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Abstract. 

Purpose: The per capita expenditure data in Jambi Province, Indonesia have been plagued with severe multicollinearity 

problems. To address the issue, this study developed an effective small area estimation (SAE) method, which is 
essential for formulating comprehensive regional development policies in Jambi Province. By modifying the mixed 

effects random forest (MERF) method, we introduced PCA-MERF (which applies principal component analysis prior 

to MERF) and MERoF (which replaces the standard random forest with rotation forest) to handle multicollinearity 

more effectively. Data from the National Socioeconomic Survey (Susenas) in March 2021 and Village Potential 
(PODES) in 2021 were utilized. The methods were evaluated using metrics such as root mean square error (RMSE), 

relative root mean square error (RRMSE), coefficient of variation (CV), and their ability to capture random area effects. 

The random effect block (REB) bootstrap approach was employed to obtain MSE estimates for evaluating area-level 

estimate quality. 
Result: The results showed that MERoF outperformed both MERF and PCA-MERF, particularly in unit-level (village) 

estimation. Additionally, MERoF demonstrated superior capability in capturing variation between subdistricts 

compared to MERF and PCA-MERF. PCA-MERF performed better than MERF and MERoF at the area level 

(subdistrict). All three methods showed acceptable performance with RRMSE and CV values ranging between 8% and 
10%, indicating precise and reliable predictions for per capita expenditure in small areas. These modifications to MERF 

prove effective and advantageous for small-area estimation in datasets with significant multicollinearity. 

Novelty: This research introduces a novel semi-parametric, tree-based SAE approach, enhancing the precision of per 

capita expenditure estimates and supporting more informative regional policy decisions, thus filling a gap in current 
SAE methodologies. 
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INTRODUCTION 
The issue of multicollinearity is often encountered in empirical data, including per capita expenditure data. 

Multicollinearity is a phenomenon where two or more independent variables in a regression model are 

strongly correlated, which can lead to problems in interpreting and estimating the reliability of model 

parameters [1]. Variables related to per capita expenditure, such as household demographic conditions, 

availability of infrastructure facilities, or the economic conditions of a region, often have high correlations 

with each other. This issue presents a significant challenge in modeling the estimation of per capita 

expenditure. On the other hand, per capita expenditure data in Indonesia are only officially available at the 

province and regency/municipality levels as the data at these levels are considered to be more precise and 

accountable. However, to achieve comprehensive regional development goals, the government urgently 

needs per capita expenditure data at smaller area levels, such as villages and subdistricts. Estimating 

parameters at the village and subdistrict levels remains challenging due to the extremely small sample size 

of survey data sources at these levels. Therefore, small area estimation (SAE) is often used in survey data 

analysis to estimate parameters in areas with relatively small or even non-existent sample sizes by utilizing 

additional information from different data sources. 
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Estimating parameters in small areas can be carried out through the utilization of additional information 

from outside the area, within the area itself, and outside the survey. Indirect estimation can be carried out 

using values from observed variables from connected areas, thereby increasing the effectiveness of the 

sample size [2]. This is in line with Kurnia [3] and Kurnia et al. [4], who stated that small area estimation 

methods essentially leverage the strength of surrounding areas and data sources outside the area for which 

statistics are desired. 

 

Fay [5] proposed a mixed model approach to achieve more accurate estimates at smaller area levels with 

limited sample data. This approach improves precision by utilizing information from different data sources. 

Standard SAE methods generally use linear mixed models (LMM), which consist of fixed effects and 

random effects. Fixed effects represent constant parameters across the population or group, derived from 

the same covariate variables for all small areas. Random effects account for the variability of observed 

variables among small areas that the fixed effects from additional information cannot explain. These 

random effects provide varying contributions for each small area, helping to produce more precise estimates 

for those areas. 

 

Hajjem et al. [6] developed the mixed effects random forest (MERF) method to address clustered or 

structured data. This method combines the predictive power of random forest (RF) with mixed effects 

models, which excel in handling clustered or hierarchically structured data. This approach enhances 

prediction accuracy in situations where observations are not independent but are related within specific 

clusters. This research is extended by adapting the MERF method into the domain of small area estimation 

[7], [8], where SAE is closely associated with mixed effects models to handle clustered or hierarchically 

structured data. By considering both random and fixed effects, the MERF method provides more reliable 

estimates when observational data are related within geographic or administrative clusters. 

 

The predictive performance in SAE depends heavily on the validity of model assumptions. One advantage 

of design-based estimation is its independence from model assumptions, rendering it unaffected by model 

misspecification [9]. In terms of assumptions, Krennmair and Schmid [7] only demonstrated the reliability 

of MERF in non-linear and non-symmetric problems. However, their research did not explicitly explore 

MERF's reliability under other conditions, such as multicollinearity. Therefore, this study aims to assess 

the reliability of MERF in the presence of multicollinearity within the SAE framework to determine 

whether MERF is a viable solution or if new methods are necessary for improved outcomes. 

 

One approach for addressing multicollinearity is through principal component analysis (PCA) [10]. PCA 

identifies patterns and relationships among variables in complex datasets by transforming a set of correlated 

variables into a set of uncorrelated components. These principal components are linear combinations of the 

original variables, ordered by the variance they explain. PCA effectively reduces dimensionality without 

significant information loss and helps identify correlations among variables, potentially eliminating 

redundant variables. 

 

Rodriguez et al. [11] applied the concept of PCA in constructing classifier ensembles by rotating the axes 

of variables used to build decision trees, a method known as rotation forest (RoF). Despite the use of PCA, 

all principal components are retained to construct decision trees, preserving the completeness of the data. 

Many studies have shown that the performance of rotation forest (RoF) is significantly better than that of 

random forest (RF). Rotation forest (RoF) builds decision trees that are independent of each other. The 

resulting trees are more diverse, and the models produced by the RoF algorithm are more stable and accurate 

[12], [13], [14]. In addition to classification, Pardo et al. [15] also developed RoF for regression estimation. 

In regression, RoF's performance remains excellent, similar to its performance in classification problems. 

RoF also provides the best performance with a smaller average RRMSE value in multi-target regression 

compared to bagging and random forest [16]. 

 

Based on the above, this study aims to modify the forest method in MERF in two ways. First, the study 

applies PCA to the variables used in MERF (hereinafter referred to as “PCA-MERF”) to produce more 

independent trees. Additionally, the study modifies MERF by replacing the standard random forest with a 

rotation forest, which preserves the completeness of all data information as fixed effects in the mixed model 

(hereinafter referred to as “MERoF”). These modifications aim to create more robust and reliable methods 

for SAE, particularly in handling multicollinearity issues. 
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Many studies in Indonesia have conducted small area estimations for per capita expenditure using various 

models [17], [18], [19], [20], [21], [22]. Nevertheless, no study has yet performed estimation using a tree-

based semi-parametric approach that efficiently addresses non-linearity, non-parametric, and 

multicollinearity issues simultaneously. Based on these considerations, this research is expected to provide 

an effective small area estimation method for various empirical data problems and serve as a foundation 

for more informed and effective regional policy decisions. 

 

METHODS 

Data description 

The data utilized in this study were sourced from Statistics Indonesia (Badan Pusat Statistik), specifically 

the National Socioeconomic Survey (Susenas) in March 2021 and the 2021 Village Potential (Podes) data 

for Jambi Province. The 2021 data were selected to represent the most recent dataset available for Podes. 

Susenas data served as the survey data, characterized by a small sample size, covering only 0.76% of the 

household population across 40% of the villages. Using Susenas data, small area estimation was performed 

on the variable of interest, namely the average per capita expenditure. The Podes data were utilized as 

registry data, providing population data as additional auxiliary variables in the estimation process. The 

variables are detailed in Table 1 below. 

 

Table 1. Research variables  
Variable Description Data Scale Data Source 

Avg_PCE Average Per Capita Expenditure of Villages (000 

IDR) 

Continuous Ratio Susenas 

Num_Families Number of Families in the Village Discrete Ratio Podes 

Pct_Fam_PLN Percentage of Families Using PLN Electricity in 

the Village 

Continuous Ratio Podes 

Pct_Fam_NonPLN Percentage of Families Using Non-PLN Electricity 

in the Village 

Continuous Ratio Podes 

Pct_Fam_SlumAreas Percentage of Families Living in Slum Areas in 

the Village 

Continuous Ratio Podes 

Edu_Fac_Ratio Ratio of Educational Facilities to the Number of 

Families in the Village 

Continuous Ratio Podes 

Health_Fac_Ratio Ratio of Health Facilities to the Number of 

Families in the Village 

Continuous Ratio Podes 

Poverty_Cert_Ratio Ratio of Poverty Certificates to the Number of 

Families in the Village 

Continuous Ratio Podes 

Pct_Fam_Landline Percentage of Families with Landline Phones in 

the Village 

Continuous Ratio Podes 

IMK_Ratio Ratio of Micro and Small Industries (IMK) to the 

Number of Families in the Village 

Continuous Ratio Podes 

Distance_to_SubDistrict Distance from the Village to the Subdistrict (km) Continuous Ratio Podes 

Transport_Cost Transportation Costs from the Village to the 

Subdistrict (000 IDR) 

Continuous Ratio Podes 

Eco_Fac_Ratio Ratio of Economic Facilities to the Number of 

Families in the Village 

Continuous Ratio Podes 

 

Mixed effects random forest (MERF) 

Krennmair and Schmid [6] adopted the MERF method in small area estimation (SAE), resulting in excellent 

predictive performance for small areas. In general, MERF is similar to a linear mixed model (LMM) but 

the fixed effect 𝑋𝑖𝛽 is replaced with the random forest function 𝑓(𝑋) to estimate the fixed effect 

coefficients. 

 

 𝑦
𝑖𝑗

= 𝑓(𝑋𝑖𝑗) + 𝑍𝑖𝑣𝑖 + 𝜖𝑖𝑗 (1) 

 

In this study, 𝑦𝑖𝑗 = [𝑦𝑖1, … , 𝑦𝑖𝑛𝑖
]
𝑇
 is the target variable vector representing the average per capita 

expenditure in the 𝑗-th village of the 𝑖-th subdistrict, with a size of 𝑛𝑖 x 1, where 𝑛𝑖 is the number of village 

observation in the 𝑖-th subdistrict (𝑗 = 1,… , 𝑛𝑖); 𝑋𝑖𝑗 = [𝑥𝑖1, … , 𝑥𝑖𝑛𝑖
]
𝑇
 is the covariate matrix from the 𝑗-th 

village, with a size of 𝑛𝑖 x 𝑝, where 𝑝 is the number of covariates and 𝑓(𝑋𝑖𝑗) is the fixed effect estimated 

by the random forest; 𝑍𝑖 = [𝑧𝑖1, … , 𝑧𝑖𝑛𝑖
]
𝑇
 is the random effect covariate matrix with a size of 𝑛𝑖 x 𝑞, where 

𝑞 is the dimension of the random effect, usually consisting of a subset of the covariates 𝑋𝑖𝑗; 𝑣𝑖 =
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[𝑣𝑖1, … , 𝑣𝑖𝑞𝑖
]
𝑇
is the random effect vector of the 𝑖-th subdistrict with a size of 𝑞 x 1. The random effect 𝑍𝑖𝑣𝑖 

was assumed to be linear. This study used only a random intercept, and therefore 𝑍𝑖 became a (𝑛𝑖 x 1) 

vector of 1s. 𝜖𝑖𝑗 = [𝜖𝑖1, … , 𝜖𝑖𝑛𝑖
]
𝑇
 is the error vector of village unit observations with a size of 𝑛𝑖 x 1. 

Observations between subdistrict areas were assumed to be independent, and 𝑣𝑖 and 𝜖𝑖𝑗 were mutually 

independent and normally distributed, with variance-covariance matrices 𝐻𝑖  for the random effects of each 

𝑖-th subdistrict area and 𝑅𝑖𝑗 or the error of the 𝑗-th village unit observation in the 𝑖-th subdistrict. The 

covariance matrix of the observations 𝑦 is 𝐶𝑜𝑣(𝑦) = 𝑉 = 𝑑𝑖𝑎𝑔1≤𝑖≤𝐷(𝑉𝑖), with 

 

 𝑉𝑖 = 𝑍𝑖𝐻𝑖𝑍𝑖
𝑇 + 𝑅𝑖𝑗 (2) 

 

To model equation (1), the expectation-maximization (EM) algorithm approach performed by Hajjem et al. 

[6] was used. MERF iteratively estimates the function of the forest by assuming that the random effect 

components are correct and then estimate the random effect components by assuming that the out-of-bag 

(OOB) predictions of the forest are correct. OOB predictions use observations not included in the 

construction of each tree in the forest [23], [24] and can demonstrate the classification ability, feature 

importance, and other dataset patterns of the random forest [25], [26]. 

 

The MERF algorithm was outlined as follows [6, Sec 2.2]: 

1) Iteration 𝑏 = 0 was set and the random component �̂�(0) = 0 was initialized. 

2) For each iteration 𝑏 = 𝑏 + 1, 𝑓(𝑋)(𝑏) and 𝑣(𝑏) were updated as follows: 

(a) The new target variable 𝑦
(𝑏)
∗  was computed by subtracting the contribution of the random effects 

from the previous iteration from the original target variable 𝑦. 

 

 𝑦(𝑏)
∗ = 𝑦 − 𝑍𝑣(𝑏−1) (3) 

 

(b) The function �̂�()
(𝑏)

 was estimated by training a random forest model with the new target variable 

𝑦
(𝑏)
∗  and covariates 𝑋. Note that �̂�()

(𝑏)
 was the same function for all areas 𝑖. 

(c) Out-of-bag (OOB) predictions: �̂�(𝑋)
(𝑏)

𝑂𝑂𝐵
 was obtained, namely the predictions from �̂�()

(𝑏)
 on 

units not used to train the random forest. 

(d) LMM modeling was performed using the OOB predictions: 

 

 𝑦 = 𝑓(𝑋)(𝑏)
𝑂𝑂𝐵 + 𝑍𝑣(𝑏) + 𝜖 (4) 

 

This model assumed �̂�(𝑋)
(𝑏)

𝑂𝑂𝐵
 as the fixed effect, 𝑍𝑣(𝑏) as the random effect, and 𝜖 as the residual 

error from the observations. 

(e) The variance components from the trained LMM model were obtained, namely the residual error 

(�̂�𝜖,(𝑏)
2

) and the covariance matrix of the random effects (�̂�(𝑏)) and estimate the random effects 

with: 

 𝑣(𝑏) = �̂�(𝑏)𝑍
𝑇�̂�(𝑏)

−1(𝑦 − 𝑓(𝑋)(𝑏)
𝑂𝑂𝐵) (5) 

 

3) Step 2 was repeated until the change in model parameters between successive iterations was below a 

certain threshold, indicating that the algorithm had converged. In this study, the convergence criterion 

is a marginal change in the generalized log-likelihood (GLL) of less than 1𝑒−4. 
 

The estimation of �̂�𝜖
2
 was naive and thus could not be considered a valid estimator for the variance 𝜎𝜖

2 of 

the unit-level error 𝜖. Consequently, this estimator was corrected for bias to obtain the residual variance 𝜎𝜖
2  

from the random forest model through a bootstrap approach with the following steps [7], [27]: 
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1) Out-of-bag (OOB) predictions 𝑓(𝑋𝑖𝑗)
𝑂𝑂𝐵  was utilized from the model that had achieved convergence. 

2) Bootstrap samples 𝑦(𝑏)
∗ = 𝑓(𝑋)𝑂𝑂𝐵 + 𝜖(𝑏)

∗  were generated using 𝜖(𝑏)
∗  where 𝜖(𝑏)

∗  was sampled with 

replacement from the centered marginal residuals �̂� = 𝑦 − 𝑓(𝑋)𝑂𝑂𝐵. 

3) For each bootstrap sample, new OOB predictions 𝑓(𝑋)(𝑏)
𝑂𝑂𝐵  were computed by training a random forest 

model using 𝑦(𝑏)
∗  as the dependent variable. 

4) Bias correction 𝐾(𝑓) was estimated using: 

 

 𝐾(𝑓) =  
1

𝐵
∑ (𝑓(𝑋)𝑂𝑂𝐵 − 𝑓(𝑋)(𝑏)

𝑂𝑂𝐵)
2𝐵

𝑏=1  (6) 

 

This correction represented the average squared difference between the convergent OOB predictions 

and the OOB predictions from the bootstrap samples. 

5) The bias-corrected estimate of the residual variance was given by: 

 

 �̂�𝑏𝑐,𝜖
2 = �̂�𝜖

2 −  𝐾(𝑓) (7) 

 

where �̂�𝜖
2 is the naïve estimate of the residual variance, and 𝐾(𝑓) is the bias correction term. This 

procedure provided a more accurate estimate of the residual variance by correcting for bias introduced 

by the random forest model. 

 

After obtaining the unit-level estimates, these estimates were used to estimate the averages for each area 

by leveraging additional information from census or administrative data. The average estimate for each area 

𝑖  was computed as follows: 

 

 𝑓(̅𝑋𝑖) =
1

𝑁𝑖
∑ 𝑓(𝑋𝑖) =

𝑁𝑖
𝑗=1

1

𝑁𝑖
∑ 𝑓(𝑥𝑖𝑗)

𝑁𝑖
𝑗=1  (8) 

 

where 𝑁𝑖 is the number of units in area 𝑖, and 𝑓(𝑥𝑖𝑗) represents the predicted value for the 𝑗-th unit in area 

𝑖. 
 

The final value of the best linear unbiased predictor (BLUP) 𝑣𝑖 obtained from equation (5) was used to 

estimate the contribution of random effects for each area 𝑖. This component added a correction for random 

effects to the average fixed predictions to provide a more accurate estimate for the area average: 

 

 𝜇�̂� = 𝑓(̅𝑋𝑖) + 𝑍𝑖𝑣�̂� (9) 

 

For areas without sample data, the estimate was based solely on the fixed effect component of the random 

forest model, which is the average value of the fixed predictions: 

 

 𝜇�̂� = 𝑓(̅𝑋𝑖) (10) 

 

This ensured that estimates could still be made even in the absence of sample data from the area. 

 

To evaluate the area-level estimates, this method measures the quality of the estimates by calculating the 

uncertainty of the indicator at the area level through a bootstrap scheme. Chambers and Chandra [28] 

introduced random effect block (REB) scheme to estimate the mean squared error (MSE) of the area-level 

estimates. The steps for the REB bootstrap for this study were as follows [6, Sec 3]: 

1) The vector of marginal residuals was calculated: 𝑒𝑖�̂� = 𝑦𝑖𝑗 − 𝑓(𝑋𝑖𝑗) 

2) Level-2 residuals for each area were computed based on the marginal residuals 𝑒𝑖�̂� : 

 

 𝑟�̅� =
1

𝑛𝑖
∑ 𝑒𝑖�̂� 

𝑛𝑖
𝑗=𝑖  (11) 

 

where �̅� = [𝑟�̅�, … , 𝑟�̅�]′ is a vector 𝐷 x 1 of level-2 residuals. 

3) Marginal residuals were used to compute level-1 residual vectors: 𝑟𝑖�̂� = 𝑒𝑖�̂� − 1𝑛𝑖
𝑟�̅� 
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The residuals 𝑟𝑖�̂� = [𝑟1�̂�
′, … , 𝑟𝐷�̂�

′]
′
 were scaled to the bias-corrected residual variance and centered, 

denoted as 𝑟𝑖�̂�
𝑐 = [𝑟1�̂�

𝑐′
, … , 𝑟𝐷�̂�

𝑐′
]
′

. The level-2 residuals 𝑟�̅� were also scaled to the estimated variance 

�̂�𝑖 = �̂�𝑣
2 and centered, denoted as 𝑟�̅�

𝑐 = [𝑟1̅
𝑐 ,… , 𝑟�̅�

𝑐]′ 
4) Bootstrap was performed: For 𝑏 = 1,… , 𝐵. 

(a) Randomly sampled with replacement from the level-1 and level-2 residuals: 

 

𝑟𝑖𝑗
(𝑏)

= 𝑠𝑟𝑠𝑤𝑟(𝑟𝑖�̂�
𝑐 , 𝑛𝑖) and �̅�𝑖

(𝑏) = 𝑠𝑟𝑠𝑤𝑟(𝑟�̅�
𝑐 , 𝐷) 

 

(b) The bootstrap population was calculated as: 𝑦𝑖𝑗
(𝑏)

= 𝑓(𝑋𝑖𝑗) + 𝑍�̅�𝑖
(𝑏) + 𝑟𝑖𝑗

(𝑏)
 and the area-level 

true mean of the bootstrap population was computed as: 𝜇𝑖
(𝑏) =  

1

𝑁𝑖
∑ 𝑦𝑖𝑗

(𝑏)𝑁𝑖
𝑗=1  for all areas 𝑖. 

(c) Each bootstrap population was sampled with size 𝑛𝑖 equal to the original sample size. Then, the 

sample was used to estimate 𝑓(𝑏)() and 𝑣(𝑏) as described in the MERF algorithm. 

(d) The area-level mean from the bootstrap sample was calculated as follows: 

 

 𝜇�̂�
(𝑏) = 𝑓̅(𝑏)(𝑋𝑖) + 𝑍𝑖𝑣�̂�

(𝑏)
 (12) 

 

These steps helped assess the uncertainty in the area-level estimates by using a robust bootstrap 

approach that accounts for the hierarchical structure of the data. 

(e) Using 𝐵 bootstrap samples, the mean squared error (MSE) estimate for the area-level prediction 

was obtained as follows: 

 

 𝑀𝑆𝐸�̂� =
1

𝐵
∑ (𝜇𝑖

(𝑏)
− �̂�𝑖

(𝑏)
)
2

𝐵
𝑏=1  (13) 

 

Principal component analysis-mixed effects random forest (PCA-MERF) 

Principal component analysis (PCA) is a statistical technique used to reduce the dimensionality of data by 

transforming a large set of variables into a smaller set of principal components that retain most of the 

variation present in the original data. When combined with random forest, PCA is applied as a 

preprocessing step before training the random forest model. This approach helps eliminate multicollinearity 

by converting the original features into orthogonal (uncorrelated) principal components. By reducing 

dimensionality and addressing multicollinearity, the random forest model can concentrate on the most 

informative features, potentially enhancing the model's performance. 

 

The algorithm for PCA-MERF for this study was outlined as follows: 

1) Data were standardized to ensure that each covariate had a mean of 0 and a variance of 1. 

2) Principal component analysis (PCA) was performed on the standardized covariates to obtain principal 

components that are orthogonal to each other. 

3) The original covariates were projected into the space defined by the principal components. 

4) The projected covariates were used to train the random forest model as the fixed effects component, 

which was subsequently combined with linear mixed model (LMM) to estimate the random effects 

components. This estimation was carried out using the expectation-maximization (EM) approach, 

similar to the method used by [7] in MERF. 

5) The steps for estimating unit-level values, area-level means, and mean squared error (MSE) using the 

REB bootstrap approach, as outlined by [7]. 

 

Mixed effects rotation forest (MERoF) 

Rotation forest (RoF) is an ensemble method that utilizes principal component analysis (PCA) to rotate the 

feature axes upon which decision trees are built. Decision trees are used as the basis for classification due 

to their sensitivity to feature axis rotation while maintaining accuracy. Although PCA is employed, all 

principal components are used to construct the decision trees, ensuring that the completeness of the data 

information is preserved [11]. 

 

Pardo et al. [15] developed rotation forest (RoF) for regression estimation, where previous methods were 

only for classification. The adapted RoF algorithm for regression was as follows: 
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1) We let 𝑥 =  [𝑥1, … , 𝑥𝑝]
𝑇
 be the observation vector with 𝑝 variables, 𝑋 be the dataset consisting of 

vectors 𝑥 size 𝑛 x 𝑝, and 𝐹 be the set of 𝑝 variables. We also let 𝑦 = [𝑦1, … , 𝑦𝑛]𝑇 be the response vector 

of size 𝑛 x 1. 

2) 𝐹 was randomly divided into 𝑘 disjoint groups of variables, each with approximately the same number 

of varibles (𝑚) . 𝐹𝑖,𝑗 is the group of variables used to build tree 𝐷𝑖 with 𝑖 = 1,… , 𝑈 and 𝑚𝑗 variables, 

for  𝑗 = 1, … , 𝑘. 𝑋𝑖,𝑗 is the dataset 𝑋 with variables 𝐹𝑖,𝑗 . 

3) Bootstrap sampling was performed on the dataset 𝑋𝑖,𝑗 . The bootstrap sample of the dataset was denoted 

as 𝑋𝑖,𝑗
∗ . 

4) Principal component analysis (PCA) was performed on 𝑋𝑖,𝑗
∗  and the principal component coefficient 

was saved as  𝑎𝑖,𝑗
(1)

, 𝑎𝑖,𝑗
(2)

, … , 𝑎
𝑖,𝑗

(𝑚𝑗)
. 

5) The principal component coefficient vectors were arranged into a rotation matrix 𝑅𝑖 as follows: 

 

 𝑅𝑖 =

[
 
 
 
 𝑎𝑖,1

(1)
, … , 𝑎𝑖,1

(𝑚1) [0] … [0]

[0] 𝑎𝑖,2
(1)

,… , 𝑎𝑖,2
(𝑚2) … [0]

⋮ ⋮ ⋱ ⋮

[0] [0] … 𝑎𝑖,𝑘
(1)

, … , 𝑎𝑖,𝑘
(𝑚𝑘)

]
 
 
 
 

 (14) 

 

6) The columns of the matrix 𝑅𝑖 were reordered to match the arrangement of the variable groups. The 

reordered rotation matrix was denoted as 𝑅𝑖
𝑎 which is 𝑝 x 𝑝. 

7) The 𝑖-th regression tree (𝐷𝑖) was built using (𝑋𝑅𝑖
𝑎 , 𝑦). 

8) Steps 2 through 7 were repeated until 𝑈 regression trees were obtained. 

 

The steps outlined for RoF were consistently applied in the estimation of forest functions when modeling 

mixed effects rotation forest (MERoF). This approach ultimately enabled the estimation of fixed and 

random effects components, unit-level and area-level mean, and mean squared error (MSE) as a measure 

of estimation uncertainty. All steps were conducted according to the procedures described in [7]. 

 

The modeling and data analysis procedure in this study is presented in Figure 1. 
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Figure 1. Flowchart of modeling and data analysis process 

 

RESULTS AND DISCUSSIONS 

Jambi Province consists of 11 regencies/municipalities, 144 subdistricts, and 1,562 villages. The March 

2021 Susenas of Jambi Province featured a sample size of 6,913 households. This sample covered only 142 

subdistricts from 625 villages in Jambi Province. Table 2 summarizes the March 2021 Susenas sample 

distribution in Jambi Province by regency/municipality. Table 2 shows that certain areas (villages and even 

subdistricts) are without sample representation. The variables used from the Susenas data included the total 

monthly expenditure on food and non-food items and the number of household members. The average per 

capita expenditure in a village was calculated by dividing the total expenditure by the total number of 

household members in the village.  
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Table 2. Summary of march 2021 susenas sample in jambi province 

No Regency/Municipality 

Number of 

sampled 

villages 

Number of 

non-sampled 

villages 

Number of 

sampled 

subdistricts 

Number of 

non-

sampled 

subdistricts 

Number of 

household 

samples 

1 Kerinci Regency 60 227 18 - 608 

2 Merangin Regency 63 215 23 1 653 

3 Sarolangun Regency 61 97 10 1 615 

4 Batang Hari Regency 58 66 8 - 616 

5 Muaro Jambi Regency 64 91 11 - 656 

6 Tanjung Jabung Timur Regency 55 38 11 - 618 

7 Tanjung Jabung Barat Regency 55 79 13 - 611 

8 Tebo Regency 56 56 12 - 660 

9 Bungo Regency 65 88 17 - 659 

10 Jambi Municipality 44 18 11 - 687 

11 Sungai Penuh Municipality 44 25 8 - 530 

Total 625 937 142 2 6913 

 

 
Figure 2. Distribution of village average per capita expenditure  

 

Figure 2 illustrates that villages' average per capita expenditure does not exhibit a symmetric distribution. 

The right-skewed data indicate that most observations have relatively low or moderate per capita 

expenditures, while a small proportion of observations exhibit very high per capita expenditures. The 

median value being lower than the mean suggests that extreme (outlier) values influence the mean on the 

right side, which causes the average per capita expenditure to appear higher than it is for most observations. 

 

Additionally, the correlation between the target variable and the covariates in the dataset was analyzed. As 

shown in Figure 3, there is one particularly strong correlation between covariates, specifically between the 

variables Pct_Fam_PLN and Pct_Fam_NonPLN, with a correlation coefficient of -0.97. This indicates a 

very strong and negative relationship between Pct_Fam_PLN and Pct_Fam_NonPLN, meaning that as the 

value of one variable increases, the value of the other tends to decrease consistently. Such strong 

relationships among covariates might indicate potential issues. Multicollinearity occurs when two or more 

variables in a regression model are highly correlated, which can lead to difficulties in interpreting the 

regression coefficients. 

 

Figure 3 only shows pairwise correlations between two variables at a time and does not capture more 

complex multicollinearity interactions that may involve more than two variables. To assess 

multicollinearity, the variance inflation factor (VIF) was used [1] to evaluate the level of multicollinearity 

among the independent variables in a regression model. A VIF value below 5 typically indicates that 

multicollinearity is not a significant issue. Meanwhile. a VIF value between 5 and 10 suggests a 

considerable level of multicollinearity that could impact the regression coefficient estimates [29]. This 

serves as a warning that some variables may be too highly correlated within the regression model. A VIF 

value exceeding 10 generally indicates a severe multicollinearity problem, where the estimation of 

regression coefficients may become highly unstable due to strong correlations among the variables 
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Figure 3. Correlation plot between variables 

 

Table 3 presents the VIF values for each covariate. The variables Pct_Fam_PLN and Pct_Fam_NonPLN 

have VIF values of 18.84 and 18.47, respectively. These values confirm the presence of severe 

multicollinearity, indicating that the inclusion of these variables in the model is likely to cause estimation 

issues. The other variables have small VIF values of approximately 1, suggesting that multicollinearity is 

not a concern for these variables. 

 

Table 3. VIF values for each covariate 
Variable VIF 

Num_Families 1.35 

Pct_Fam_PLN 18.84 

Pct_Fam_NonPLN 18.47 

Pct_Fam_SlumAreas 1.02 

Edu_Fac_Ratio 1.14 

Health_Fac_Ratio 1.11 

Poverty_Cert_Ratio 1.05 

Pct_Fam_Landline 1.22 

IMK_Ratio 1.05 

Distance_to_SubDistrict 1.15 

Transport_Cost 1.04 

Eco_Fac_Ratio 1.08 

 

Estimation results of per capita expenditure for small area using MERF, PCA-MERF, and MERoF 

Based on the results of empirical data exploration, it is evident that the dataset used in this study exhibits 

characteristics of a non-symmetric distribution. Additionally, several variables have been found to have 

very high correlations, indicating serious multicollinearity issues, as confirmed by the variance inflation 

factor (VIF) calculations. A dataset with these issues presents significant challenges for small area 

estimation using standard SAE methods. Such issues must be addressed beforehand to ensure that these 

methods' assumptions are met. MERF (mixed effects random forest) offers a potential solution by 

leveraging machine learning techniques, providing advantages for non-linear and non-parametric data. 

MERF combines the strengths of mixed models with the predictive power of random forest. 

 

We acknowledge that the most effective estimation method is one that achieves the highest precision. Given 

the identified severe multicollinearity in the dataset, this study modified MERF in two ways: first, by 
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applying PCA (principal component analysis) during the preprocessing stage before MERF modeling, and 

second, by replacing the forest in the mixed model with rotation forest to specifically address 

multicollinearity issues. The estimation outcomes revealed the performance of per capita expenditure 

estimation for small areas with problematic multicollinearity data through the methods MERF, PCA-

MERF, and MERoF. 

 

In mixed models, the principal components consist of fixed effects, which are variables that consistently 

affect the entire dataset. In MERF, these fixed effects are derived from the original covariates. In PCA-

MERF and MERoF, the fixed effects are based on the original variables transformed into new, linearly 

independent components. The distinction between PCA-MERF and MERoF lies in how the forest is trained: 

PCA-MERF employs a random forest that uses only a subset of variables to construct the trees, whereas 

MERoF incorporates all variables in tree construction to preserve complete information. In addition to fixed 

effects, random effects capture variation among groups within the data—an essential aspect of small area 

estimation (SAE). These mixed models can capture variation among subdistricts as random effects and 

variation within subdistricts that originate from covariate variables as fixed effects. 

 

To evaluate the quality of the estimations, this study examined the quality of estimations at the unit level 

(village) and the quality of estimations at the area level (subdistrict). The quality of estimations at the village 

level was assessed by comparing the estimated values with the actual observed values. Meanwhile, the 

quality of estimations at the subdistrict level was evaluated by estimating the uncertainty of the MSE using 

the REB bootstrap scheme, which compared the estimated average values for subdistricts with those derived 

from bootstrap results. The estimation results using MERF, PCA-MERF, and MERoF are presented in 

Table 4. 

 

Table 4. Estimation results using MERF, PCA-MERF, and MERoF 
Component MERF PCA-MERF MERoF Unit 

Evaluation Metric for Unit-level Estimation     

RMSE 287,89 283,05 279,57 000 IDR 

Relative-RMSE 23,68 23,28 22,99 % 

Coefficient of Variation (CV) 17,23 17,34 16,45 % 

Evaluation Metric for Area-level Estimation     

RMSE 111,81 110,64 123,47 000 IDR 

Relative-RMSE 9,04 8,76 10,31 % 

Coefficient of Variation (CV) 8,84 8,53 10,07 % 

Random Effects from LMM (Linear Mixed 

Models) 

    

SD of Area 182,19 200,21 243,71 000 IDR 

SD of Residual 308,43 305,13 304,71 000 IDR 

ICC 0,26 0,30 0,39 - 

Note:  Best Value     

 

Overall, the evaluation of village-level predictions using RMSE, RRMSE, and CV values, as shown in 

Table 4, indicates that MERoF has the smallest values compared to the other two methods. This suggests 

that the dispersion or variability of errors for the MERoF method is lower than that for the other methods 

in village-level estimation. However, the RMSE, RRMSE, and CV values for village-level predictions are 

higher than those at the subdistrict level. This is likely due to the larger sample sizes at the subdistrict level, 

which result in more stable estimates. In contrast, the evaluation of subdistrict level predictions revealed 

that PCA-MERF outperforms MERF and MERoF in predicting the average per capita expenditure at the 

subdistrict level, as evidenced by its smaller RMSE, RRMSE, and CV values. This is more clearly 

illustrated in Figure 4. Nevertheless, all three methods can still be categorized as good, reliable, and stable 

for predicting small areas, with values falling within the 8-10% range. 
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Figure 4. Boxplot of RMSE and CV values of three methods 

 

Subsequently, we examined the estimation results for the random effects of each model. The standard 

deviation (SD) of area effects measured the variation between subdistricts, while the SD of residuals 

captured the variation in unexplained errors by the model. The intraclass correlation coefficient (ICC) 

measured the proportion of total variability attributed to variation between subdistricts. For the SD of area 

effects, MERF yielded a value of 182.19, which was smaller compared to PCA-MERF's value of 200.21. 

MERoF, on the other hand, resulted in a larger SD of area effects at 243.71, indicating more significant 

variation in the target variable, average per capita expenditure, among different subdistricts. As for the ICC, 

MERoF also had a higher value at 0.39. This suggests that the variation between subdistricts contributes 

more significantly to the total variability in the data. MERoF demonstrates a better ability to identify and 

capture the variation between areas than MERF and PCA-MERF. A higher ICC value implies that average 

per capita expenditure varies significantly between different subdistricts, likely due to differences in 

demographic, economic, or socio-ecological characteristics among the subdistricts. In terms of the standard 

deviation of residuals, MERoF had a value of 304.71, slightly lower than PCA-MERF's value of 305.13. 

MERF had the highest residual variance among the three methods at 308.43. A higher residual variance 

indicates greater variability in the data that the model has not captured, possibly due to local factors such 

as geographical differences, spatial variability, or measurement uncertainties. These results suggest that 

MERoF controls unexplained variation slightly better than the other two methods, though it is still not 

entirely conclusive that MERoF is definitively superior. 

 

Table 5. Estimation of mean of per capita expenditure per subdistrict in several subdistricts based on 

MERF, PCA-MERF, and MERoF methods (000 IDR) 
Id_Subdistrict MERF PCA-MERF MERoF Number of Village Samples 

0440 1211.45 1251.86 1178.23 10 

0911 1302.41 1382.22 1305.36 10 

0510 1084.00 1094.32 1074.74 10 

0730 1341.59 1406.63 1259.47 9 

0632 1279.88 1254.53 1256.68 9 

... ... ... ... ... 

0230 1151.73 1131.59 1079.65 5 

0350 993.13 970.06 914.20 5 

7120 1464.54 1450.04 1333.80 4 

0650 1225.80 1168.12 1207.02 4 

7150 1882.76 1935.77 1823.02 4 

... ... ... ... ... 

7160 1311.29 1353.86 1209.10 1 

0222 1104.78 1099.19 1004.18 1 

0265 1328.88 1195.79 1158.34 - 

0361 1204.48 1177.68 1180.38 - 
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In addition to estimating areas covered by the sample, MERF, PCA-MERF, and MERoF were also able to 

estimate areas not included in the sample. In the March 2021 Susenas data, 142 subdistricts in Jambi 

Province were included in the sample, excluding 2 subdistricts. Table 5 and Figure 5 illustrate the estimation 

of average per capita expenditure for subdistricts using MERF, PCA-MERF, and MERoF, sorted by the 

number of village samples from largest to smallest. Subdistricts with a larger number of samples tended to 

have more consistent estimates, with smaller differences among methods. This suggests that a greater 

number of samples provides more stable estimates. Generally, PCA-MERF tended to yield higher estimates 

compared to the other methods, especially in subdistricts with a larger number of samples. Conversely, 

MERoF tended to provide lower estimates. In subdistricts without sample representation, the differences 

among methods became more pronounced, with MERF providing significantly higher estimates compared 

to the other two methods. This suggests that estimates made using methods that do not address 

multicollinearity and exclude random effects can result in much higher estimates. 

 

 
Figure 5 Estimates from MERF, PCA-MERF, and MERoF Methods, sorted by village samples size from 

largest to smallest 

 

The findings of this study highlight the effectiveness of modifying the mixed effects random forest (MERF) 

method to address the critical issue of multicollinearity in small area estimation (SAE). Both PCA-MERF 

and MERoF demonstrate superior performance compared to the original MERF method, with PCA-MERF 

excelling in subdistrict level estimation and MERoF showing significant advantages in village level 

estimation. This suggests that tailored approaches to handling multicollinearity can yield more accurate and 

reliable estimates, depending on the specific level of analysis. 

 

The research also underscores the importance of considering the hierarchical structure of data, particularly 

when dealing with geographically clustered areas such as subdistricts and villages. The higher intraclass 

correlation coefficient (ICC) observed in MERoF suggests that this method better captures the inherent 

variability between subdistricts, which is crucial for understanding regional disparities in per capita 

expenditure. Moreover, the lower residual variance in MERoF indicates that it is slightly more effective in 

controlling unexplained variability. 
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However, while PCA-MERF and MERoF provide notable improvements, it is evident that no single method 

is universally superior across all levels of analysis. The choice of method should therefore be guided by the 

specific requirements of the estimation level—whether it is at the village or subdistrict level—and by the 

nature of the underlying data. This study contributes to the ongoing development of more robust SAE 

methods by demonstrating the value of incorporating advanced techniques such as PCA-random forest and 

rotation forest in mixed models. 

 

Given the limitations related to sample size and data availability at smaller area levels, the findings of this 

study also emphasize the need for continued innovation in SAE methodologies. Future research could 

further explore the integration of additional machine learning techniques or hybrid models to enhance the 

robustness and flexibility of SAE methods, particularly in regions with limited data. By addressing these 

challenges, researchers and policymakers can obtain more accurate and actionable insights, ultimately 

supporting more effective and targeted regional development policies. 

 

CONCLUSION 

The per capita expenditure data in Jambi Province exhibit significant multicollinearity issues. To address 

this critical problem, modifications to MERF were implemented using two alternative approaches: PCA-

MERF and MERoF, both designed to handle multicollinearity. The results showed that all three methods 

demonstrate precise and reliable performance in estimating average per capita expenditure at the subdistrict 

level, with RRMSE and CV values ranging from 8-10%. This indicates that MERF effectively manages 

multicollinearity issues, particularly in subdistrict level estimation. However, the modified methods provide 

even better performance compared to MERF. MERoF excels in village-level estimation and in capturing 

variation among subdistricts, making it a strong candidate for estimating average per capita expenditure at 

the village level. Meanwhile, PCA-MERF outperforms MERF and MERoF in estimating average per capita 

expenditure at the subdistrict level, making PCA-MERF the preferable choice for subdistrict-level 

estimates. This research indicates that modifying MERF is a sound and beneficial approach for estimating 

per capita expenditure in small areas in Jambi Province. 

 

However, this study is not without its limitations and challenges. This study utilizes 2021 Podes as the 

population data, and therefore the unit of the March 2021 Susenas survey data used in this research is the 

village, consistent with the unit in the Podes data. This choice was made due to the difficulty in obtaining 

the most recent household population data. A weakness in this study includes the lack of household-level 

data, which necessitated the use of village-level data. Using village-level data may not fully capture 

individual variability, potentially affecting the precision of the estimates. Another difficulty encountered 

was the limited sample representation in some subdistricts and villages, leading to instability in the 

estimates for areas not represented in the survey sample. This challenge highlights the need for more 

adaptive and flexible methods to handle very limited or incomplete data.  

 

For future research, it is recommended that household-level data be used, whenever available, to enhance 

the precision of the estimates. Further exploration of integrating machine learning techniques or hybrid 

models into SAE is also necessary to overcome the challenges faced in this study such as data 

incompleteness.  
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