Experimental Investigation on Reduction of High Combined Water Contained Iron Ore by Ammonia-Methane-Mixed Gas

Authors

  • Ade Kurniawan Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada Author https://orcid.org/0000-0003-0768-0937
  • Itsuki Iwamoto Center for Advanced Research of Energy and Materials, Faculty of Engineering, Hokkaido University, Japan Author
  • Yoshiaki Kashiwaya Graduate School of Engineering, Faculty of Engineering, Hokkaido University, Japan Author
  • Takahiro Nomura Department of Energy Science and Technology, Kyoto University, Yoshida Honmachi, Japan Author

Keywords:

Ammonia, Goethite, Hydrogen, Iron reduction, Carbon

Abstract

Reducing CO₂ emissions in the steel industry, which contributes 7% of global emissions, is crucial. Ammonia, as a hydrogen-based reducing agent offers one promising solution to address the decarbonization challenge in primary ironmaking process due to its high hydrogen storage density and ease of transport. However, for subsequent steelmaking process, the lack of carbon in the reduced ore from the ammonia-hydrogen iron reduction system must be addressed. In this study, we reduced iron ore using an ammonia-methane mixed reducing gas to introduce carbon into the reduced ore, from the raw material of porous ore prepared from a high combined water, goethite ore. We varied the reduction conditions to investigate how the reaction and carbon content would change, aiming to optimize the reduction process and enhance carbon content in the reduced iron.  The results show that ammonia is primarily consumed for iron reduction, facilitated by hydrogen from its decomposition, while methane decomposes into carbon and hydrogen. Methane decomposition begins around 800°C, significantly increasing the ore's carbon content. Higher temperatures accelerate both reduction and carbon incorporation. The ammonia-methane mixing ratio influences reduction efficiency and carbon content, with a higher ammonia ratio expediting these processes. At 850°C, a 1:1 ammonia-methane mixture yields higher carbon content than higher ammonia ratios. This study highlights the potential of ammonia-methane mixed gases for sustainable steel production by enhancing the reduction and carbonization of high-CW-content iron ores.

Author Biography

  • Ade Kurniawan, Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada

    Ade Kurniawan merupakan dosen di Departemen Teknik Kimia, Fakultas Teknik, Universitas Gadjah Mada. Beliau lulus dari Departemen Teknik Kimia, FT, UGM, dengan gelar S.T. pada tahun 2009 dan M.Eng. pada tahun 2013, menyelesaikan Ph.D. nya pada tahun 2019 dalam bidang Ilmu dan Teknik Material dari Universitas Hokkaido, Jepang, dengan topik disertasi yang berfokus pada pengolahan bijih besi melalui pirometalurgi via reduksi karbon rendah. Telah menyelesaikan program pasca-doktoral di Pusat Studi Lanjutan Energi dan Material, Fakultas Teknik, Universitas Hokkaido, Jepang (2019-2023) untuk mengembangkan keterampilan pemodelan kinetika, eksurgi, dan dinamika fluida untuk pengolahan besi, pemanfaatan biomassa (melalui pirolisis dan gasifikasi), serta penyimpanan panas laten menggunakan material perubahan fase berbasis logam.

    Saat ini, di Departemen Teknik Kimia, FT UGM, aktif sebagai peneliti di Laboratorium Keramik dan Komposit dan merupakan bagian dari kelompok keahlian Material Lanjut dan Pengolahan Mineral yang mendukung dedikasi untuk memajukan emisi nol bersih dalam operasi industri. Simulasi proses dinamis waktu nyata adalah spesialisasinya, berkontribusi pada pengembangan Simulator Pelatihan Operator (OTS). Beliau juga mengembangkan perangkat lunak perhitungan untuk inventarisasi dan analisis emisi GRK.

    Minat Penelitian: Pembuatan Besi (Pirometalurgi); Konversi Termo (Pirolisis, Gasifikasi); Material Perubahan Fase untuk Penyimpanan Energi Termal (Baterai Carnot); Analisis Kinetika; Analisis Eksergi; Simulasi Proses Dinamis (untuk OTS); Inventarisasi dan Analisis Emisi GRK

Downloads

Article ID

7215

Published

2024-06-23

Issue

Section

Articles