseng et al., 2022). TPACK consists of three main components: technological knowledge,
16 pedagogical knowledge, and content knowledge (Irwanto, 2021; Staf & Martin, 2019). The TPACK
17 framework provides a holistic approach to teaching that encourages prospective teachers to consider
18 the interaction between content, pedagogy, and technology to create meaningful learning
19 experiences for students (Nurhidayah & Suyanto, 2021; Wang et al., 2018; Yanuarto et al., 2020). The
20 TPACK framework's holistic approach provides a strong foundation for teacher candidates in
21 designing meaningful and relevant learning experiences for students. The TPACK framework is
22 becoming increasingly relevant in today's digital age, as technology continues to play an important
23 role for prospective teachers who are innovative in their approach to teaching (Shafie et al., 2019).
24 Prospective teachers who have a strong understanding of designing and delivering meaningful and
25 engaging lessons that utilize technology to enhance student learning.

26 The integration of technology in education requires teachers to have a deep understanding of
27 the subject matter, effective teaching strategies, and appropriate use of technological tools and
28 resources (Astriani et al., 2016; Haleem et al., 2022). By combining content knowledge, pedagogical
29 knowledge, and technological knowledge, teachers can develop Technological Pedagogical Content
30 Knowledge (Evens et al., 2018; Ningsih et al., 2020). This can increase student engagement and
31 motivation, and improve learning outcomes. In today's digital age, the ability to effectively integrate
32 technology into teaching is becoming increasingly important. The increasing use of technology in
33 mathematics education presents pedagogical and technological challenges for teachers
34 (Khoshsepehr et al., 2023). This challenge includes the need for teachers to have a strong
35 understanding of technology and its integration into teaching, as well as the ability to effectively
36 teach mathematics content using technological tools. Investigating prospective teachers'
37 understanding of mathematics technology within the TPACK framework comprehensively examines
38 their knowledge, skills, perceptions and beliefs about technology integration in mathematics
39 learning (Wahyuni et al., 2021; Yasa & Handayanto, 2021). The demand to integrate technology
40 challenges teachers to explore stronger mathematical concepts and deeper understanding. In
41 addition, technological knowledge encourages teachers to participate in modeling representations
42 of the material being taught (Psycharis & Kalogeris, 2018). Understanding math technology is
43 essential for prospective teachers to introduce mathematical concepts in a more interesting and
44 interactive way to students.

1

16

13

1

53

29

22

58

9

7

33

32

15

30

1 The impact of using technological devices can significantly improve student learning of
2 mathematical concepts has been found by previous studies (Alabdulaziz, 2021; Su et al., 2022). For
3 example, the availability of technological devices, such as calculators and computers. In addition,
4 technology can help teachers address the socio-cultural diversity of students and support students
5 with diverse achievements (Eun, 2023; Shemshack & Spector, 2020). Some research on the potential
6 of technological tools to enrich mathematics learning and teaching (Febrian & Astuti, 2020; Muhazir
7 & Retnawati, 2020; Serin, 2017). Overall, previous research suggests that technology integration in
8 mathematics education has the potential to enhance student learning by providing dynamic and
9 interactive learning experiences, supporting diverse students, and improving student achievement,
10 motivation, and attitudes (Higgins et al., 2019). Technologies such as dynamic geometry software,
11 math apps, and digital learning tools allow teachers to create better visualizations of complex
12 mathematical concepts. By using these technologies, teachers can create a more engaged and
13 dynamic learning environment, helping students understand math concepts better and reinforcing
14 understanding through active exploration (Mierluş-Mazilu & Yilmaz, 2024). In addition,
15 understanding the mathematical technology of prospective teachers to teach with a more adaptive
16 approach according to the individual learning style of students. In addition, prospective teachers'
17 understanding of mathematics technology allows them to teach with a more adaptive approach
18 according to students' individual learning styles. However, although the integration of technology in
19 education is increasingly emphasized, many prospective teachers still struggle to meaningfully
20 combine technological tools, pedagogical strategies and mathematical content. This gap suggests
21 the urgency to investigate the extent of prospective teachers' understanding of mathematics
22 technology within the TPACK framework. Without a strong TPACK foundation, prospective teachers
23 risk failing to design learning experiences that are effective and relevant to the demands of the 21st
24 century. Therefore, this study aims to investigate prospective teachers' understanding of
25 mathematical technology within the TPACK framework as an important step in preparing
26 competent, adaptive, and innovative future educators in the digital era. This study aims to investigate
27 the Mathematical Technology Understanding of Prospective Teachers in the Framework of TPACK.
28

29 METHOD

30 The use of technology in learning mathematics through a qualitative research approach with a
31 single case design so as to provide an overview of the extent to which prospective mathematics
32 teachers can utilize technology in the learning process. So in this study the authors used a single case
33 design approach (Yin, 2018). This study aims to investigate prospective teachers' understanding of
34 mathematical technology in learning mathematics by integrating content and technology. This study
35 was conducted in the even semester of the 2023/2024 academic year, starting from February to
36 March 2024. The research subjects involved final semester students of Mathematics Education at one
37 of the public universities in West Java. (N = 6).

38 In meetings lasting 1-4 weeks, teacher candidates follow several important steps to develop
39 expertise in using mathematical technologies in teaching. Candidates begin with a discussion of
40 lesson designs that emphasize the use of mathematical technology, followed by a brief presentation
41 of the designs and receiving feedback from peers. During the discussion, the focus is on identifying
42 shortcomings in the design and materials and improving them. The final step is to establish the
43 expected learning outcomes of the design, ensuring effective achievement of the learning objectives.
44 To address student-facing challenges related to the design, the pre-service teachers used a solution-
45 oriented approach and made adjustments to the materials to meet students' needs, taking into

24 1 account the understanding of TPACK. Over a four-week period, data was collected from weekly
2 observations, student progress reports, and the evolution of the learning design. The TPACK
3 interviews also provided insights into the integration of technology in mathematics teaching,
4 enriching the understanding of effective teaching practices for prospective teachers.

28 5 Subjects were given a 10-minute opportunity to explain the material design they had
6 developed. The researcher observed the subjects' explanations and asked for input from other
7 subjects regarding the designs that had been made. The aim was to get more details about the
8 design. The observer has an observation sheet that is used as a reference in the report. The observer
9 reports the steps taken by the subject, the visualization produced, the usefulness of the learning
10 design using Geogebra, the novelty of the design, and the readability of the design results.
11 Triangulation is done by comparing the observation results with weekly observations, progress
12 reports, and learning designs made. Observation results and field notes were used to identify
13 important points in the research. The researcher analyzed the data by examining video recordings,
14 observation sheets, and field notes to describe the findings. Data was collected from 6 subjects and
15 analyzed to identify the improvement of their mathematical technology knowledge as well as
16 identifying the resulting design

17 RESULTS AND DISCUSSION

18 Result

4 19 Describes students' understanding of the different types of technology that can be used in
20 learning mathematics, such as mathematics software, web applications, or mathematics-specific
21 hardware

22 Table 1: Types of Mathematics Technology Used by Prospective Teachers

Participant	Types of Technology	Math	Materials Developed
S-1	Geogebra		Trigonometry
S-2	Geogebra		Integral
S-3	Geogebra		Building Spaces
S-4	Cabri 3D		Slices of Building Spaces
S-5	Geogebra		Limit
S-6	Geogebra		Trigonometry

23

24 Participant Subject S-1

25 The design developed by Subject S-1 appears to have a good ability to use mathematical
26 technology, especially Geogebra. The scope of material developed is trigonometric material to solve
27 distance and height problems. By using Geogebra, Subject S-1 can utilize trigonometric concepts to
28 visualize problems more clearly and even obtain numerical solutions directly.

1

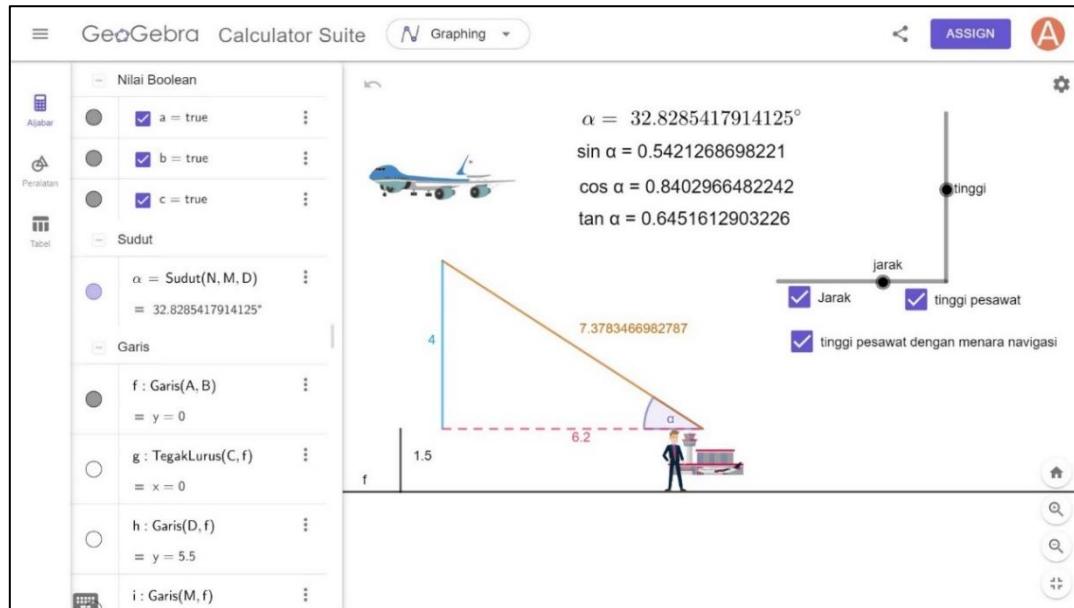


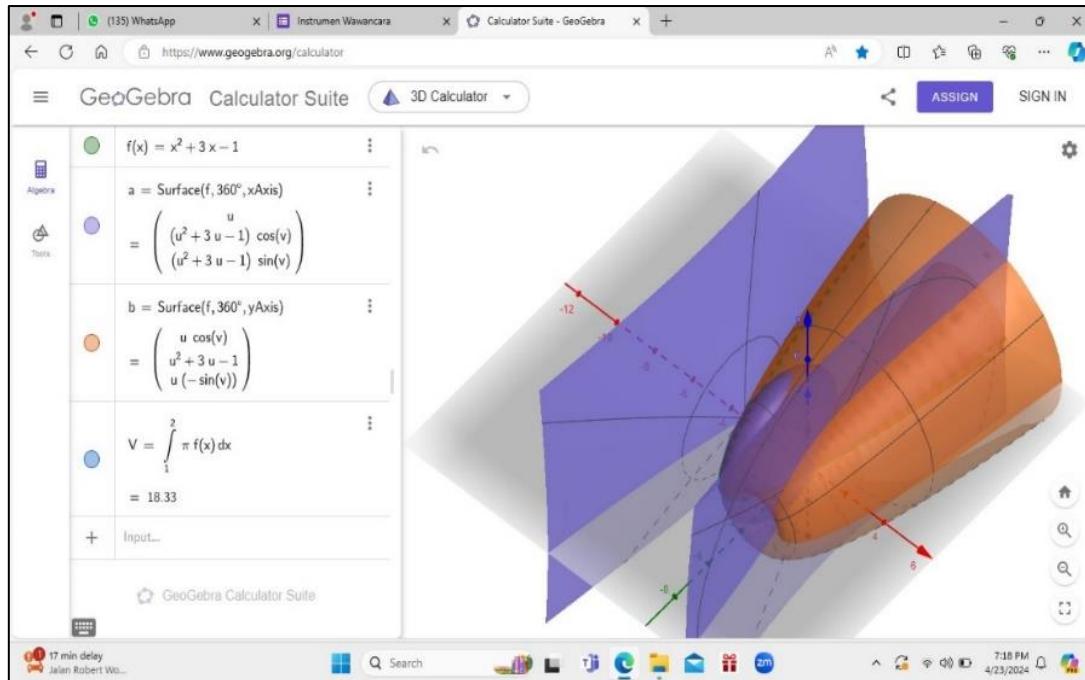
Figure 1. Design developed by Subject S-1

In Figure 1, Subject S-1 makes a design that involves the problem of measuring distance and height in a triangle, Subject S-1 can draw a triangle using Geogebra and determine the length of the sides according to the data they have. Furthermore, Subject S-1 can use the trigonometric functions provided by Geogebra to calculate angles and unknown side lengths. For example, to calculate the height of a triangle, Subject S-1 can use the sine, cosine and tangent functions. By utilizing Geogebra features like this, Subject S-1 can quickly and easily solve trigonometric problems involving distance and height, while visualizing the solution interactively. Using Geogebra can help students understand trigonometry concepts better and apply them in solving more complex problems. (Fathurrahman, 2023).

The following are the results of interviews with student teachers in researching understanding of Mathematics Technology in the TPACK Framework, with the information P is the Researcher and S1 is Subject one.

P : Why did you choose that particular topic and technology for your lesson design?

S-1 : Because trigonometry is often considered abstract, and I want to help students visualize it better. GeoGebra allows me to show how angles and side lengths relate in a real way.


P : How confident are you in using GeoGebra to teach math?

S-1 : To be honest, I'm still learning. I have seen others use it well, and it seems very powerful, but I think I need more training to use it effectively in the classroom.

Based on the results of the interview with subject S-1, it can be seen that subject S-1 has not fully mastered the use of technology in the context of mathematics learning, but has a basic understanding of what is needed to support learning in accordance with the TPACK framework. Despite realizing the limitations in mastering technology, subject S-1 believes his understanding is sufficient to effectively teach mathematics. Confidence in technology integration shows optimism in using technology as a good mathematics learning tool. However, research shows that although many teachers have a moderate level of TPACK, the actual use of technology for instructional purposes is often low (Njiku et al., 2022).

24 Participant Subject S-2

1 The design developed by Subject S-2 seems to have a good ability to use mathematical
 2 technology, especially Geogebra. The scope of the material developed is integral application: how to
 3 calculate the volume of a rotating object. By using Geogebra, Subject S-2 can calculate the volume
 4 of rotating objects easily and visually. It helps students understand the concept of integral application
 5 in a practical context and visualize the volume generated by the rotation of mathematical functions.

6 Figure 1. Design developed by Subject S-2

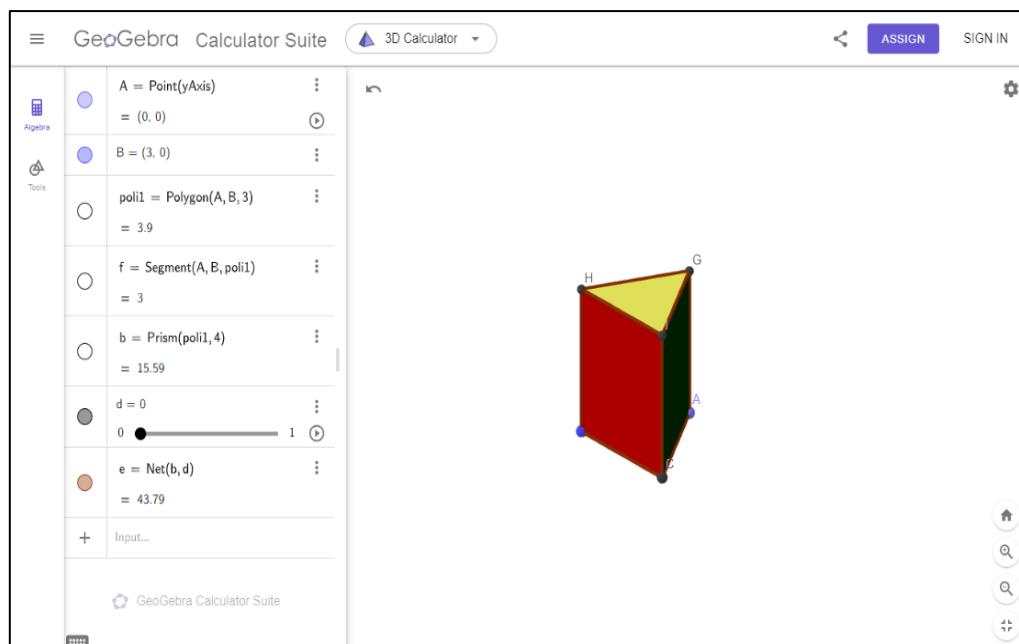
7 In Figure 2, Subject S-2 can explain in detail the stages of the design that has been developed
 8 to calculate the volume of rotating objects with Geogebra. The use of Geogebra in the discussion of
 9 integral applications to calculate the volume of rotating objects with the disk method has several
 10 significant advantages. First, with its interactive visualization feature, Geogebra can directly see how
 11 the shape of the rotating body changes when parameters such as function, rotation axis, and integral
 12 boundary are changed. the effectiveness of this software in improving students' problem solving skills
 13 in calculus, especially in the topic of using integral (Nedaei et al., 2022)

52
 14 In addition, Geogebra's intuitive interface makes it easy to use by various groups, both students
 15 and teachers, thus accelerating the learning process (Yohannes & Chen, 2023). The ability to control
 16 the parameters of a rotating body allows for a more in-depth exploration of the concept. Geogebra
 17 also provides powerful integral tools, ensuring accuracy in the calculation of rotating body volumes.
 18 Finally, in the context of distance or online learning, Geogebra becomes a tool that makes it easy for
 19 teachers to guide students in the exploration of mathematical concepts visually through an online
 20 platform (Albano & Dello Iacono, 2019). Thus, Geogebra not only makes integral applications
 21 interactive and easy to understand, but also opens up opportunities for deeper exploration of
 22 complex mathematical concepts.

40
 23 The following are the results of interviews with student teachers in researching
 24 understanding of Mathematics Technology in the TPACK Framework, with the information P is the
 25 Researcher and S2 is Subject two.

P : Can you explain your process in creating the lesson on solids of volume?

S-2 : Sure. I used GeoGebra to rotate a function around the x-axis and visualize the volume. It helps me and the students see what's actually happening when we calculate volume using integrals


P : Why did you feel this was effective?

S-2 : Because many students struggle to imagine rotation. When they see it visually, they understand better.

1
2 Based on the results of the interview with subject S-2, it shows that subject S-2 has sufficient
3 understanding of various technologies that are useful in learning mathematics, in accordance with
4 the TPACK framework. Subject S-2 felt able to integrate technology in learning by utilizing various
5 interactive learning resources such as videos, games and apps. This practical experience enhances
6 the mastery of technological knowledge within the TPACK framework.
7

8 Participant Subject S-3

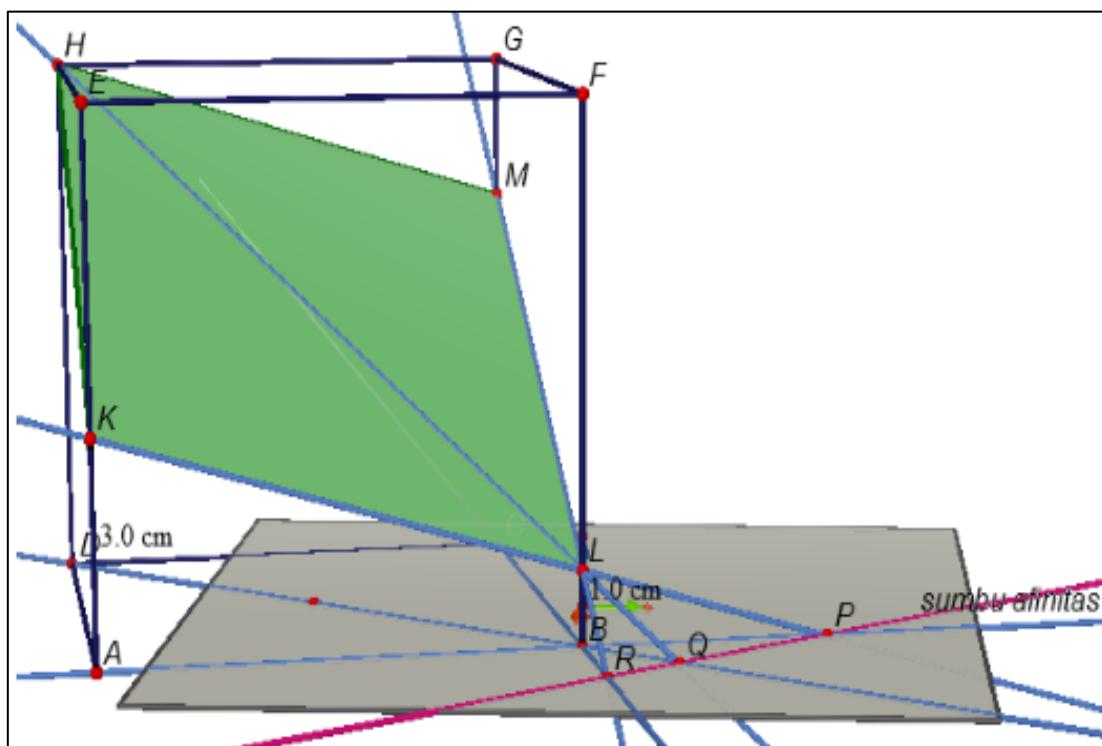
9 The design developed by Subject S-3 appears to have sufficient ability in using mathematical
10 technology, especially Geogebra. The scope of the material developed is the material of the prism
11 space.

12 Figure 3. Design developed by Subject S-3

13 In Figure 3, subject S-3 makes the design of the prism space easily. Starting with creating the
14 base of the prism using Geogebra, then add lines connecting the base with the top sides of the prism
15 to form perpendicular sides. Use the selector tool to select the changed sides of the prism, then
16 modify the side sizes as desired. Students can add additional features such as labels, measurements,
17 or colors to clarify the prism design. With Geogebra, students can explore geometry concepts in an
18 interactive and engaging way (Radović et al., 2020).

19 The following are the results of interviews with student teachers in researching
20 understanding of Mathematics Technology in the TPACK Framework, with the information P is the
21 Researcher and S3 is Subject three..

P : What influenced you to use GeoGebra for the prism material?


S-3 : Yes, it is the easiest tool to create 3D shapes. I want students to see the structure of prisms from different points of view

P : How do you plan to connect it with students' learning needs?

S-3 : That part I am still working on. I'm not completely sure yet, I'm still confused about how to relate it to the knowledge that students already have.

1
2 Based on the interview results, it shows that subject S-3 has sufficient understanding of the
3 importance of technology in mathematics learning and realizes the challenges of integrating it in the
4 context of TPACK. Subject S-3 assessed the level of mastery by engaging in learning, communication
5 and teaching while integrating technology. While recognizing the great potential of technology to
6 enhance learning, Subject S-3 is also aware that technology integration requires careful preparation
7 and adequate training.

8
9 **Participant Subject S-4**
10 The design developed by Subject S-4 using cabri 3D. The scope of the material developed is
11 the material of the wedge of a space. By using Cabri 3D, Subject S-4 was able to explain the wedges
12 of a space due to the combination of ease of use, interactive visualization, and strong analytical tools
13 it has.

14 Figure 4. Design developed by Subject S-4

15 In Figure 4, Subject S-4 was able to create a wedge with simple steps. Start by choosing the
16 type of space you want to use, then create the space by determining its dimensions and properties.
17 After that, add the appropriate cut plane to form a wedge. Cabri 3D will automatically display the
18 resulting slices and can adjust the position and orientation of the cut planes to view them from
19 different angles (Hartatiana et al., 2017). With its intuitive interface and comprehensive features,
20 Cabri 3D makes the process of creating and understanding spatial slices easy and efficient.

1 The following are the results of interviews with student teachers in researching
2 understanding of Mathematics Technology in the TPACK Framework, with the information P is the
3 Researcher and S₄ is Subject four

P : Why did you choose Cabri 3D over GeoGebra?

S-4 : Because Cabri 3D is easier for the features of the intersection of the building space than
GeoGebra in my opinion is less intuitive for it

P : What challenges did you face?

S-4 : Understanding the interface-it was my first time using it. But once I got used to it, the
slices became very clear.

4 Based on the interview with subject S-4, it can be seen that subject S-4 has an awareness of
5 the importance of using technology in learning mathematics. Subject S-4 admitted that his mastery
6 of technology is still not comprehensive, but subject S-4 has understood the elements needed to
7 support learning in accordance with the TPACK framework. This shows that subject S-4 has an
8 awareness of the importance of technology integration in the context of mathematics learning.
9 However, subject S-4 needs to improve his understanding of concrete applications of technology and
10 how technology can be used effectively in different mathematics learning situations. the importance
11 of meaningful learning in mathematics, which can be facilitated through technology (Fabian et al.,
12 2018)

13

14 Participant Subject S-5

15 The design developed by Subject S-5 seems to have a lack of ability in using mathematical
16 technology, especially Geogebra. The scope of the material developed is limit material to illustrate
17 the limit of the function.

18

Figure 5. Design developed by Subject S-5

19 In Figure 4, Subject S-5 uses GeoGebra to explain the limit function material. The design
20 developed for learning limit function material with GeoGebra can include several elements, First, the

35 1 graph of the function is clearly displayed, including the approach points that are close to the limit
2 value. Furthermore, GeoGebra can be used to numerically calculate limit values or clarify concepts
3 with the help of tools such as derivatives or integrals. Animations can be included to show how the
4 graph changes as the approach points approach the limit value. By designing this design, users can
5 gain a strong understanding of the concept of limit functions with the help of GeoGebra as a
6 visualization and analysis tool (Munyaruuhengeri et al., 2023). The following are the results of
7 interviews with student teachers in researching understanding of Mathematics Technology in the
8 TPACK Framework, with the information P is the Researcher and S4 is Subject five.

P : Tell me about your experience designing a lesson on limits using GeoGebra?

S-5 : To be honest, it was both fun and frustrating. I had an idea of what I wanted to show-how
the graph approached a certain value-but I wasn't sure when I used GeoGebra

P : Do you feel your design helps students understand the concepts?

S-5 : To some extent, yes. At least they can see what the boundary means. But that's not
enough

3 9 Based on the results of the interview with subject S-5, it can be concluded that subject S-5
10 has a sufficient level of mastery of technological knowledge in the context of mathematics learning
11 based on the TPACK framework. Subject S-5 stated that his understanding of the use of technology
12 in learning mathematics was sufficient, because he understood what needed to be done to support
13 all aspects of learning. Subject S-5 stated that his experience has had a positive impact on his
14 understanding of technological knowledge in the TPACK framework. Although subject S-5 was quite
15 confident in his understanding, it was not very clear whether he had a deep understanding of the
16 different types of technology that can be used in mathematics learning. Further exploration through
17 interviews or follow-up studies is needed to understand subject S-5's understanding of the different
18 types of technology that can be used in mathematics learning.

19

20 Participant Subject S-6

21 The design developed by Subject S-6 seems to have a good ability to use mathematical
22 technology, especially Geogebra. The scope of material developed is trigonometric material using
23 the cosine unit circle. The cosine unit circle is useful for visualizing the cosine values of certain angles
24 in the unit circle. In the context of the unit circle, the points on the circle represent the cosine values
25 of certain angles in the interval $[0, 2\pi]$. For example, if we view an angle along the unit circle, then
26 the x-coordinate of the points will represent the cosine value of the angle. The cosine unit circle helps
27 in understanding the relationship between cosine values and angles in a visual and intuitive way as
28 shown in Figure 6.

35

3

11

2

41

4

4

14

14

1

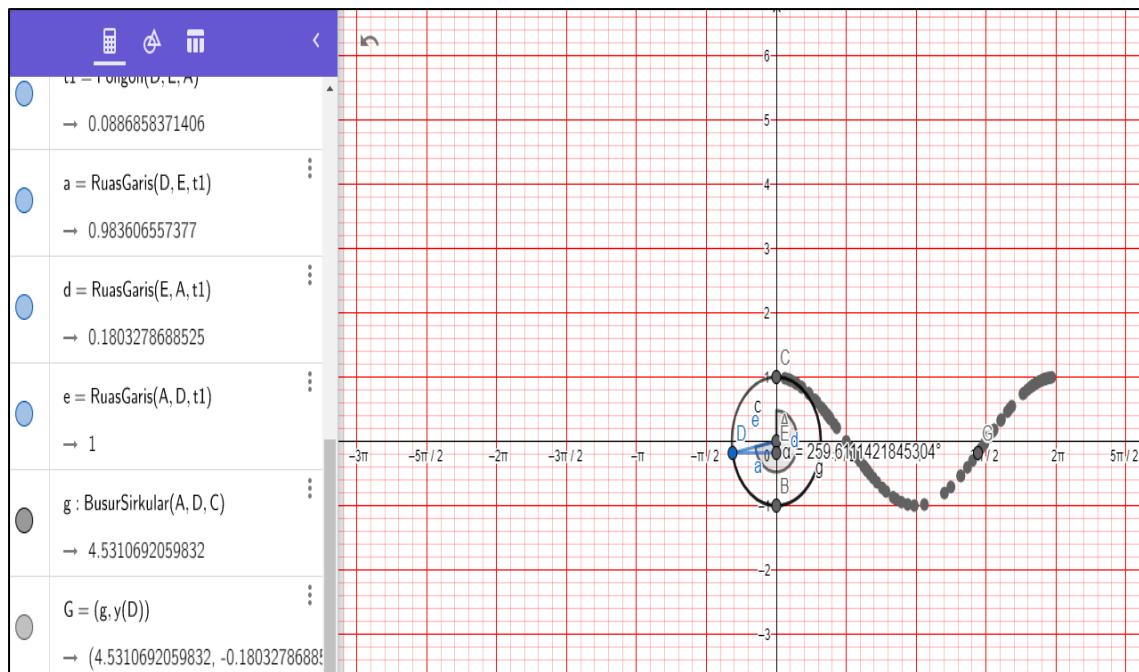


Figure 6. Design developed by Subject S-6

3 The following are the results of interviews with student teachers in researching
4 understanding of Mathematics Technology in the TPACK Framework, with the information P is the
5 Researcher and S6 is Subject six

P : What was your goal in using the unit circle with GeoGebra?

S-6 : To help students see the connection between angles and cosine values clearly. I animated the point rotating along the circle.

P : Did you consider how to assess their understanding?

S-6 : Yes, I planned to ask them to predict values at key points and then verify them with the animation.

Based on the interview with subject S-6, he has a strong understanding of the different types of technology used in mathematics learning. Subject S-6 is eager to keep updating knowledge about the latest developments in this field, showing awareness of the importance of technology in learning. Subject S-6 is also able to select and adapt technology according to learning objectives and student needs, demonstrating a deep understanding of technology integration in mathematics learning. Practical experience in integrating technology has enhanced understanding of TPACK, particularly in overcoming challenges that arise. It demonstrates a strong understanding of the relationship between technology, pedagogy and mathematics content.

15

Discussion

One important aspect of this framework is Content Knowledge (CK), which refers to teachers' mastery of the material being taught. The use of technology can provide teachers with new ways of delivering learning materials, such as simulations, interactive visualizations, or animations. This certainly has an impact on strengthening students' understanding of complex topics. Research by Kaur (Kaur Swaran Singh & Mohd Kasim, 2019) shows that teachers with strong content mastery are better able to select the appropriate technology to create meaningful learning experiences. This aligns with the view of (Le & Pham, 2023), who emphasize the importance of collaboration between content mastery and technology utilization. However, the reality is not that simple. In many schools, the use

1 of technology is often hindered by limited facilities. Not all educational institutions have adequate
2 access to digital devices, stable internet connections, or technology training for teachers. In such
3 conditions, teachers' creativity is crucial. How to continue delivering technology-based learning
4 despite resource limitations.

5 In the Pedagogical Knowledge (PK) dimension, technology should not only be utilized in the
6 planning stage but also in delivering content and assessments. Teachers need to develop appropriate
7 strategies so that technology does not merely enhance the presentation but genuinely fosters student
8 engagement. (Lubis & Samsudin, 2021) note that technology-supported learning tends to be more
9 interactive, ultimately enhancing students' focus and understanding of the material.

10 In the Technological Knowledge (TK) dimension, teachers are required to do more than just
11 know how to operate devices. They need to understand how to select tools that align with learning
12 objectives. For example, combining the use of collaborative platforms like Google Workspace,
13 interactive video-based or simulation-based instructional materials, and online assessment tools to
14 create a comprehensive learning experience. (Chan & Lee, 2023) emphasize that technological
15 diversity can maintain students' interest in learning. Another example is that interactive videos are
16 considered effective in stimulating student engagement (Barut Tugtekin & Dursun, 2022), while
17 engaging e-learning modules encourage group collaboration (Logan et al., 2021). Even digital
18 assessment tools like online quizzes allow teachers to provide quick feedback, which is undoubtedly
19 helpful for students in continuously improving their understanding.

20 Through the combination of the three dimensions of Content Knowledge (CK), Pedagogical
21 Knowledge (PK), and Technological Knowledge (TK), teachers become not only conveyors of material
22 but also adaptive learning facilitators. With a strong and integrated TPACK framework, the learning
23 process can become more lively, meaningful, and relevant to the needs of the times.

25 Implication of Research

26 Based on the results of this study, there are important implications for the training of
27 prospective mathematics teachers, such as: 1) The findings of this study indicate that integrating the
28 dimensions of technology, pedagogy, and mathematical content in a holistic manner provides a
29 foundation for designing learning strategies that strengthen prospective teachers' technological
30 literacy in the context of mathematics learning. 2) Teacher training programs can develop
31 Technological Pedagogical Content Knowledge (TPACK) competencies. Training designed in an
32 integrated manner should provide authentic experiences in using technology to support meaningful
33 understanding of mathematical concepts. The findings of this study can be utilized in the
34 development of other learning resources such as educational videos, e-modules, etc. Another
35 implication encourages further research exploring the factors influencing the integration of
36 technology in mathematics education. Considering these implications, educators and policymakers
37 are expected to strengthen the effective and sustainable use of technology in the mathematics
38 learning process.

39

40 Limitation

41 Some limitations of this study are as follows: 1) the scope is limited to subjects from only one
42 institution, so the results cannot be generalized widely; 2) the instruments used are based on
43 perceptions that may give rise to subjective bias from respondents. Therefore, further research using
44 mixed methods is needed to obtain more comprehensive data; 3) the focus of the research is still

1 limited to cognitive and pedagogical aspects of TPACK mastery, without examining affective factors
2 such as interest, motivation, and attitudes toward technology. Fourth, the research does not include
3 a long-term evaluation of the sustainability of TPACK mastery and application in classroom teaching
4 practices. Thus, long-term research is needed to examine the continuous development of TPACK
5 competencies in the context of mathematics learning.

6

7 CONCLUSION

8 Furthermore, this study highlights the importance of providing ongoing and practical learning
9 experiences for prospective teachers to build a balanced understanding between content, pedagogy,
10 and technology. A comprehensive and integrated approach to TPACK not only enhances prospective
11 teachers' readiness to teach but also ensures they can respond adaptively to the demands of 21st-
12 century education. With proper support and structured training, prospective teachers can evolve into
13 innovative educators who use technology purposefully to enhance mathematical understanding and
14 student engagement..[A1]

15

16 REFERENCES

17 Alabdulaziz, M. S. (2021). COVID-19 and the use of digital technology in mathematics education.
18 *Education and Information Technologies*, 26(6), 7609–7633. <https://doi.org/10.1007/s10639-021-10602-3>

19 Albano, G., & Dello Iacono, U. (2019). GeoGebra in e-learning environments: a possible integration in
20 mathematics and beyond. *Journal of Ambient Intelligence and Humanized Computing*, 10(11),
21 4331–4343. <https://doi.org/10.1007/s12652-018-1111-x>

22 Astriani, M. S., Pradono, S., Moniaga, J. V., Gaol, F. L., Warnars, H. L. H. S., & Soewito, B. (2016).
23 Delivering an interactive presentation in supporting of dynamic teaching method with an IT
24 Blueprint framework: IT Initiative-ITBluTric. *2016 International Conference on Information*
25 *Management and Technology (ICIMTech)*, 188–193.
26 <https://doi.org/10.1109/ICIMTech.2016.7930327>

27 Barut Tugtekin, E., & Dursun, O. O. (2022). Effect of animated and interactive video variations on
28 learners' motivation in distance Education. *Education and Information Technologies*, 27(3), 3247–
29 3276. <https://doi.org/10.1007/s10639-021-10735-5>

30 Chan, C. K. Y., & Lee, K. K. W. (2023). The AI generation gap: Are Gen Z students more interested in
31 adopting generative AI such as ChatGPT in teaching and learning than their Gen X and millennial
32 generation teachers? *Smart Learning Environments*, 10(1). <https://doi.org/10.1186/s40561-023-00269-3>

33 Eun, B. (2023). Teachers learning to teach: professional development based on sociocultural theory
34 for linguistically and culturally diverse classroom. *Professional Development in Education*, 49(5),
35 914–924. <https://doi.org/10.1080/19415257.2021.1879224>

36 Evens, M., Elen, J., Larmuseau, C., & Depaepe, F. (2018). Promoting the development of teacher
37 professional knowledge: Integrating content and pedagogy in teacher education. *Teaching and*
38 *Teacher Education*, 75, 244–258. <https://doi.org/10.1016/j.tate.2018.07.001>

39 Fabian, K., Topping, K. J., & Barron, I. G. (2018). Using mobile technologies for mathematics: effects
40 on student attitudes and achievement. *Educational Technology Research and Development*,
41 66(5), 1119–1139. <https://doi.org/10.1007/s11423-018-9580-3>

1 Febrian, F., & Astuti, P. (2020). Mathematics Teachers in Using Technology: Is It as Expected?
2 *Proceedings of the 4th Sriwijaya University Learning and Education International Conference*
3 (SULE-IC 2020). <https://doi.org/10.2991/assehr.k.201230.185>

4 Haleem, A., Javaid, M., Qadri, M. A., & Suman, R. (2022). Understanding the role of digital
5 technologies in education: A review. *Sustainable Operations and Computers*, 3, 275–285.
6 <https://doi.org/10.1016/j.susoc.2022.05.004>

7 Higgins, K., Huscroft-D'Angelo, J., & Crawford, L. (2019). Effects of Technology in Mathematics on
8 Achievement, Motivation, and Attitude: A Meta-Analysis. *Journal of Educational Computing*
9 *Research*, 57(2), 283–319. <https://doi.org/10.1177/0735633117748416>

10 Irwanto, I. (2021). Research trends in technological pedagogical content knowledge (TPACK): A
11 systematic literature review from 2010 to 2021. In *European Journal of Educational Research* (Vol.
12 10, Issue 4, pp. 2045–2054). Eurasian Society of Educational Research.
13 <https://doi.org/10.12973/EU-JER.10.4.2045>

14 Kaur Swaran Singh, C., & Mohd Kasim, Z. (2019). Pre-service Teachers' Mastery of Technological
15 Pedagogical Content Knowledge for Teaching English Language. *Universal Journal of*
16 *Educational Research*, 7(10A), 24–29. <https://doi.org/10.13189/ujer.2019.071705>

17 Khoshsepehr, Z., Alinejad, S., & Alimohammadolou, M. (2023). Exploring industrial waste
18 management challenges and smart solutions: An integrated hesitant fuzzy multi-criteria
19 decision-making approach. *Journal of Cleaner Production*, 420, 138327.
20 <https://doi.org/10.1016/j.jclepro.2023.138327>

21 Le, T.-T., & Pham, T.-T. (2023). Uncovering the Expectations of English as a Foreign Language
22 Students: Key to Improving Teacher Expertise and Technological Pedagogical Content
23 Knowledge Mastery. *Journal of Contemporary Language Research*, 2(2), 84–92.
24 <https://doi.org/10.58803/jclr.v2i2.70>

25 Logan, R. M., Johnson, C. E., & Worsham, J. W. (2021). Development of an e-learning module to
26 facilitate student learning and outcomes. *Teaching and Learning in Nursing*, 16(2), 139–142.
27 <https://doi.org/10.1016/j.teln.2020.10.007>

28 Lubis, A. H., & Samsudin, D. (2021). Characteristics of An Effective EFL Teacher in Indonesia:
29 Expectations and Realities in A Technology-Enhanced Flipped Classroom. *IJELTAL (Indonesian*
30 *Journal of English Language Teaching and Applied Linguistics*, 5(2), 417.
31 <https://doi.org/10.21093/ijeltal.v5i2.820>

32 Mierluş-Mazilu, I., & Yilmaz, F. (2024). *Teaching Mathematics in STEM Education* (pp. 147–170).
33 https://doi.org/10.1007/978-3-031-49218-1_11

34 Muhazir, A., & Retnawati, H. (2020). The teachers' obstacles in implementing technology in
35 mathematics learning classes in the digital era. *Journal of Physics: Conference Series*, 1511(1),
36 012022. <https://doi.org/10.1088/1742-6596/1511/1/012022>

37 Munyaruhengeri, J. P. A., Umugiraneza, O., Ndagijimana, J. B., & Hakizimana, T. (2023). Potentials
38 and limitations of GeoGebra in teaching and learning limits and continuity of functions at
39 selected senior four Rwandan secondary schools. *Cogent Education*, 10(2).
40 <https://doi.org/10.1080/2331186X.2023.2238469>

41 Nedaei, M., Radmehr, F., & Drake, M. (2022). Exploring undergraduate engineering students'
42 mathematical problem-posing: the case of integral-area relationships in integral calculus.
43 *Mathematical Thinking and Learning*, 24(2), 149–175.
44 <https://doi.org/10.1080/10986065.2020.1858516>

1 Ningsih, S. Y., Turmudi, & Juandi, D. (2020). Pedagogical content knowledge (PCK) profile of
2 prospective teachers in mathematics learning. *Journal of Physics: Conference Series*, 1521(3),
3 032057. <https://doi.org/10.1088/1742-6596/1521/3/032057>

4 Nurhidayah, L., & Suyanto, S. (2021). *Integrated of Technological Pedagogical and Content Knowledge*
5 (TPACK) for Pre-Service Science Teachers: Literature Review.
6 <https://doi.org/10.2991/assehr.k.210326.014>

7 Psycharis, G., & Kalogeris, E. (2018). Studying the process of becoming a teacher educator in
8 technology-enhanced mathematics. *Journal of Mathematics Teacher Education*, 21(6), 631–660.
9 <https://doi.org/10.1007/s10857-017-9371-5>

10 Radović, S., Radojičić, M., Veljković, K., & Marić, M. (2020). Examining the effects of Geogebra
11 applets on mathematics learning using interactive mathematics textbook. *Interactive Learning*
12 *Environments*, 28(1), 32–49. <https://doi.org/10.1080/10494820.2018.1512001>

13 Serin, H. (2017). Technology-integrated Mathematics Education: A Facilitating Factor to Enrich
14 Learning. *International Journal of Learning and Development*, 7(4), 60.
15 <https://doi.org/10.5296/ijld.v7i4.12082>

16 Shafie, H., Abd Majid, F., & Shah Ismail, I. (2019). *Technological Pedagogical Content Knowledge*
17 (TPACK) in Teaching 21st Century Skills in the 21st Century Classroom.

18 Shemshack, A., & Spector, J. M. (2020). A systematic literature review of personalized learning terms.
19 *Smart Learning Environments*, 7(1), 33. <https://doi.org/10.1186/s40561-020-00140-9>

20 Stapf, K., & Martin, B. (2019). TPACK + Mathematics: A Review of Current TPACK Literature.
21 *International Journal on Integrating Technology in Education*, 8(3), 13–20.
22 <https://doi.org/10.5121/ijite.2019.8302>

23 Su, Y.-S., Cheng, H.-W., & Lai, C.-F. (2022). Study of Virtual Reality Immersive Technology Enhanced
24 Mathematics Geometry Learning. *Frontiers in Psychology*, 13.
25 <https://doi.org/10.3389/fpsyg.2022.760418>

26 Tseng, J.-J., Chai, C. S., Tan, L., & Park, M. (2022). A critical review of research on technological
27 pedagogical and content knowledge (TPACK) in language teaching. *Computer Assisted*
28 *Language Learning*, 35(4), 948–971. <https://doi.org/10.1080/09588221.2020.1868531>

29 Wahyuni, I., Zaenuri, Wardono, Sukestiyarno, Y. L., Waluya, S. B., Nuriana, & Aminah, N. (2021).
30 Design of instrument Technological Pedagogic Content Knowledge (TPACK) for prospective
31 mathematics teachers. *Journal of Physics: Conference Series*, 1918(4), 042097.
32 <https://doi.org/10.1088/1742-6596/1918/4/042097>

33 Wang, W., Schmidt-Crawford, D., & Jin, Y. (2018). Preservice Teachers' TPACK Development: A
34 Review of Literature. *Journal of Digital Learning in Teacher Education*, 34(4), 234–258.
35 <https://doi.org/10.1080/21532974.2018.1498039>

36 Yanuarto, W. N., Maat, S. M., & Husnin, H. (2020). A measurement model of technological
37 pedagogical content knowledge (TPACK) in Indonesian senior mathematics teachers' scenario.
38 *Journal of Physics: Conference Series*, 1663(1), 012018. <https://doi.org/10.1088/1742-6596/1663/1/012018>

39 Yasa, A. D., & Handayanto, S. K. (2021). *TPACK-based science learning assessment in elementary*
40 *school teachers with analytical hierarchy process and simple additive weighting methods*. o60009.
41 <https://doi.org/10.1063/5.0043392>

42 Yin, R. K. (2018). *Case study research and application: Design and Method*(Sixth). SAGE.
43

1 Yohannes, A., & Chen, H.-L. (2023). GeoGebra in mathematics education: a systematic review of
2 journal articles published from 2010 to 2020. *Interactive Learning Environments*, 31(9), 5682–
3 5697. <https://doi.org/10.1080/10494820.2021.2016861>

4