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Abstract.  
Purpose: Cayenne pepper represents one of Indonesia’s key horticultural commodities, widely utilized in both household culinary 

practices and the food processing industry. Nevertheless, its market price is subject to considerable volatility, driven by factors such 

as weather variability, limited supply, production costs, and inefficiencies in distribution systems. This price instability generates 
uncertainty that adversely impacts farmers, traders, and consumers. Consequently, the development of a reliable price forecasting 

model is crucial to facilitate price stabilization and enable data-driven decision-making across the supply chain. This study aims to 

investigate the extent to which feature engineering techniques can enhance the predictive performance of the Extreme Gradient 

Boosting (XGBoost) algorithm in forecasting cayenne pepper prices. Through the integration of lag features, moving averages, and 

seasonal indicators, the proposed model is expected to more effectively capture market dynamics and provide a robust analytical tool 

for relevant stakeholders. 
Methods: The forecasting model was constructed using the XGBoost algorithm in combination with various feature engineering 

methods. The dataset consists of daily price records obtained from Bank Indonesia’s PIHPS system and meteorological variables 
sourced from BMKG, encompassing the period between 2021 and 2024. The engineered features include lag variables identified 

through Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) analyses, Simple Moving Averages (SMA), 

seasonal indicators, and holiday-related variables designed to capture recurring patterns and event-driven price fluctuations. To 
enhance predictive performance, hyperparameter tuning was conducted using a grid search optimization approach. 

Result: The optimal model demonstrated substantial performance improvements under the following hyperparameter configuration: 

alpha = 0, gamma = 0.3, lambda = 1, learning_rate = 0.05, max_depth = 3, min_child_weight = 3, n_estimators = 200, and subsample 
= 0.6. The application of feature engineering markedly enhanced the model’s predictive capability, increasing the R² value by 99.10% 

while reducing the MAE, RMSE, and MAPE by 72.63%, 71.31%, and 72.04%, respectively. These outcomes signify a notable 

reduction in forecasting errors and demonstrate the model’s improved accuracy. 
Novelty: This study integrates multi-level price data with weather and holiday-related features, employing the ACF and the PACF 

analyses to determine optimal lag values (techniques commonly utilized in statistical modeling). This integration enhances both the 

accuracy and interpretability of the XGBoost algorithm, thereby providing a practical and effective tool for agricultural price 
forecasting and market planning. 
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INTRODUCTION 

Chili represents one of the principal commodities within Indonesia’s horticultural sub-sector, where 

maintaining supply and price stability is vital to the national economy. The prices of red and cayenne chili 

are notably volatile, contributing 0.15% and 0.05% to national inflation in 2019, respectively [1]. Such 

volatility generates adverse conditions for the agribusiness sector, as unpredictable price movements 

heighten financial risks for both farmers and traders. For smallholder farmers, these fluctuations pose even 

greater challenges due to limited access to reliable market information, inadequate storage infrastructure, 

and restricted flexibility in adjusting sales timing to obtain favorable prices [2]. Consequently, income 

instability discourages sustained investment and long-term planning in chili cultivation [3].  

 

Cayenne pepper, in particular, is among the most extensively utilized spices in Indonesian households and 

the food processing industry. However, its production instability contrasts with the steadily increasing per 

capita consumption driven by population growth [4],[5]. Based on PIHPS data, the average price of cayenne 

pepper in Bandung City reached Rp 97,500 per kilogram between January and November 2024, 

highlighting the market’s sensitivity to both production and distribution dynamics. Several factors 

contribute to this volatility, including limited supply, climate variability, rising production costs, and the 
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intricate structure of the distribution network [6],[7]. These factors are reflected in the dataset employed in 

this study, which comprises price data from various market levels (producer, collector, and retail) alongside 

daily weather variables such as temperature, humidity, and rainfall. Disruptions in production can trigger 

sharp price increases, whereas oversupply and weak demand may lead to price declines, ultimately 

undermining farmers’ economic well-being [8],[9]. 

 

Under these circumstances, developing an accurate price forecasting model is crucial to facilitate informed 

decision-making and promote market stability. Machine learning algorithms (particularly the XGBoost 

model) have recently gained prominence due to their capability to capture nonlinear patterns and complex 

interdependencies within data. However, to attain optimal performance in time-series forecasting, these 

models require robust feature engineering processes to transform raw temporal data into structured inputs 

suitable for supervised learning [10]. 

 

Previous studies [11] have demonstrated that the XGBoost algorithm outperforms traditional time-series 

models such as ARIMA, LSTM, Prophet, and Gradient Boosting Decision Tree (GBDT), especially when 

augmented with feature engineering techniques. Zhang et al. (2021) further substantiated these findings, 

showing that XGBoost consistently achieved superior forecasting accuracy in sales volume prediction when 

feature engineering was applied. Their experiments revealed that XGBoost attained lower RMSE and MAE 

values while requiring fewer iterations than GBDT, indicating higher predictive precision and greater 

computational efficiency in processing time-dependent data influenced by external variables such as 

weather and temperature. 

 

Compared with conventional time-series models like ARIMA, LSTM, Prophet, and GBDT, XGBoost 

effectively captures nonlinear dynamics and accommodates multivariate inputs. The results of Zhang et al. 

(2021) reaffirm this capability, demonstrating that XGBoost delivers enhanced accuracy with fewer training 

iterations than GBDT, thereby confirming its efficiency. These advantages render XGBoost particularly 

suitable for this study, as cayenne pepper prices often exhibit irregular, seasonal, and weather-dependent 

fluctuations that can be more accurately represented through engineered features such as lag variables, 

moving averages, and temperature indicators. 

 

Li (2023) also demonstrated that XGBoost attains higher predictive accuracy than LSTM in stock price 

forecasting, thereby reinforcing its reliability across various forecasting domains [12]. Similarly, a study 

on cayenne pepper prices in Jakarta implemented feature engineering techniques using market data from 

several traditional markets in DKI Jakarta; however, it excluded external variables such as weather 

conditions and multi-level price structures [13]. In that study, the procedure for selecting lag features was 

not explicitly described, although the model achieved a notable R² value of 0.92. Another investigation [14] 

utilized XGBoost with feature engineering to forecast rice prices in Indonesia and reported strong predictive 

performance, yet the analysis remained limited to price-based features without incorporating additional 

influencing factors. Several other studies have drawn comparable conclusions, highlighting that XGBoost 

offers a robust foundation for applying machine learning methods to enhance market forecasting accuracy 

and to formulate effective pricing strategies [15]. 

 

Given the persistent volatility of cayenne pepper prices and the multitude of factors influencing them, this 

study employs the XGBoost algorithm, recognized for its precision and robustness in modeling complex, 

nonlinear relationships. To improve model performance and uncover essential price dynamics, various 

feature engineering techniques are incorporated, including seasonal variables (month and day) to capture 

recurring temporal patterns, SMA to mitigate short-term fluctuations, lag features to represent historical 

dependencies, and holiday indicators to account for the effects of special events. 

 

Although previous studies have incorporated external factors such as weather conditions into price 

forecasting, many have not integrated these variables within a comprehensive feature engineering 

framework. Conversely, research employing XGBoost with feature engineering has seldom included 

external influences. Moreover, while lag features are frequently utilized in time-series forecasting, earlier 

studies often neglected the critical process of determining the optimal lag period (the key factor in capturing 

temporal dependencies and enhancing model accuracy) [16]. 

 

To overcome these limitations, this study employs a comprehensive dataset that integrates multi-level 

cayenne pepper price data (producer, collector, and market) with external variables such as temperature, 
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humidity, rainfall, and public holidays. Multiple feature engineering techniques are applied, including 

seasonal variables, SMA, lag features, and event-based indicators. The novelty of this research lies in the 

determination of optimal lag periods through ACF and PACF analyses (methods traditionally employed in 

statistical models such as ARIMA but rarely applied to XGBoost) based forecasting. 

 

The primary objective of this study is to develop an accurate and interpretable model for forecasting 

cayenne pepper prices in Bandung. The proposed model is expected to offer valuable insights for 

agricultural planning, risk management, and policy decision-making related to market regulation and supply 

chain operations. 

 

METHODS 

The model’s performance was assessed through a systematic workflow beginning with data collection and 

preprocessing to ensure dataset reliability and consistency. Subsequently, feature engineering techniques 

were employed to construct informative variables, while lag values were identified using the ACF and the 

PACF analyses to determine the most significant historical dependencies. The engineered features 

generated from these processes were then utilized to train the XGBoost model. Finally, model performance 

was evaluated using multiple metrics to assess predictive accuracy and overall effectiveness. The complete 

business process framework is illustrated in Figure 1. 

 

 
Figure 1. Research Flow 

Data Collection 

The dataset used in this study is secondary data which includes cayenne pepper price data and external 

factors. Cayenne pepper price data is obtained from the National Strategic Food Price Information Center 

(PIHPS) (https://www.bi.go.id/hargapangan), a platform managed by Bank Indonesia, for the period 

January 2021 to December 2024. External factors such as temperature, humidity, and rainfall are taken 

from the BMKG Online Data website (https://dataonline.bmkg.go.id/beranda). 

The data is recorded on a daily basis, resulting in 1,097 observations over the four-year period. 

After preprocessing and feature engineering, the dataset contains 15 variables including multi-level price 

data (producer, collector, market) and engineered features such as seasonal indicators, simple moving 

averages (SMA), lag features, and holiday indicators. Table 1 depicts a data set containing 1,097 entries 

and 15 variables, along with their complete descriptions presented in Table 2. 

 

Table 1. Dataset 

Date Temperature Humidity Rainfall Producer Prices Collector Prices Market Prices 

2021-09-01 12400 18000 30000 24.5 71 0 

2021-09-01 12400 17000 30000 24.1 69 0 

…. …. …. …. …. …. …. 

2024-09-01 38400 34000 57500 26.1 74 0 

https://www.bi.go.id/hargapangan
https://dataonline.bmkg.go.id/beranda
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Table 2. Description of dataset attributes 

No Attribute Description Source 

1 Date Observation date PIHPS/BMKG 

2 Temperature Daily average temperature (°C) BMKG 

3 Humidity Daily average relative humidity (%) BMKG 

4 Rainfall Daily total rainfall (mm) BMKG 

5 Producer Prices Daily cayenne price at producer level (IDR/kg) PIHPS 

6 Collector Prices Daily cayenne price at the collector level (IDR/kg) PIHPS 

7 Market Prices Daily cayenne price at retail market level (IDR/kg) PIHPS 

 

Autocorrelation 

Observations in a time series are often correlated with previous observations, making them non-

independent. This relationship is known as autocorrelation or serial correlation. As mentioned, a time series 

with autocorrelation does not meet the assumptions of standard regression analysis. The ACF is used to 

check whether the data is stationary and to measure autocorrelation. The ACF displays the correlation 

between each data point and its previous values at various time intervals (lags), where lag indicates the 

number of time intervals between two observations. In addition to the ACF, there is also the PACF, which 

measures the correlation between the current observation and the observation at a specific lag after 

removing the influence of correlations from shorter lags. For example, the PACF at lag 4 shows the 

correlation between the value of 𝑌𝑡 and the value at lag 4 (𝑌𝑡−4) after controlling for the influence of lags 1 

through 3 (𝑌𝑡−1, 𝑌𝑡−2, 𝑌𝑡−3) [17]. 

Preprocessing 

Data preprocessing constitutes the preliminary stage of data analysis and machine learning model 

development. Its primary objective is to clean, transform, and prepare the dataset to ensure it can be 

effectively utilized by the algorithm. This stage is crucial, as real-world data frequently contains missing 

values, inconsistencies, and noise that may compromise model accuracy. Common preprocessing activities 

include managing missing data, removing irrelevant or redundant features, converting categorical variables 

into numerical representations, and detecting and eliminating outliers [18]. 

 

Feature Engineering 

Feature engineering refers to the process of modifying or creating new features from raw data to enhance 

the quality of data representation during model training. The primary goal of this process is to enrich the 

dataset, thereby enabling the model to identify underlying patterns and relationships more effectively [19]. 

By incorporating relevant information from historical observations, feature engineering allows models such 

as XGBoost to capture temporal trends with higher precision [19]. 

 

Because most machine learning algorithms cannot be directly applied to time-series data, a common 

strategy involves transforming the data into a feature vector format that can be processed by conventional 

predictive models. Constructing this representation is a critical step in time-series learning and exerts a 

substantial influence on model performance. Although manual feature generation can be complex and time-

intensive, effective feature engineering remains essential for enhancing forecasting accuracy [20]. 

 

In this study, several feature engineering techniques were employed, including lag features, SMA, seasonal 

indicators, and holiday-based features. Moreover, the optimal lag period was determined using the ACF 

and the PACF analyses to ensure that the most relevant historical dependencies were accurately captured. 

 

Extreme Gradient Boosting (XGBoost) 

Extreme Gradient Boosting, commonly known as XGBoost, is a machine learning algorithm widely applied 

to both classification and regression problems. It employs a tree-boosting approach that enables the creation 

of highly flexible and complex predictive models through specific parameter settings and configurations. 
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The working principle of XGBoost is similar to that of other Gradient Boosting methods, in which multiple 

weak learners are combined iteratively to form a stronger and more accurate ensemble model, as shown in 

Figure 2. The purpose of this combination is to improve performance through gradual training. The 

prediction results from the previous model, known as residuals or errors, are used as evaluation material to 

enhance model performance [21]. 

 

 
Figure 2. Extreme Gradient Boosting (XGBoost) 

 
The fundamental difference between Extreme Gradient Boosting and the standard Gradient Boosting 

algorithm is that XGBoost uses a more structured regularization model formalization to control overfitting, 

which can provide better model performance. In regression, the objective function is used to reduce 

prediction errors and minimize the loss function and regularization term, as shown in Equation (1): 

 

𝑜𝑏𝑗(𝜃) =  ∑ 𝐿(𝑓𝑘) + ∑ Ω(𝑓𝑘)
𝑇𝑘
𝑗=1

𝑇𝑘
𝑗=1  (1) 

 

Where ∑ L(fk)Tk
j=1  is a loss function and ∑ Ω(fk)Tk

j=1  is a regulatory term. 

The loss function is used to measure the error of a model in predicting data, so that it can be determined 

whether the model can predict accurately. The formula for the loss function is described in Equation (2). 

Here, Gjk is the first-order gradient statistic of the loss function (sum of gradients), Hjk is the second-order 

gradient statistic of the loss function (sum of Hessians), and Wjk is the weight. 

 

𝐿(𝑓𝑘) = ∑ [𝐺𝑗𝑘𝑊𝑗𝑘 +
1

2
𝐻𝑗𝑘𝑊𝑗𝑘

2]
𝑇𝑘
𝑗=1  (2) 

 

The regulation term serves to control how complex the model is. The regularization term applies a penalty 

mechanism to control model complexity, helping the model prevent overfitting and maintain generalization 

performance. The details of the regularization formula are presented in Equation (3), where 𝑇 denotes the 

total number of leaves in the constructed tree, W represents the weight assigned to each leaf, and γ, λ, and 

𝛼 are constant coefficients that regulate model flexibility. 

 

Ω(𝑓𝑘) =  𝛾𝑇𝑘 +
1

2
 𝜆 ∑ 𝑊2

𝑗𝑘 + 𝑎 ∑ |𝑊𝑗𝑘|
𝑇𝑘
𝑗=1

𝑇𝑘
𝑗=1  (3) 

 

Hyperparameter Tuning 

Hyperparameter tuning represents a critical phase in the machine learning pipeline, as it significantly affects 

a model’s performance and generalization capability. In contrast to model parameters, which are 

automatically learned during training, hyperparameters are predefined values that control the model’s 

overall structure and complexity. The tuning process entails evaluating various combinations of 

hyperparameters to identify the configuration that delivers optimal performance for a specific task. Proper 

hyperparameter optimization helps balance bias and variance, thereby mitigating the risks of overfitting 

and underfitting while enhancing predictive accuracy. 

 

Automated optimization approaches such as grid search, random search, and Bayesian optimization have 

gained widespread adoption in modern machine learning due to their efficiency in streamlining the tuning 

process [22]. Effective hyperparameter optimization provides substantial benefits for researchers, data 

analysts, and industry practitioners by ensuring that models operate at their full potential [23]. 
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In this study, the Grid Search method was employed for hyperparameter optimization. This approach 

systematically examines all possible combinations of hyperparameter values within predefined ranges, 

generating a grid of candidate configurations. For each combination, the model is trained and validated to 

identify the settings that yield the highest predictive performance [24], [25]. Grid Search is particularly 

advantageous when the search space is relatively limited and precise optimization is required to achieve 

high model accuracy. 

 

Feature Importance 

Identifying the most influential features within a model is fundamental to understanding its predictive 

mechanisms and interpreting its overall behavior. Feature importance (also referred to as feature detection, 

feature attribution, or model interpretability) is closely aligned with the statistical concepts of estimation 

and attribution. This approach assigns a numerical value or metric to each feature, enabling the ranking of 

features based on their contribution to the model’s predictive performance. Such rankings are typically 

derived by systematically permuting feature values and measuring the corresponding decline in predictive 

accuracy. Through this process, each feature receives an importance score that facilitates direct comparison 

[26].  

 

In the XGBoost framework, feature importance can be assessed using three primary metrics: weight, gain, 

and cover. Weight denotes the frequency with which a feature is used to split data across all trees in the 

model. Gain represents the average improvement in model accuracy resulting from splits involving that 

feature, while cover reflects the average number of observations affected by those splits. Collectively, these 

metrics provide a comprehensive understanding of the relative influence of each feature on the model’s 

predictive outcomes [27]. 

 

Time Series Forecasting 

Time series forecasting is the process of estimating future values with the highest possible accuracy based 

on patterns extracted from past observations. This approach not only relies on historical data but also 

incorporates relevant external information, such as anticipated events or conditions that may influence 

future patterns [28],[29]. Time series data has several characteristics, such as: 

1) Trend: A consistent long-term upward or downward movement observed across data points. 

2) Seasonal: Recurring patterns that repeat over fixed intervals, such as monthly or yearly cycles.  

3) Cyclical: Fluctuations that occur over longer periods, often associated with transitions between 

different phases, as seen in business cycles. 

4) Random Variate: Irregular variations that cannot be predicted and are often treated as noise. 

 

Evaluation 

The model’s forecasting performance was evaluated using several metrics, including Root Mean Square 

Error (RMSE), Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), and the 

Coefficient of Determination (R²). These metrics were used to assess the model’s accuracy on the test 

dataset and to provide a comprehensive evaluation of its predictive capability. 

 

    MAE =  
1

𝑚
∑ |𝑋𝑖 − 𝑌𝑖|𝑚

𝑖=1            (4) 

 

The MAE metric is suitable when outliers are considered irrelevant, as it uses the L1 norm, which limits 

the impact of extreme values and provides a balanced measure of average error. Consequently, MAE 

provides a stable and bounded performance measure for the model. However, if the test set contains many 

outliers, the model performance measured by MAE may become suboptimal [30]. The MAE formula is 

shown in equation (4). 

 

RMSE =  √
1

𝑚
∑ (𝑋𝑖 − 𝑌𝑖)

2𝑚
𝑖=1   (5)  

 

RMSE measures the square root of the average of the squared differences between predicted and actual 

values. Unlike MAE, RMSE assigns a greater penalty to large errors (outliers), making it more sensitive to 

extreme values. A lower RMSE value indicates that the model's predictions are more accurate [30]. The 

RMSE formula is shown in equation (5).  
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MAPE =
1

𝑚
∑ |

𝑌𝑖−𝑋𝑖

𝑌𝑖
| 𝑥100𝑚

𝑖= 1  (6) 

 

MAPE is a regression performance metric with an intuitive interpretation in terms of relative error. Due to 

its definition, it is recommended for cases where sensitivity to relative changes is more important than 

sensitivity to absolute change [30]. The MAPE formula is shown in equation (6). 

 

R2 =  1 −
∑ |𝑋𝑖−𝑌𝑖|2𝑚

𝑖=1

∑ |𝑌̅−𝑌𝑖|𝑚
𝑖=1

2  (7) 

 

The coefficient of determination represents the proportion of variance in the dependent variable that can be 

explained or predicted by the independent variables in the model [30]. The R2 formula is shown in equation 

(7). 

 

RESULT AND DISCUSSION 

This chapter presents the results from each stage of the research methodology, including exploratory data 

analysis, preprocessing, feature engineering, model training, feature importance, and performance 

evaluation. Each step is discussed to provide insight into its contribution to the final forecasting model.  

 

An initial data analysis process that aims to understand the characteristics, structure, and important 

components of the dataset. The decomposition of the daily cayenne market price time series into trend, 

seasonal, and residual components is presented in Figure 3. 

 

 
Figure 3. Time series decomposition of market prices into trend, seasonal, and residual components 

 

In Figure 3 shows the time series decomposition of daily cayenne market prices into trend, seasonal, and 

residual components. It can be seen that the market price trend experienced several phases of increase and 

decrease in the time span 2021 to 2024. The seasonal component exhibits a consistent and recurring pattern, 

indicating a distinct seasonal cycle. In contrast, the residual component displays relatively random 

variations, though without extreme fluctuations. These characteristics suggest that the cayenne pepper 

market price data contains identifiable patterns that can be further analyzed and modeled. The results of the 

ACF and PACF analyses of daily cayenne pepper market prices are presented in Figure 4. 
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Figure 4. ACF and PACF of market prices 

 

Based on Figure 4, the ACF plot displays several lags that exceed the confidence threshold, indicating the 

presence of total correlations, including indirect effects. In contrast, the PACF plot highlights the direct 

relationships between the variable and its lagged values. At a 95% confidence level, only lag 1 and lag 2 

are found to be statistically significant. Although lag 4 slightly surpasses the threshold, its contribution to 

the model is negligible. Consequently, lag 1 and lag 2 were selected as the most relevant features for further 

modeling. 

 

Prior to model training, a preprocessing stage was carried out to ensure data quality and consistency. 

Missing values in the price data were addressed using the forward-fill technique to maintain temporal 

continuity, while missing entries in the weather data were handled through interpolation to preserve natural 

temporal variations. The detailed preprocessing outcomes are summarized in Table 3. 

 

Table 3. Summary of Missing Value Handling Techniques for Price and Weather Data 

Before Missing Value Handling After Missing Value Handling 

Rainfall Producer Price Collector Price Market Price Rainfall Producer Price Collector Price Market Price 

0 32900 81000 97500 0 32900 81000 97500 

NaN NaN NaN NaN 0.3 32900 81000 97500 

NaN NaN NaN NaN 0.6 32900 81000 97500 

0.9 32900 81000 97500 0.9 32900 81000 97500 

 

Table 3 displays the dataset before and after the treatment of missing values. It is evident that missing 

entries in the rainfall data were addressed through interpolation, whereby NaN values were replaced with 

estimated values to maintain temporal consistency. In contrast, missing price data were handled using the 

forward-fill method to ensure continuity within the time series. 

 

Feature engineering was subsequently performed to enhance the model’s predictive capability by 

incorporating additional relevant variables, as summarized in Table 4. The engineered features include the 

SMA to smooth short-term fluctuations, lag variables to capture recent price dynamics, and seasonal 

indicators such as day, month, year, day of the year, and week of the year. In addition, dummy variables 
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were generated for national and religious holidays, and a “Days Until Event” feature was introduced to 

account for potential price increases preceding major holidays. 

 

Table 4. Feature Engineering Results 

Date ….. 
Market 

Price 
Day Month Year 

Day 

Of 

Year 

Week 

Of 

Year 

Lag 

1 

Lag 

2 

SMA 

2 

SMA 

3 
Holiday 

Days 

Until 

Event 

04-09-2021 ….. 35000 4 9 2021 246 35 30000 40000 35000 61666 False 27 

05-09-2021 ….. 40000 5 9 2021 247 35 35000 30000 32500 35000 False 26 

06-09-2021 ….. 45000 6 9 2021 248 35 40000 35000 37500 35000 False 25 

07-09-2021 ….. 40000 7 9 2021 249 35 45000 40000 42500 40000 False 24 

08-09-2021 ….. 35000 8 9 2021 250 35 40000 45000 42500 41666 False 23 

 

Each record in Table 4 is generated based on date and market price information. For example, on September 

4, 2021, the values for the Day, Month, and Year columns are directly derived as 4, 9, and 2021, 

respectively. The DayOfYear corresponds to the 246th day of the year, while the WeekOfYear represents 

the 35th week. The Lag 1 and Lag 2 columns contain price data from September 3 (30,000) and September 

2 (40,000), respectively. The SMA-2 value reflects the average of the preceding two days (35,000), whereas 

SMA-3 denotes the average price for September 3, 2, and 1 (61,666). The Public Holiday column is marked 

False, and the Days Until Event feature holds a value of 27, indicating the number of days remaining until 

the subsequent holiday. The XGBoost model was subsequently trained through a structured procedure, 

commencing with hyperparameter optimization via the Grid Search method to determine the optimal 

parameter configuration, as summarized in Table 5. 

 

Table 5. Hyperparameter Tuning Results for XGBoost Model 

Feature Combination Parameters 

Without Feature 

Engineering 

alpha: 0, gamma: 0.0, lambda: 3, learning_rate: 0.05, max_depth: 4, 

min_child_weight: 4, n_estimators: 100, subsample: 0.5 

1 Feature (Lag) 

alpha: 2, gamma: 0.0, lambda: 1, learning_rate: 0.05, max_depth: 4, 

min_child_weight: 1, n_estimators: 200, subsample: 0.7 

2 Feature (Lag + SMA) 

alpha: 2, gamma: 0.1, lambda: 1, learning_rate: 0.07, max_depth: 4, 

min_child_weight: 2, n_estimators: 100, subsample: 0.7 

3 Feature (Lag + SMA + 

Holiday) 

alpha: 0, gamma: 0.0, lambda: 1, learning_rate: 0.07, max_depth: 3, 

min_child_weight: 2, n_estimators: 200, subsample: 0.8 

4 Feature (All Feature 

Engineering) 

alpha: 0, gamma: 0.3, lambda: 1, learning_rate: 0.05, max_depth: 3, 

min_child_weight: 3, n_estimators: 200, subsample: 0.6 

 

Grid search was conducted separately for each feature combination, starting from the raw data (no feature 

engineering) to the inclusion of one to four engineered features. The optimal combination of 

hyperparameters for each feature group was determined based on cross-validation results, as presented in 

Table 5. After identifying the best configuration, the model was retrained using the complete training 

dataset and subsequently evaluated on the test set to assess its overall performance. 

 

Next, we tried combinations of 1 to 4 features, including Lag, SMA, Seasonal, and Holidays in Table 6 to 

see their effect on model improvement. The features used in these combinations are the result of the 
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previous feature engineering process, and each combination was paired with optimal hyperparameters 

identified through grid search as detailed in Table 5. 

 

Table 6. Model Performance with Different Feature Combinations 

Feature Combination MAE RMSE MAPE R2 

Without Feature Engineering 7020 9316 10.59% 0.4808 

1 Feature 2154 3007 3.54% 0.9460 

2 Feature 1978 2753 3.14% 0.9547 

3 Feature 1978 2734 3.16% 0.9553 

4 Feature 1921 2672 2.96% 0.9573 

 

All combination results are shown in Table 6. The initial model without engineered features only produced 

an R² value of 0.4808. The addition of one Lag feature improved the model performance, with the R² 

reaching 0.9460 and the MAPE decreasing to 3.54%. The combination of 2 features (Lag and SMA) 

produced an R² of 0.9547, then slightly increased for 3 features (Lag, SMA, and Public Holiday) with an 

R² of 0.9553. The best overall model was obtained with a combination of four features, namely Lag, SMA, 

Seasonal, and Public Holiday, with the highest R² value of 0.9573 and the lowest MAPE of 2.96%. 

Therefore, the final model utilized a combination of these four feature groups, as this configuration provided 

the highest accuracy and offered more comprehensive information coverage for capturing seasonal patterns 

and the influence of public holidays. 

 

After the training process was completed, the model was further analyzed to determine the most influential 

features in predicting cayenne pepper prices. This analysis, illustrated in Figure 5, highlights the variables 

that contributed most significantly to model performance and were most frequently used during training. 

 

 
Figure 5. Feature Importance 

 

As illustrated in Figure 5, Lag_1 emerges as the most influential feature, aligning with fundamental 

principles of time-series forecasting, wherein past observations (particularly the previous day’s price) serve 

as strong predictors of future values. Collector Price ranks second, reflecting the influence of price 

transmission within the distribution chain on market-level pricing. Temperature follows, underscoring the 

direct effect of weather conditions on harvest quality and supply stability. Temporal features such as Day 

and Days Until Event also contribute significantly, indicating short-term seasonal variations and price 

surges preceding public holidays.  
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Other weather-related variables, including Rainfall and Humidity, remain relevant due to their impact on 

cayenne pepper production and transportation logistics. Additional factors such as MovingAverage_3, 

Lag_2, and Producer Price provide further insights into market dynamics. Meanwhile, time-based features 

such as WeekOfYear, DayOfYear, Month, and Year exhibit smaller yet meaningful contributions, enabling 

the model to capture broader seasonal and annual patterns. 

 

To evaluate the impact of feature engineering on model performance, a comparative analysis was conducted 

between a baseline model without engineered features and an enhanced model incorporating four 

engineered features (Lag, SMA, Seasonality, and Holiday) as summarized in Table 7. 

 

Table 7. Model Performance Comparison with and without Feature Engineering 

Feature Combination MAE RMSE MAPE R2 

Without Feature Engineering 7020 9316 10.59% 0.4808 

With Feature Engineering 1921 2672 2.96% 0.9573 

 

As shown in Table 7, feature engineering markedly improved the model’s forecasting accuracy. The R² 

value rose from 0.4808 to 0.9573, representing a 99.10% improvement in explained variance. Meanwhile, 

MAE, RMSE, and MAPE decreased by 72.63%, 71.31%, and 72.04%, respectively, showing a substantial 

reduction in forecasting errors and a notable boost in model performance. 

 

 
Figure 6. Actual vs. Forecasted Daily Cayenne Market Prices 

 

The visualization presented in Figure 6 illustrates that the forecast line closely tracks actual price 

movements, particularly during peak periods. The model effectively captures price surges while 

maintaining stability during normal price intervals. The narrow gap between the predicted and actual lines 

demonstrates that the model successfully learns both short-term fluctuations and seasonal trends. These 

findings confirm that the application of feature engineering substantially improves the predictive accuracy 

of the XGBoost model for daily cayenne pepper prices in Bandung. The integration of lag features, SMA, 

seasonal indicators, and holiday variables enables the model to more effectively capture short-term 

variations, recurring seasonal cycles, and the influence of special events. 

 

In comparison with prior studies, these findings further validate the superiority of XGBoost combined with 

feature engineering over traditional time-series models. For example, [11] demonstrated that XGBoost with 

engineered features outperformed ARIMA, LSTM, and Prophet in sales forecasting. Similarly, [14] 

employed XGBoost for rice price prediction in Indonesia but primarily focused on generating forecasts 

without evaluating performance on test data, thereby limiting the comparability of the results. In contrast, 
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[13] applied feature engineering for cayenne pepper price forecasting using market data from several 

traditional markets in DKI Jakarta; however, that study excluded external factors such as weather conditions 

and multi-level price structures. Additionally, the lag selection procedure in [13] was not clearly defined, 

indicating a non-systematic approach. Although that study achieved a relatively high R² value of 0.92, the 

inclusion of comprehensive external variables and a systematic lag selection process in this research 

resulted in even greater accuracy (R² = 0.9573) and improved generalization capability. 

 

The identification of Lag_1 as the most influential variable reinforces the time-series principle that recent 

historical values exert a strong influence on future price movements. Furthermore, upstream price levels 

(collector and producer) and weather-related variables contributed substantially to forecasting accuracy, 

underscoring the importance of incorporating multi-source data in agricultural price modeling. Overall, the 

proposed model exhibits both technical robustness and practical applicability within agricultural supply 

chain management, serving as an effective tool for mitigating price volatility in strategic food commodities. 

Its combination of high predictive accuracy and contextual relevance positions it as a valuable component 

for integration into decision-support systems within the horticultural sector. 

 

CONCLUSION 

The findings of this study indicate that the application of feature engineering significantly enhances the 

forecasting performance of the XGBoost model for cayenne pepper prices. Through hyperparameter 

optimization using the Grid Search method, the optimal parameter configuration was determined to include 

alpha = 0, gamma = 0.3, lambda = 1, a learning rate of 0.05, maximum depth of 3, minimum child weight 

of 3, 200 estimators, and a subsample ratio of 0.6. The integration of Lag, SMA, Seasonal, and Public 

Holiday features effectively captured short-term fluctuations and recurring seasonal dynamics influencing 

price behavior. Model evaluation revealed a substantial improvement in predictive accuracy and a 

significant reduction in forecasting errors, as reflected by an increase in the R² value of 99.10% (from 

0.4808 to 0.9573), alongside decreases in MAE, RMSE, and MAPE by 72.63%, 71.31%, and 72.04%, 

respectively. Feature importance analysis identified Lag_1 as the most influential variable, followed by 

Collector Price, Temperature, Day, and Days Until Event. Collectively, these results confirm that the 

application of feature engineering techniques considerably strengthens predictive performance and provides 

a practical framework for addressing price volatility in strategic food commodities in Indonesia. Future 

research could extend this framework by incorporating additional external variables such as transportation 

costs and market demand indicators, as well as by validating the model across other regions or commodities 

to assess its generalizability. 
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