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Abstract. 
Objective: This study aim is to develop a reliable deep learning architecture for predicting Cardiomegaly from Chest X-rays images 
by integrating the ResNet-50 backbone into the YOLOv8 object predicting framework. The proposed hybrid approach overcomes the 

challenges of predicting subtle anatomical variations and low-contrast features commonly encountered in chest radiographs. 

Methods: This study uses a publicly available Chest X-Ray Images dataset. Preprocessing includes adjusting the input image size to 
640×640 pixels, automatic orientation correction, and real-time data augmentation applied to the training set. The data is divided 80:20 

between training and testing. A hybrid model consisting of ResNet-50 for image feature extraction and YOLOv8 for image prediction 

was trained for 150 epochs with optimized hyperparameters (learning rate, momentum, weight decay, loss weight), and the 

performance of the proposed architecture has been evaluated using images metrics such as mAP, Precision, Recall, F1 Score and 

Confusion Matrix results. 

Results: The experimental results indicate that the proposed architecture achieves improved performance in predicting Cardiomegaly, 
with a mAP50-95 of 0.7578, precision of 0.9955, recall of 0.9962, F1-score of 0.9959, and an inference latency of 4.5 ms per image. 

These results demonstrate that the model performs better than the standard YOLOv8 variant in both detection accuracy and 

computational efficiency. 
Innovation: The integration of ResNet-50 into YOLOv8 significantly improves feature extraction capabilities for Chest X-ray images, 

enabling the recognition of fine anatomical details with high precision. This innovative hybrid approach advances automated 

cardiomegaly detection, offering future potential for large-scale, real-time implementation in clinical settings and contributing to the 
development of advanced AI-powered diagnostic tools. 
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INTRODUCTION 
Cardiomegaly, or abnormal enlargement of the heart, is a clinical manifestation commonly associated with 

serious cardiovascular disorders such as heart failure, hypertension, and coronary artery disease. Early and 

accurate identification of cardiomegaly is essential to prevent complications and improve patient outcomes. 

Globally, cardiovascular disease including cardiomegaly is projected to increase significantly, with an 

estimated rise of up to 90% between 2025 and 2050. Approximately 20.5 million deaths were attributed to 

cardiovascular disease in 2025, and this number is expected to reach 35.6 million by 2050 [1]. One of the 

most widely adopted diagnostic indicators is the Cardiothoracic Ratio (CTR), where a value greater than 

0.5 on posteroanterior chest radiographs is considered abnormal and indicative of cardiomegaly [2]. 

 

Although chest radiography remains the primary imaging modality for assessing heart size, its interpretation 

is highly dependent on radiologist experience and is prone to variability. At the same time, the demand for 

medical imaging continues to rise, while the number of skilled radiologists remains limited, creating a 

diagnostic gap that can potentially be addressed through artificial intelligence (AI) and deep learning (DL) 

technologies [3]. Convolutional Neural Networks (CNNs) have become the dominant DL approach in 

medical imaging due to their strong capability in learning spatial features directly from images, enabling 

high performance in tasks such as classification and object detection [4]. Their multilayer representation 

allows robust extraction of complex visual patterns, supporting various computer-aided diagnosis systems 

[5]. 

 

Recent advancements in object detection models, particularly the YOLO (You Only Look Once) family, 

have demonstrated strong potential for real-time medical imaging applications [6]. YOLOv8 has shown 
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superior accuracy and inference speed in several medical domains, including bone fracture detection [7] 

and lung cancer detection [8], indicating its suitability for rapid diagnostic support. However, despite its 

strengths, standard YOLOv8 can face challenges when applied to chest radiographs, which typically exhibit 

low contrast, overlapping anatomical structures, and subtle morphological differences—conditions that 

often degrade feature extraction performance. 

 

To overcome these limitations, this study proposes a hybrid YOLOv8–ResNet50 architecture specifically 

optimized for cardiomegaly prediction. ResNet-50, known for its deep residual learning and ability to 

capture fine-grained patterns in low-contrast imagery [9], is integrated as the backbone to enhance 

YOLOv8’s feature extraction capability. This architectural enhancement, combined with targeted data 

augmentation and hyperparameter optimization, forms the core novelty of this research. 

 

In summary, the contributions of this work are fourfold : (1) development of a custom hybrid architecture 

that integrates ResNet-50 into YOLOv8 to strengthen feature representation on Chest X-Ray Images, (2) 

optimization of prediction performance through systematically tuned hyperparameters and augmentation 

strategies, (3) comprehensive evaluation against standard YOLOv8 to demonstrate measurable 

improvements in cardiomegaly prediction, and (4) deployment of the model into an accessible web-based 

diagnostic support system for practical clinical use. This combination positions the proposed method as an 

enhanced object prediction based framework specifically tailored to the diagnostic characteristics of 

Cardiomegaly 

 

METHODS 

The methodology in this study was designed to systematically describe the steps taken from data collection 

to model evaluation. All stages of this research are designed to produce a comprehensive cardiomegaly 

detection architecture development process. This research uses a deep learning-based experimental 

approach to predict cardiomegaly from chest radiography images, with the stages illustrated in Figure 1. 

 

 
Figure 1. Flowchart of the proposed architecture Hybrid YOLOv8-ResNet50 

 

Data collection and annotation 

The data used is a collection of chest radiographs relevant to cases of cardiomegaly, obtained from a public 

repository, namely the Keggle platform. The training data is the Shenzhen dataset, which consists of 563 

images. This dataset was collected in collaboration with Shenzhen No. 3 People's Hospital, Guangdong 

Medical College, Shenzhen, China. The testing data used the Montgomery dataset, which was collected in 

collaboration with the Department of Health and Human Services, Montgomery County, Maryland, USA. 

This dataset contains 131 frontal Chest X-ray images [10]. 

 

All images will be annotated on unlabelled images. The image annotation process involves providing a 

bounding box that carefully marks the outer boundaries of each organ on each chest radiography image. 

The annotation process can be seen in Figure 2. 
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Figure 2. Annotation of chest radiograph images, 1. Chest and 2. Heart 

 

The bounding box of the annotation results allows for the measurement of the maximum width of the heart 

and the maximum internal width of the chest cavity. The numerical data from these measurements is then 

used as the basis for automatically calculating the Cardiothoracic Ratio (CTR) value, thereby distinguishing 

between patients diagnosed with cardiomegaly and those who are normal. 

This process is also supported by the use of annotation software, such as Label Studio, which has been 

proven effective in tagging large-scale radiology data for medical artificial intelligence research and model 

development [11]. CTR is calculated using equation (1): 

 

CTR =
a + b

c
         (1) 

 

where a is the distance from the right border of the heart to the midline, b is the distance from the left border 

of the heart to the midline, and c is the maximum thoracic diameter (TD) above the costophrenic angle 

measured from the inner edge of the rib [2]. 

 

Data preparation 

The collected image data was obtained from a public repository, namely the Kaggle platform, which 

consists of 694 images. The collected image data was first processed by standardizing the pixel size to 

640×640 to ensure consistency of input to the object detection model [12]. Next, each image underwent an 

automatic orientation process to ensure that all images were displayed uniformly and ready for the training 

stage. After that, the dataset was divided proportionally into training data and testing data with a ratio of 

80:20 [13]. 

 

Data augmentation 

To improve model generalization and prevent overfitting due to limited data, data augmentation techniques 

are applied to the training set [14]. Data augmentation is a key technique in deep learning that significantly 

improves model performance and generalization [15]. This augmentation artificially creates new data 

variations through a series of geometric and photometric transformations, such as horizontal flipping, 

rotation, scaling, and color adjustment [16]. 
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Proposed hybrid architecture (YOLOv8-ResNet50) 

The basic architecture used is YOLOv8, a single-shot object detection model known for its speed and 

accuracy [17]. The main contribution of this research is the modification of the standard YOLOv8 

architecture by integrating a backbone inspired by ResNet-50. ResNet was chosen for its proven ability to 

extract deep hierarchical features through the use of residual connections, which effectively overcome the 

vanishing gradient problem in very deep networks [18]. This integration aims to improve the model's ability 

to recognize specific features in medical images. The YOLOv8- ResNet50 model architecture can be seen 

in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            (a)                                                                         (b) 

Figure 3. Visualization of the YOLOv8-ResNet50 model architecture. (a) Backbone structure (Feature 

extractor). (b) Neck structure (PANet feature fusion) and detection head 

 

Figure 3 illustrates the YOLOv8-ResNet50 architecture for predicting Cardiomegaly through Chest X-ray 

images. The input image, measuring 640x640 pixels, is processed through several stages of convolution 

with increasingly larger filters (64, 128, 256, 512) and the Czf x n technique, which strengthens features 

with residual connections. After that, SPPF (Spatial Pyramid Pooling Fusion) is used to combine multi-

scale spatial information and generate a 1024-sized feature vector. Upsampling and downsampling 

techniques combine features from various levels (P3, P4, P5) to improve prediction accuracy. At the end 

of the architecture, YOLO Head is used to detect bounding boxes and classify Cardiomegaly, enabling real-

time and accurate object detection in medical images [19]. 

 

Hyperparameter tuning 

Adjustments to key hyperparameters such as learning rate, batch size, optimizer, and augmentation intensity 

were performed iteratively based on evaluation of the validation data, resulting in the most optimal model 

configuration for the Cardiomegaly prediction task [20]. 

 

Model training & testing 

The model training process begins with the initialization of the YOLOv8-ResNet50 architecture, which is 

trained for 150 epochs. This training is configured using a series of hyperparameters that have been 

optimized through the previous tuning stage, including learning rate, momentum, and loss function weights 

[21]. During this iterative process, real-time data augmentation such as flipping, scaling, and color variation 

was applied to each batch of images to improve model generalization. Model performance was monitored 
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after each epoch using the validation data set, and the weights from the epoch with the best mAP score were 

saved as the final model. After the entire training process is complete, a testing phase is conducted as a final 

objective evaluation, in which the best model is tested on a separate test set that has never been used before 

to measure final performance metrics such as mAP, Precision, and Recall [22]. 

 

Model evaluation 

The evaluation of model prediction results was carried out using a confusion matrix, which consists of 

several key metrics such as precision, recall, and F1-score [23]. Precision indicates the proportion of correct 

positive predictions to the total positive predictions generated by the model. Meanwhile, recall measures 

how many correct positive predictions there are compared to the total number of positive data available. 

The F1-score is the harmonic mean between precision and recall, which are analysed together. Accuracy 

and confusion matrix can be formulated through a number of equations, namely equations (2), (3), and (4). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

𝑇𝑃+𝐹𝑃
        (2) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

𝑇𝑃+𝐹𝑁
         (3) 

 

𝐹1 =
2 x Precision X Recall

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
        (4) 

 

Where TP is True Positive, TN is True Negative, FP is False Positive, and FN is False Negative serve as 

key parameters that indicate whether the model can accurately identify and classify objects in each detection 

result. 

 

Meanwhile, mean average precision (mAP) is used as the main measure of accuracy in object detection 

tasks, where mAP is obtained by calculating the average precision value across all tested classes [24]. This 

value is calculated by integrating the precision-recall curve for each category, then taking the average of all 

average precision (AP) values obtained [25], where N is the total number of classes evaluated. The formula 

for mAP is described in Equation (5). 

 

𝑚𝐴𝑃 = 
1

𝑁
  ∑ 𝐴𝑃𝑐 𝑛

 𝑘=1        (5) 

 

RESULTS AND DISCUSSION 

Data preprocessing 

This study used a dataset from the Keggle website containing frontal Chest X-ray images of patients, with 

a total of 694 image datasets. The resolution and pixel size in the dataset was 640x640 pixels for each 

image. Data annotation was performed on unlabeled images by placing bounding boxes on the images [26]. 

The labels given to the images consisted of two classes, namely the heart and chest cavity, which had been 

defined at the data collection stage. At the image augmentation stage, augmentation techniques (e.g., 

horizontal flip, blur, mosaic, saturation, and brightness adjustment) were applied sequentially: 

1. Flip: Horizontal (65% probability). 

2. Hue: Small color shift, ±2.8%. 

3. Saturation: Range of approximately –67% to +67%. 

4. Brightness (Value/Intensity): Range of approximately –44% to +44%. 

5. Translate (Shift): Maximum ±5.7% from the original position. 

6. Scale (Zoom in/out): Change in object size up to ±61%. 

7. Mosaic: Always applied (100%) – combines 4 images in 1 frame. 

8. Close Mosaic: Mosaic is disabled in the last 10 epochs to stabilize the model. 

 

The data augmentation process in YOLOv8 does not increase the number of image files, so the dataset still 

consists of 563 training images and 131 validation images. However, each batch of images that enters the 

model undergoes on-the-fly augmentation such as flip, scale, translate, hue, saturation, brightness, and 

mosaic. Thus, even though the number of files does not change, the variety of images seen by the model 

increases significantly. In one epoch, all 563 training images are processed with random augmentation, so 

that in 150 epochs the model has the potential to see up to 84,450 unique image variations. This mechanism 

helps improve model generalization and reduces the risk of overfitting. Conversely, augmentation is not 
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applied to the validation data (only resizing and normalization), so that the model performance evaluation 

remains objective and reflects the prediction capabilities on the original images. 

 

Hyperparameter tuning 

In this study, the model training process was carried out by optimizing a number of hyperparameters that 

play an important role in determining the quality of learning and model convergence. Hyperparameter 

adjustments include optimization, regularization, and weights on the loss function used by YOLOv8 [27]. 

The tuning results in Table 1 show the optimal configuration used in the final training, which significantly 

contributed to improving the model's performance in detecting cardiomegaly in Chest X-ray images. 

 

Table 1. Hyperparameters optimized in YOLOv8-ResNet50 training 
Hyperparameter Value Function 

Learning Rate Awal (lr0) 0.00795 Set the size of the weight update step at the beginning of training. 

Learning Rate Final (lrf) 0.00727 The learning rate value after the decay process maintains stability at the 

end of training. 
Momentum 0.84997 Maintain the stability of the gradient direction so that it does not easily 

get stuck at local minima. 

Weight Decay 0.00078 Regularization to prevent overfitting by reducing excessive weights. 
Warmup Epochs 3.08136 The initial number of epochs for gradually increasing the learning rate. 

Warmup Momentum 0.69663 Momentum values during the warmup phase help make the initial 

transition to training smoother. 
Box Loss Gain 8.6415 The weight of the loss function for bounding box prediction accuracy. 

Class Loss Gain (cls) 0.59359 The weight of the loss function for object class classification. 

Distribution Focal Loss 
(dfl) 

1.61848 The weight of the IoU-based bounding box distribution loss function for 
higher precision. 

 

CTR computation pipeline after detection output 

 

 
Figure 4. CTR Computation pipeline after detection output from proposed YOLOv8-ResNet50 

architecture 
 

Figure 4. illustrates the computational pipeline used to automatically derive the Cardiothoracic Ratio (CTR) 

from the bounding box predictions produced by the proposed YOLOv8-ResNet50 architecture. After 

inference, the model generates two key bounding boxes corresponding to the cardiac silhouette (heart) and 

thoracic cavity (chest). Each bounding box consists of coordinates (𝑥min
, 𝑦min

, 𝑥max
, 𝑦max) that are 

extracted directly from the detection output. 

 

In the first processing stage, the cardiac diameter is computed by measuring the horizontal distance between 

the leftmost and rightmost points of the predicted heart bounding box. Similarly, the thoracic diameter is 

obtained from the width of the chest bounding box. Because CTR is a dimensionless ratio, both 

measurements are derived in pixel units without the need for calibration to physical dimensions. The second 

stage calculates the CTR value using the standard clinical formula on equations (6): 

 

𝐶𝑇𝑅 =
𝐶𝑎𝑟𝑑𝑖𝑎𝑐 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟

𝑇ℎ𝑜𝑟𝑎𝑐𝑖𝑐 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟
       (6) 
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The computed CTR is then compared with the established clinical threshold of 0.50. A ratio greater than 

0.50 indicates cardiomegaly, while values at or below the threshold represent normal heart size. This 

classification output is automatically generated alongside the numerical CTR value, enabling real-time 

decision support [28]. 

 

Finally, the CTR result, bounding-box visualization, and classification are transmitted to the user interface 

or API endpoint. This automated CTR pipeline ensures consistency, eliminates inter-observer variability, 

and enhances the model’s role not only as an object detector but also as a quantitative diagnostic support 

tool. This integrated capability strengthens the clinical relevance of the proposed ResNet-YOLOv8 

architecture. 

 

Model evaluation 

The results of the experiments in this study show the effectiveness of the ResNet-YOLOv8 architecture in 

detecting cardiomegaly in chest X-ray images. The evaluation was carried out through statistical analysis 

of the dataset annotations, training curve analysis, confusion matrix, and comparison with several standard 

variants of YOLOv8. 

 

Figure 5 presents four plots, each of which provides unique insights into the dataset. The first plot on the 

top left shows the distribution of the number of instances for each class. It can be seen that this dataset is 

very balanced, with exactly the same number of instances for the ‘Chest’ and ‘Heart’ classes, namely 563 

instances. This class balance is ideal because it can prevent the model from becoming biased towards the 

majority class during the training process. 

 

 
Figure 5. Statistical visualization of Heart and Chest cavity data annotations 

 

Visual analysis of the annotation data in Figure 5 confirms the quality and suitability of the dataset for 

training. The results show that the dataset is perfectly balanced with 563 instances for each class (‘Chest’ 

and ‘Heart’), which prevents potential bias in the model. The spatial distribution of objects is also consistent 

with radiographic images, where objects are centered and the ‘Heart’ class is located within the ‘Chest’. 
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Furthermore, bounding box dimension analysis shows two distinct clusters of different sizes between the 

two classes, validating this dataset as a strong basis for training a cardiomegaly detection model. 

 

Next, Figure 6 shows the training and validation curves, where the box loss, classification loss, and 

distribution focal loss values show a progressive downward trend as the number of epochs increases. This 

decrease in loss values indicates that the model is able to learn feature representations well, reduce 

prediction errors, and produce stable generalization. In addition, evaluation metrics such as precision, recall, 

mAP50, and mAP50-95 also show consistent improvements, confirming the stability of the model's 

convergence. 

 

 
Figure 6. Training results curve for the ResNet-YOLOv8 model 

 

Further evaluation is shown in Figure 7, which is the confusion matrix of the validation results. The model 

was able to correctly classify all samples into two classes (chest and heart), each with 131 data points. These 

results indicate excellent predictive capabilities with minimal classification errors (false positives and false 

negatives), proving that the proposed model is reliable in detecting cardiomegaly. 

 

A comparison of the performance of the proposed architecture with the standard YOLOv8 variants is shown 

in Table 2. The results show that ResNet-YOLOv8 (best) outperforms YOLOv8n, YOLOv8s, YOLOv8m, 

and YOLOv8l, particularly in terms of precision (0.9955), recall (0.9962), F1-score (0.9959), and mAP50-

95 (0.7578). Although YOLOv8l has a comparable mAP50-95 score (0.7582), the model is slower with a 

latency of 7.27 ms/img, while the proposed model is much more efficient with only 4.5 ms/img. 
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Figure 7. Confusion matrix of the evaluation results of the ResNet-YOLOv8 model on the validation data 

 

Table 2. Comparison of ResNet-YOLOv8 performance with standard YOLOv8 variants 
Model mAP50-95 mAP50 Precision Recall F1-Score Latensi (ms/img) 

YOLOv8n 0.7561 0.9934 0.9939 0.996 0.9949 6.31 

YOLOv8s 0.7529 0.9898 0.9922 0.9924 0.9923 5.22 

YOLOv8m 0.7537 0.9884 0.9902 0.9885 0.9894 6.32 

YOLOv8l 0.7582 0.9931 0.9915 0.9924 0.9919 7.27 

Proposed model (ResNet-

YOLOv8) 

0.7578 0.9942 0.9955 0.9962 0.9959 4.5 

 

This improvement in accuracy and inference efficiency confirms the great potential of the proposed 

architecture to support the automatic early diagnosis of cardiomegaly, assist radiologists in clinical 

decision-making, and reduce manual workload [29]. 

 

Qualitative detection results 

To complement the quantitative evaluation, Figure 8 presents qualitative examples of cardiomegaly 

detection using the proposed ResNet50-YOLOv8 model. The visualizations show the predicted bounding 

boxes for the cardiac silhouette and thoracic cavity along with their confidence scores. The model 

consistently localizes both anatomical structures accurately across different chest X-ray samples, including 

images with low contrast and varying patient anatomy. 
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Figure 8. Example of prediction results on Chest X-ray Images using ResNet50-YOLOv8 

 

The detection results demonstrate that the model is able to distinguish the heart and chest boundaries clearly, 

which is essential for reliable Cardiothoracic Ratio (CTR) computation. These qualitative findings reinforce 

the quantitative performance reported earlier and confirm the model’s capability to generalize to unseen 

radiographs. 

 

Although the proposed ResNet-YOLOv8 architecture demonstrates improved performance in detecting 

cardiomegaly, several important limitations must be considered. First, the dataset employed in this study 

was sourced exclusively from two public repositories (Shenzhen and Montgomery), restricting the diversity 

of image acquisition protocols, patient demographics, and clinical presentations [30]. This limitation may 

affect the model’s generalizability to broader and heterogeneous clinical populations. Second, the relatively 

modest dataset size constrains the models ability to robustly learn rare or atypical anatomical patterns, while 

data augmentation was implemented, synthetic variations cannot fully replicate the complexity and 

diversity observed in real-world clinical practice. Third, the evaluation in this study relied largely on object 

detection metrics such as precision, recall, and mean average precision (mAP), which may not fully capture 

clinically relevant decision factors or reflect radiologist level agreement. Lastly, rigorous clinical validation 

including multi-center trials or integration with hospital PACS/EMR systems was beyond the present scope 

and represents a necessary future direction for upcoming deployment. 

 

CONCLUSION 

This study proposes a ResNet-YOLOv8 architecture for detecting cardiomegaly in chest X-ray images. By 

integrating the ResNet-50 backbone into YOLOv8 and performing hyperparameter tuning and data 

augmentation strategies, the resulting model shows significant improvement over the standard YOLOv8 

variant. The experimental results show that the proposed model achieves a precision of 0.9955, recall of 

0.9962, F1-score of 0.9959, and mAP50 of 0.9936, with an inference latency of only 4.5 ms/img, making 

it superior in terms of both accuracy and efficiency. 

 

These findings confirm that ResNet-YOLOv8 is capable of improving visual feature extraction capabilities 

and producing more precise cardiomegaly detection in medical images. With its high performance and good 

computational efficiency, this model has great potential for use as a clinical decision support system in the 

early diagnosis of cardiomegaly. However, this study is still limited to a small-scale, single-source dataset. 

Therefore, future research can be directed towards validation with larger, multi-center datasets and the 

development of integration with other architectures, such as transformer-based models, to further improve 

accuracy and generalization. 
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