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Abstract.

Purpose: Cayenne pepper represents one of Indonesia’s key horticultural commodities, widely utilized in both household culinary
practices and the food processing industry. Nevertheless, its market price is subject to considerable volatility, driven by factors such
as weather variability, limited supply, production costs, and inefficiencies in distribution systems. This price instability generates
uncertainty that adversely impacts farmers, traders, and consumers. Consequently, the development of a reliable price forecasting
model is crucial to facilitate price stabilization and enable data-driven decision-making across the supply chain. This study aims to
investigate the extent to which feature engineering techniques can enhance the predictive performance of the Extreme Gradient
Boosting (XGBoost) algorithm in forecasting cayenne pepper prices. Through the integration of lag features, moving averages, and
seasonal indicators, the proposed model is expected to more effectively capture market dynamics and provide a robust analytical tool
for relevant stakeholders.

Methods: The forecasting model was constructed using the XGBoost algorithm in combination with various feature engineering
methods. The dataset consists of daily price records obtained from Bank Indonesia’s PIHPS system and meteorological variables
sourced from BMKG, encompassing the period between 2021 and 2024. The engineered features include lag variables identified
through Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) analyses, Simple Moving Averages (SMA),
seasonal indicators, and holiday-related variables designed to capture recurring patterns and event-driven price fluctuations. To
enhance predictive performance, hyperparameter tuning was conducted using a grid search optimization approach.

Result: The optimal model demonstrated substantial performance improvements under the following hyperparameter configuration:
alpha =0, gamma = 0.3, lambda = 1, learning_rate = 0.05, max_depth =3, min_child_weight = 3, n_estimators = 200, and subsample
= 0.6. The application of feature engineering markedly enhanced the model’s predictive capability, increasing the R? value by 99.10%
while reducing the MAE, RMSE, and MAPE by 72.63%, 71.31%, and 72.04%, respectively. These outcomes signify a notable
reduction in forecasting errors and demonstrate the model’s improved accuracy.

Novelty: This study integrates multi-level price data with weather and holiday-related features, employing the ACF and the PACF
analyses to determine optimal lag values (techniques commonly utilized in statistical modeling). This integration enhances both the
accuracy and interpretability of the XGBoost algorithm, thereby providing a practical and effective tool for agricultural price
forecasting and market planning.
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INTRODUCTION

Chili represents one of the principal commodities within Indonesia’s horticultural sub-sector, where
maintaining supply and price stability is vital to the national economy. The prices of red and cayenne chili
are notably volatile, contributing 0.15% and 0.05% to national inflation in 2019, respectively [1]. Such
volatility generates adverse conditions for the agribusiness sector, as unpredictable price movements
heighten financial risks for both farmers and traders. For smallholder farmers, these fluctuations pose even
greater challenges due to limited access to reliable market information, inadequate storage infrastructure,
and restricted flexibility in adjusting sales timing to obtain favorable prices [2]. Consequently, income
instability discourages sustained investment and long-term planning in chili cultivation [3].

Cayenne pepper, in particular, is among the most extensively utilized spices in Indonesian households and
the food processing industry. However, its production instability contrasts with the steadily increasing per
capita consumption driven by population growth [4],[5]. Based on PIHPS data, the average price of cayenne
pepper in Bandung City reached Rp 97,500 per kilogram between January and November 2024,
highlighting the market’s sensitivity to both production and distribution dynamics. Several factors
contribute to this volatility, including limited supply, climate variability, rising production costs, and the
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intricate structure of the distribution network [6],[7]. These factors are reflected in the dataset employed in
this study, which comprises price data from various market levels (producer, collector, and retail) alongside
daily weather variables such as temperature, humidity, and rainfall. Disruptions in production can trigger
sharp price increases, whereas oversupply and weak demand may lead to price declines, ultimately
undermining farmers’ economic well-being [8],[9].

Under these circumstances, developing an accurate price forecasting model is crucial to facilitate informed
decision-making and promote market stability. Machine learning algorithms (particularly the XGBoost
model) have recently gained prominence due to their capability to capture nonlinear patterns and complex
interdependencies within data. However, to attain optimal performance in time-series forecasting, these
models require robust feature engineering processes to transform raw temporal data into structured inputs
suitable for supervised learning [10].

Previous studies [11] have demonstrated that the XGBoost algorithm outperforms traditional time-series
models such as ARIMA, LSTM, Prophet, and Gradient Boosting Decision Tree (GBDT), especially when
augmented with feature engineering techniques. Zhang et al. (2021) further substantiated these findings,
showing that XGBoost consistently achieved superior forecasting accuracy in sales volume prediction when
feature engineering was applied. Their experiments revealed that XGBoost attained lower RMSE and MAE
values while requiring fewer iterations than GBDT, indicating higher predictive precision and greater
computational efficiency in processing time-dependent data influenced by external variables such as
weather and temperature.

Compared with conventional time-series models like ARIMA, LSTM, Prophet, and GBDT, XGBoost
effectively captures nonlinear dynamics and accommodates multivariate inputs. The results of Zhang et al.
(2021) reaffirm this capability, demonstrating that XGBoost delivers enhanced accuracy with fewer training
iterations than GBDT, thereby confirming its efficiency. These advantages render XGBoost particularly
suitable for this study, as cayenne pepper prices often exhibit irregular, seasonal, and weather-dependent
fluctuations that can be more accurately represented through engineered features such as lag variables,
moving averages, and temperature indicators.

Li (2023) also demonstrated that XGBoost attains higher predictive accuracy than LSTM in stock price
forecasting, thereby reinforcing its reliability across various forecasting domains [12]. Similarly, a study
on cayenne pepper prices in Jakarta implemented feature engineering techniques using market data from
several traditional markets in DKI Jakarta; however, it excluded external variables such as weather
conditions and multi-level price structures [13]. In that study, the procedure for selecting lag features was
not explicitly described, although the model achieved a notable R? value of 0.92. Another investigation [14]
utilized XGBoost with feature engineering to forecast rice prices in Indonesia and reported strong predictive
performance, yet the analysis remained limited to price-based features without incorporating additional
influencing factors. Several other studies have drawn comparable conclusions, highlighting that XGBoost
offers a robust foundation for applying machine learning methods to enhance market forecasting accuracy
and to formulate effective pricing strategies [15].

Given the persistent volatility of cayenne pepper prices and the multitude of factors influencing them, this
study employs the XGBoost algorithm, recognized for its precision and robustness in modeling complex,
nonlinear relationships. To improve model performance and uncover essential price dynamics, various
feature engineering techniques are incorporated, including seasonal variables (month and day) to capture
recurring temporal patterns, SMA to mitigate short-term fluctuations, lag features to represent historical
dependencies, and holiday indicators to account for the effects of special events.

Although previous studies have incorporated external factors such as weather conditions into price
forecasting, many have not integrated these variables within a comprehensive feature engineering
framework. Conversely, research employing XGBoost with feature engineering has seldom included
external influences. Moreover, while lag features are frequently utilized in time-series forecasting, earlier
studies often neglected the critical process of determining the optimal lag period (the key factor in capturing
temporal dependencies and enhancing model accuracy) [16].

To overcome these limitations, this study employs a comprehensive dataset that integrates multi-level
cayenne pepper price data (producer, collector, and market) with external variables such as temperature,
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humidity, rainfall, and public holidays. Multiple feature engineering techniques are applied, including
seasonal variables, SMA, lag features, and event-based indicators. The novelty of this research lies in the
determination of optimal lag periods through ACF and PACF analyses (methods traditionally employed in
statistical models such as ARIMA but rarely applied to XGBoost) based forecasting.

The primary objective of this study is to develop an accurate and interpretable model for forecasting
cayenne pepper prices in Bandung. The proposed model is expected to offer valuable insights for
agricultural planning, risk management, and policy decision-making related to market regulation and supply
chain operations.

METHODS

The model’s performance was assessed through a systematic workflow beginning with data collection and
preprocessing to ensure dataset reliability and consistency. Subsequently, feature engineering techniques
were employed to construct informative variables, while lag values were identified using the ACF and the
PACF analyses to determine the most significant historical dependencies. The engineered features
generated from these processes were then utilized to train the XGBoost model. Finally, model performance
was evaluated using multiple metrics to assess predictive accuracy and overall effectiveness. The complete
business process framework is illustrated in Figure 1.
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Figure 1. Research Flow

Data Collection

The dataset used in this study is secondary data which includes cayenne pepper price data and external
factors. Cayenne pepper price data is obtained from the National Strategic Food Price Information Center
(PIHPS) (https://www.bi.go.id/hargapangan), a platform managed by Bank Indonesia, for the period
January 2021 to December 2024. External factors such as temperature, humidity, and rainfall are taken
from the BMKG Online Data website (https://dataonline.bmkg.go.id/beranda).
The data is recorded on a daily basis, resulting in 1,097 observations over the four-year period.
After preprocessing and feature engineering, the dataset contains 15 variables including multi-level price
data (producer, collector, market) and engineered features such as seasonal indicators, simple moving
averages (SMA), lag features, and holiday indicators. Table 1 depicts a data set containing 1,097 entries
and 15 variables, along with their complete descriptions presented in Table 2.

Table 1. Dataset

Date Temperature ~ Humidity = Rainfall  Producer Prices  Collector Prices ~ Market Prices
2021-09-01 12400 18000 30000 24.5 71 0
2021-09-01 12400 17000 30000 24.1 69 0
2024-09-01 38400 34000 57500 26.1 74 0
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Table 2. Description of dataset attributes

No Attribute Description Source
1 Date Observation date PIHPS/BMKG
2 Temperature Daily average temperature (°C) BMKG
3 Humidity Daily average relative humidity (%) BMKG
4 Rainfall Daily total rainfall (mm) BMKG
5 Producer Prices Daily cayenne price at producer level (IDR/kg) PIHPS
6 Collector Prices  Daily cayenne price at the collector level (IDR/kg) PIHPS
7 Market Prices Daily cayenne price at retail market level (IDR/kg) PIHPS
Autocorrelation

Observations in a time series are often correlated with previous observations, making them non-
independent. This relationship is known as autocorrelation or serial correlation. As mentioned, a time series
with autocorrelation does not meet the assumptions of standard regression analysis. The ACF is used to
check whether the data is stationary and to measure autocorrelation. The ACF displays the correlation
between each data point and its previous values at various time intervals (lags), where lag indicates the
number of time intervals between two observations. In addition to the ACF, there is also the PACF, which
measures the correlation between the current observation and the observation at a specific lag after
removing the influence of correlations from shorter lags. For example, the PACF at lag 4 shows the
correlation between the value of Y; and the value at lag 4 (Y;_,) after controlling for the influence of lags 1
through 3 (Y;—4, Y;—5, Y;—3) [17].

Preprocessing

Data preprocessing constitutes the preliminary stage of data analysis and machine learning model
development. Its primary objective is to clean, transform, and prepare the dataset to ensure it can be
effectively utilized by the algorithm. This stage is crucial, as real-world data frequently contains missing
values, inconsistencies, and noise that may compromise model accuracy. Common preprocessing activities
include managing missing data, removing irrelevant or redundant features, converting categorical variables
into numerical representations, and detecting and eliminating outliers [18].

Feature Engineering

Feature engineering refers to the process of modifying or creating new features from raw data to enhance
the quality of data representation during model training. The primary goal of this process is to enrich the
dataset, thereby enabling the model to identify underlying patterns and relationships more effectively [19].
By incorporating relevant information from historical observations, feature engineering allows models such
as XGBoost to capture temporal trends with higher precision [19].

Because most machine learning algorithms cannot be directly applied to time-series data, a common
strategy involves transforming the data into a feature vector format that can be processed by conventional
predictive models. Constructing this representation is a critical step in time-series learning and exerts a
substantial influence on model performance. Although manual feature generation can be complex and time-
intensive, effective feature engineering remains essential for enhancing forecasting accuracy [20].

In this study, several feature engineering techniques were employed, including lag features, SMA, seasonal
indicators, and holiday-based features. Moreover, the optimal lag period was determined using the ACF
and the PACF analyses to ensure that the most relevant historical dependencies were accurately captured.

Extreme Gradient Boosting (XGBoost)

Extreme Gradient Boosting, commonly known as XGBoost, is a machine learning algorithm widely applied
to both classification and regression problems. It employs a tree-boosting approach that enables the creation
of highly flexible and complex predictive models through specific parameter settings and configurations.
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The working principle of XGBoost is similar to that of other Gradient Boosting methods, in which multiple
weak learners are combined iteratively to form a stronger and more accurate ensemble model, as shown in
Figure 2. The purpose of this combination is to improve performance through gradual training. The
prediction results from the previous model, known as residuals or errors, are used as evaluation material to
enhance model performance [21].
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Figure 2. Extreme Gradient Boosting (XGBoost)

The fundamental difference between Extreme Gradient Boosting and the standard Gradient Boosting
algorithm is that XGBoost uses a more structured regularization model formalization to control overfitting,
which can provide better model performance. In regression, the objective function is used to reduce
prediction errors and minimize the loss function and regularization term, as shown in Equation (1):

0bj(0) = Xk, L(fi) + Xk, Q(fio) (1)

Where Zszkl L(fy) is a loss function and Z;rzkl Q(fy) is a regulatory term.

The loss function is used to measure the error of a model in predicting data, so that it can be determined
whether the model can predict accurately. The formula for the loss function is described in Equation (2).
Here, Gjx is the first-order gradient statistic of the loss function (sum of gradients), Hjx is the second-order
gradient statistic of the loss function (sum of Hessians), and Wj is the weight.

L(fy) = Z}T-L [ijij + %ijijz] (2

The regulation term serves to control how complex the model is. The regularization term applies a penalty
mechanism to control model complexity, helping the model prevent overfitting and maintain generalization
performance. The details of the regularization formula are presented in Equation (3), where T denotes the
total number of leaves in the constructed tree, W represents the weight assigned to each leaf, and vy, A, and
a are constant coefficients that regulate model flexibility.

Tk

1 T
Q(fk) = ka +E A Zj1=c1 szk + a21=1|Vij| (3)

Hyperparameter Tuning

Hyperparameter tuning represents a critical phase in the machine learning pipeline, as it significantly affects
a model’s performance and generalization capability. In contrast to model parameters, which are
automatically learned during training, hyperparameters are predefined values that control the model’s
overall structure and complexity. The tuning process entails evaluating various combinations of
hyperparameters to identify the configuration that delivers optimal performance for a specific task. Proper
hyperparameter optimization helps balance bias and variance, thereby mitigating the risks of overfitting
and underfitting while enhancing predictive accuracy.

Automated optimization approaches such as grid search, random search, and Bayesian optimization have
gained widespread adoption in modern machine learning due to their efficiency in streamlining the tuning
process [22]. Effective hyperparameter optimization provides substantial benefits for researchers, data
analysts, and industry practitioners by ensuring that models operate at their full potential [23].
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In this study, the Grid Search method was employed for hyperparameter optimization. This approach
systematically examines all possible combinations of hyperparameter values within predefined ranges,
generating a grid of candidate configurations. For each combination, the model is trained and validated to
identify the settings that yield the highest predictive performance [24], [25]. Grid Search is particularly
advantageous when the search space is relatively limited and precise optimization is required to achieve
high model accuracy.

Feature Importance

Identifying the most influential features within a model is fundamental to understanding its predictive
mechanisms and interpreting its overall behavior. Feature importance (also referred to as feature detection,
feature attribution, or model interpretability) is closely aligned with the statistical concepts of estimation
and attribution. This approach assigns a numerical value or metric to each feature, enabling the ranking of
features based on their contribution to the model’s predictive performance. Such rankings are typically
derived by systematically permuting feature values and measuring the corresponding decline in predictive
accuracy. Through this process, each feature receives an importance score that facilitates direct comparison
[26].

In the XGBoost framework, feature importance can be assessed using three primary metrics: weight, gain,
and cover. Weight denotes the frequency with which a feature is used to split data across all trees in the
model. Gain represents the average improvement in model accuracy resulting from splits involving that
feature, while cover reflects the average number of observations affected by those splits. Collectively, these
metrics provide a comprehensive understanding of the relative influence of each feature on the model’s
predictive outcomes [27].

Time Series Forecasting
Time series forecasting is the process of estimating future values with the highest possible accuracy based
on patterns extracted from past observations. This approach not only relies on historical data but also
incorporates relevant external information, such as anticipated events or conditions that may influence
future patterns [28],[29]. Time series data has several characteristics, such as:

1) Trend: A consistent long-term upward or downward movement observed across data points.

2) Seasonal: Recurring patterns that repeat over fixed intervals, such as monthly or yearly cycles.

3) Cyclical: Fluctuations that occur over longer periods, often associated with transitions between

different phases, as seen in business cycles.
4) Random Variate: Irregular variations that cannot be predicted and are often treated as noise.

Evaluation

The model’s forecasting performance was evaluated using several metrics, including Root Mean Square
Error (RMSE), Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), and the
Coefficient of Determination (R?). These metrics were used to assess the model’s accuracy on the test
dataset and to provide a comprehensive evaluation of its predictive capability.

1
MAE = ~ 37 |X; - ;| 4)

The MAE metric is suitable when outliers are considered irrelevant, as it uses the L1 norm, which limits
the impact of extreme values and provides a balanced measure of average error. Consequently, MAE
provides a stable and bounded performance measure for the model. However, if the test set contains many
outliers, the model performance measured by MAE may become suboptimal [30]. The MAE formula is
shown in equation (4).

RMSE = |- 3L, (X; = Y2 5)

RMSE measures the square root of the average of the squared differences between predicted and actual
values. Unlike MAE, RMSE assigns a greater penalty to large errors (outliers), making it more sensitive to
extreme values. A lower RMSE value indicates that the model's predictions are more accurate [30]. The
RMSE formula is shown in equation (5).
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MAPE is a regression performance metric with an intuitive interpretation in terms of relative error. Due to
its definition, it is recommended for cases where sensitivity to relative changes is more important than
sensitivity to absolute change [30]. The MAPE formula is shown in equation (6).

_ Tim a1 Xi=v?

RZ =1
-yl

()

The coefficient of determination represents the proportion of variance in the dependent variable that can be
explained or predicted by the independent variables in the model [30]. The R? formula is shown in equation

).

RESULT AND DISCUSSION

This chapter presents the results from each stage of the research methodology, including exploratory data
analysis, preprocessing, feature engineering, model training, feature importance, and performance
evaluation. Each step is discussed to provide insight into its contribution to the final forecasting model.

An initial data analysis process that aims to understand the characteristics, structure, and important
components of the dataset. The decomposition of the daily cayenne market price time series into trend,
seasonal, and residual components is presented in Figure 3.
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Figure 3. Time series decomposition of market prices into trend, seasonal, and residual components

In Figure 3 shows the time series decomposition of daily cayenne market prices into trend, seasonal, and
residual components. It can be seen that the market price trend experienced several phases of increase and
decrease in the time span 2021 to 2024. The seasonal component exhibits a consistent and recurring pattern,
indicating a distinct seasonal cycle. In contrast, the residual component displays relatively random
variations, though without extreme fluctuations. These characteristics suggest that the cayenne pepper
market price data contains identifiable patterns that can be further analyzed and modeled. The results of the
ACF and PACEF analyses of daily cayenne pepper market prices are presented in Figure 4.
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Figure 4. ACF and PACF of market prices

Based on Figure 4, the ACF plot displays several lags that exceed the confidence threshold, indicating the
presence of total correlations, including indirect effects. In contrast, the PACF plot highlights the direct
relationships between the variable and its lagged values. At a 95% confidence level, only lag 1 and lag 2
are found to be statistically significant. Although lag 4 slightly surpasses the threshold, its contribution to
the model is negligible. Consequently, lag 1 and lag 2 were selected as the most relevant features for further
modeling.

Prior to model training, a preprocessing stage was carried out to ensure data quality and consistency.
Missing values in the price data were addressed using the forward-fill technique to maintain temporal
continuity, while missing entries in the weather data were handled through interpolation to preserve natural
temporal variations. The detailed preprocessing outcomes are summarized in Table 3.

Table 3. Summary of Missing Value Handling Techniques for Price and Weather Data

Before Missing Value Handling After Missing Value Handling

Rainfall ~ Producer Price  Collector Price  Market Price  Rainfall  Producer Price  Collector Price ~ Market Price

0 32900 81000 97500 0 32900 81000 97500
NaN NaN NaN NaN 0.3 32900 81000 97500
NaN NaN NaN NaN 0.6 32900 81000 97500

0.9 32900 81000 97500 0.9 32900 81000 97500

Table 3 displays the dataset before and after the treatment of missing values. It is evident that missing
entries in the rainfall data were addressed through interpolation, whereby NaN values were replaced with
estimated values to maintain temporal consistency. In contrast, missing price data were handled using the
forward-fill method to ensure continuity within the time series.

Feature engineering was subsequently performed to enhance the model’s predictive capability by
incorporating additional relevant variables, as summarized in Table 4. The engineered features include the
SMA to smooth short-term fluctuations, lag variables to capture recent price dynamics, and seasonal
indicators such as day, month, year, day of the year, and week of the year. In addition, dummy variables
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were generated for national and religious holidays, and a “Days Until Event” feature was introduced to
account for potential price increases preceding major holidays.

Table 4. Feature Engineering Results
Day Week Days

Date e Ma'rket Day Month Year Of of Lag Lag SMA— SMA Holiday  Until
Price 1 2 2 3

Year  Year Event

04-09-2021 ..... 35000 4 9 2021 246 35 30000 40000 35000 61666 False 27
05-09-2021 ..... 40000 5 9 2021 247 35 35000 30000 32500 35000 False 26
06-09-2021 ..... 45000 6 9 2021 248 35 40000 35000 37500 35000 False 25
07-09-2021 ..... 40000 7 9 2021 249 35 45000 40000 42500 40000 False 24
08-09-2021 ..... 35000 8 9 2021 250 35 40000 45000 42500 41666 False 23

Each record in Table 4 is generated based on date and market price information. For example, on September
4, 2021, the values for the Day, Month, and Year columns are directly derived as 4, 9, and 2021,
respectively. The DayOfYear corresponds to the 246™ day of the year, while the WeekOfYear represents
the 35" week. The Lag 1 and Lag 2 columns contain price data from September 3 (30,000) and September
2 (40,000), respectively. The SMA-2 value reflects the average of the preceding two days (35,000), whereas
SMA-3 denotes the average price for September 3, 2, and 1 (61,666). The Public Holiday column is marked
False, and the Days Until Event feature holds a value of 27, indicating the number of days remaining until
the subsequent holiday. The XGBoost model was subsequently trained through a structured procedure,
commencing with hyperparameter optimization via the Grid Search method to determine the optimal
parameter configuration, as summarized in Table 5.

Table 5. Hyperparameter Tuning Results for XGBoost Model

Feature Combination Parameters
Without Feature alPha: Q, gamn?a: 0.0, lambfia: 3, learning_rate: 0.05, max_depth: 4,
. . min_child weight: 4, n_estimators: 100, subsample: 0.5
Engineering
alpha: 2, gamma: 0.0, lambda: 1, learning_rate: 0.05, max_depth: 4,
1 Feature (Lag) min_child_weight: 1, n_estimators: 200, subsample: 0.7

alpha: 2, gamma: 0.1, lambda: 1, learning_rate: 0.07, max_depth: 4,
2 Feature (Lag + SMA) min_child weight: 2, n_estimators: 100, subsample: 0.7

alpha: 0, gamma: 0.0, lambda: 1, learning_rate: 0.07, max_depth: 3,

3 Feature (Lag + SMA + . . . .
min_child weight: 2, n_estimators: 200, subsample: 0.8

Holiday)

alpha: 0, gamma: 0.3, lambda: 1, learning_rate: 0.05, max_depth: 3,

4 Feature (All Feature
( . min_child_weight: 3, n_estimators: 200, subsample: 0.6

Engineering)

Grid search was conducted separately for each feature combination, starting from the raw data (no feature
engineering) to the inclusion of one to four engineered features. The optimal combination of
hyperparameters for each feature group was determined based on cross-validation results, as presented in
Table 5. After identifying the best configuration, the model was retrained using the complete training
dataset and subsequently evaluated on the test set to assess its overall performance.

Next, we tried combinations of 1 to 4 features, including Lag, SMA, Seasonal, and Holidays in Table 6 to
see their effect on model improvement. The features used in these combinations are the result of the

Scientific Journal of Informatics, Vol. 12, No. 4, Nov 2025 | 659



previous feature engineering process, and each combination was paired with optimal hyperparameters
identified through grid search as detailed in Table 5.

Table 6. Model Performance with Different Feature Combinations

Feature Combination MAE RMSE MAPE R?

Without Feature Engineering 7020 9316 10.59% 0.4808
1 Feature 2154 3007 3.54% 0.9460
2 Feature 1978 2753 3.14% 0.9547
3 Feature 1978 2734 3.16% 0.9553
4 Feature 1921 2672 2.96% 0.9573

All combination results are shown in Table 6. The initial model without engineered features only produced
an R? value of 0.4808. The addition of one Lag feature improved the model performance, with the R?
reaching 0.9460 and the MAPE decreasing to 3.54%. The combination of 2 features (Lag and SMA)
produced an R? of 0.9547, then slightly increased for 3 features (Lag, SMA, and Public Holiday) with an
R? 0f 0.9553. The best overall model was obtained with a combination of four features, namely Lag, SMA,
Seasonal, and Public Holiday, with the highest R? value of 0.9573 and the lowest MAPE of 2.96%.
Therefore, the final model utilized a combination of these four feature groups, as this configuration provided
the highest accuracy and offered more comprehensive information coverage for capturing seasonal patterns
and the influence of public holidays.

After the training process was completed, the model was further analyzed to determine the most influential

features in predicting cayenne pepper prices. This analysis, illustrated in Figure 5, highlights the variables
that contributed most significantly to model performance and were most frequently used during training.

Feature Importance of XGBoost Model
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o 50 100 150 200 250 300 350
F Score

Figure 5. Feature Importance

As illustrated in Figure 5, Lag 1 emerges as the most influential feature, aligning with fundamental
principles of time-series forecasting, wherein past observations (particularly the previous day’s price) serve
as strong predictors of future values. Collector Price ranks second, reflecting the influence of price
transmission within the distribution chain on market-level pricing. Temperature follows, underscoring the
direct effect of weather conditions on harvest quality and supply stability. Temporal features such as Day
and Days Until Event also contribute significantly, indicating short-term seasonal variations and price
surges preceding public holidays.
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Other weather-related variables, including Rainfall and Humidity, remain relevant due to their impact on
cayenne pepper production and transportation logistics. Additional factors such as MovingAverage 3,
Lag 2, and Producer Price provide further insights into market dynamics. Meanwhile, time-based features
such as WeekOfYear, DayOfYear, Month, and Year exhibit smaller yet meaningful contributions, enabling
the model to capture broader seasonal and annual patterns.

To evaluate the impact of feature engineering on model performance, a comparative analysis was conducted
between a baseline model without engineered features and an enhanced model incorporating four

engineered features (Lag, SMA, Seasonality, and Holiday) as summarized in Table 7.

Table 7. Model Performance Comparison with and without Feature Engineering

Feature Combination MAE RMSE MAPE R?

Without Feature Engineering 7020 9316 10.59%  0.4808

With Feature Engineering 1921 2672 2.96%  0.9573

As shown in Table 7, feature engineering markedly improved the model’s forecasting accuracy. The R?
value rose from 0.4808 to 0.9573, representing a 99.10% improvement in explained variance. Meanwhile,
MAE, RMSE, and MAPE decreased by 72.63%, 71.31%, and 72.04%, respectively, showing a substantial
reduction in forecasting errors and a notable boost in model performance.

Actual and forecasted market prices

— Actual
— Forecast

80000

0000 4

Market Prices

60000

50000

Figure 6. Actual vs. Forecasted Daily Cayenne Market Prices

The visualization presented in Figure 6 illustrates that the forecast line closely tracks actual price
movements, particularly during peak periods. The model effectively captures price surges while
maintaining stability during normal price intervals. The narrow gap between the predicted and actual lines
demonstrates that the model successfully learns both short-term fluctuations and seasonal trends. These
findings confirm that the application of feature engineering substantially improves the predictive accuracy
of the XGBoost model for daily cayenne pepper prices in Bandung. The integration of lag features, SMA,
seasonal indicators, and holiday variables enables the model to more effectively capture short-term
variations, recurring seasonal cycles, and the influence of special events.

In comparison with prior studies, these findings further validate the superiority of XGBoost combined with
feature engineering over traditional time-series models. For example, [11] demonstrated that XGBoost with
engineered features outperformed ARIMA, LSTM, and Prophet in sales forecasting. Similarly, [14]
employed XGBoost for rice price prediction in Indonesia but primarily focused on generating forecasts
without evaluating performance on test data, thereby limiting the comparability of the results. In contrast,
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[13] applied feature engineering for cayenne pepper price forecasting using market data from several
traditional markets in DKI Jakarta; however, that study excluded external factors such as weather conditions
and multi-level price structures. Additionally, the lag selection procedure in [13] was not clearly defined,
indicating a non-systematic approach. Although that study achieved a relatively high R? value of 0.92, the
inclusion of comprehensive external variables and a systematic lag selection process in this research
resulted in even greater accuracy (R? = 0.9573) and improved generalization capability.

The identification of Lag_1 as the most influential variable reinforces the time-series principle that recent
historical values exert a strong influence on future price movements. Furthermore, upstream price levels
(collector and producer) and weather-related variables contributed substantially to forecasting accuracy,
underscoring the importance of incorporating multi-source data in agricultural price modeling. Overall, the
proposed model exhibits both technical robustness and practical applicability within agricultural supply
chain management, serving as an effective tool for mitigating price volatility in strategic food commodities.
Its combination of high predictive accuracy and contextual relevance positions it as a valuable component
for integration into decision-support systems within the horticultural sector.

CONCLUSION

The findings of this study indicate that the application of feature engineering significantly enhances the
forecasting performance of the XGBoost model for cayenne pepper prices. Through hyperparameter
optimization using the Grid Search method, the optimal parameter configuration was determined to include
alpha = 0, gamma = 0.3, lambda = 1, a learning rate of 0.05, maximum depth of 3, minimum child weight
of 3, 200 estimators, and a subsample ratio of 0.6. The integration of Lag, SMA, Seasonal, and Public
Holiday features effectively captured short-term fluctuations and recurring seasonal dynamics influencing
price behavior. Model evaluation revealed a substantial improvement in predictive accuracy and a
significant reduction in forecasting errors, as reflected by an increase in the R? value of 99.10% (from
0.4808 to 0.9573), alongside decreases in MAE, RMSE, and MAPE by 72.63%, 71.31%, and 72.04%,
respectively. Feature importance analysis identified Lag 1 as the most influential variable, followed by
Collector Price, Temperature, Day, and Days Until Event. Collectively, these results confirm that the
application of feature engineering techniques considerably strengthens predictive performance and provides
a practical framework for addressing price volatility in strategic food commodities in Indonesia. Future
research could extend this framework by incorporating additional external variables such as transportation
costs and market demand indicators, as well as by validating the model across other regions or commodities
to assess its generalizability.
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