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Abstract.

Objective: This study aim is to develop a reliable deep learning architecture for predicting Cardiomegaly from Chest X-rays images
by integrating the ResNet-50 backbone into the YOLOVS object predicting framework. The proposed hybrid approach overcomes the
challenges of predicting subtle anatomical variations and low-contrast features commonly encountered in chest radiographs.
Methods: This study uses a publicly available Chest X-Ray Images dataset. Preprocessing includes adjusting the input image size to
640x640 pixels, automatic orientation correction, and real-time data augmentation applied to the training set. The data is divided 80:20
between training and testing. A hybrid model consisting of ResNet-50 for image feature extraction and YOLOv8 for image prediction
was trained for 150 epochs with optimized hyperparameters (learning rate, momentum, weight decay, loss weight), and the
performance of the proposed architecture has been evaluated using images metrics such as mAP, Precision, Recall, F1 Score and
Confusion Matrix results.

Results: The experimental results indicate that the proposed architecture achieves improved performance in predicting Cardiomegaly,
with a mAPS50-95 of 0.7578, precision of 0.9955, recall of 0.9962, F1-score of 0.9959, and an inference latency of 4.5 ms per image.
These results demonstrate that the model performs better than the standard YOLOvVS variant in both detection accuracy and
computational efficiency.

Innovation: The integration of ResNet-50 into YOLOVS significantly improves feature extraction capabilities for Chest X-ray images,
enabling the recognition of fine anatomical details with high precision. This innovative hybrid approach advances automated
cardiomegaly detection, offering future potential for large-scale, real-time implementation in clinical settings and contributing to the
development of advanced Al-powered diagnostic tools.
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INTRODUCTION

Cardiomegaly, or abnormal enlargement of the heart, is a clinical manifestation commonly associated with
serious cardiovascular disorders such as heart failure, hypertension, and coronary artery disease. Early and
accurate identification of cardiomegaly is essential to prevent complications and improve patient outcomes.
Globally, cardiovascular disease including cardiomegaly is projected to increase significantly, with an
estimated rise of up to 90% between 2025 and 2050. Approximately 20.5 million deaths were attributed to
cardiovascular disease in 2025, and this number is expected to reach 35.6 million by 2050 [1]. One of the
most widely adopted diagnostic indicators is the Cardiothoracic Ratio (CTR), where a value greater than
0.5 on posteroanterior chest radiographs is considered abnormal and indicative of cardiomegaly [2].

Although chest radiography remains the primary imaging modality for assessing heart size, its interpretation
is highly dependent on radiologist experience and is prone to variability. At the same time, the demand for
medical imaging continues to rise, while the number of skilled radiologists remains limited, creating a
diagnostic gap that can potentially be addressed through artificial intelligence (Al) and deep learning (DL)
technologies [3]. Convolutional Neural Networks (CNNs) have become the dominant DL approach in
medical imaging due to their strong capability in learning spatial features directly from images, enabling
high performance in tasks such as classification and object detection [4]. Their multilayer representation
allows robust extraction of complex visual patterns, supporting various computer-aided diagnosis systems

[5].

Recent advancements in object detection models, particularly the YOLO (You Only Look Once) family,
have demonstrated strong potential for real-time medical imaging applications [6]. YOLOvS8 has shown
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superior accuracy and inference speed in several medical domains, including bone fracture detection [7]
and lung cancer detection [8], indicating its suitability for rapid diagnostic support. However, despite its
strengths, standard YOLOVS can face challenges when applied to chest radiographs, which typically exhibit
low contrast, overlapping anatomical structures, and subtle morphological differences—conditions that
often degrade feature extraction performance.

To overcome these limitations, this study proposes a hybrid YOLOv8—ResNet50 architecture specifically
optimized for cardiomegaly prediction. ResNet-50, known for its deep residual learning and ability to
capture fine-grained patterns in low-contrast imagery [9], is integrated as the backbone to enhance
YOLOvVS8’s feature extraction capability. This architectural enhancement, combined with targeted data
augmentation and hyperparameter optimization, forms the core novelty of this research.

In summary, the contributions of this work are fourfold : (1) development of a custom hybrid architecture
that integrates ResNet-50 into YOLOvVS to strengthen feature representation on Chest X-Ray Images, (2)
optimization of prediction performance through systematically tuned hyperparameters and augmentation
strategies, (3) comprehensive evaluation against standard YOLOvV8 to demonstrate measurable
improvements in cardiomegaly prediction, and (4) deployment of the model into an accessible web-based
diagnostic support system for practical clinical use. This combination positions the proposed method as an
enhanced object prediction based framework specifically tailored to the diagnostic characteristics of
Cardiomegaly

METHODS

The methodology in this study was designed to systematically describe the steps taken from data collection
to model evaluation. All stages of this research are designed to produce a comprehensive cardiomegaly
detection architecture development process. This research uses a deep learning-based experimental
approach to predict cardiomegaly from chest radiography images, with the stages illustrated in Figure 1.
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Figure 1. Flowchart of the proposed architecture Hybrid YOLOv8-ResNet50
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Data collection and annotation

The data used is a collection of chest radiographs relevant to cases of cardiomegaly, obtained from a public
repository, namely the Keggle platform. The training data is the Shenzhen dataset, which consists of 563
images. This dataset was collected in collaboration with Shenzhen No. 3 People's Hospital, Guangdong
Medical College, Shenzhen, China. The testing data used the Montgomery dataset, which was collected in
collaboration with the Department of Health and Human Services, Montgomery County, Maryland, USA.
This dataset contains 131 frontal Chest X-ray images [10].

All images will be annotated on unlabelled images. The image annotation process involves providing a

bounding box that carefully marks the outer boundaries of each organ on each chest radiography image.
The annotation process can be seen in Figure 2.
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Figure 2. Annotation of chest radiograph images, 1. Chest and 2. Heart

The bounding box of the annotation results allows for the measurement of the maximum width of the heart
and the maximum internal width of the chest cavity. The numerical data from these measurements is then
used as the basis for automatically calculating the Cardiothoracic Ratio (CTR) value, thereby distinguishing
between patients diagnosed with cardiomegaly and those who are normal.

This process is also supported by the use of annotation software, such as Label Studio, which has been
proven effective in tagging large-scale radiology data for medical artificial intelligence research and model
development [11]. CTR is calculated using equation (1):

a+b

CTR =

(M

where a is the distance from the right border of the heart to the midline, b is the distance from the left border
of the heart to the midline, and ¢ is the maximum thoracic diameter (TD) above the costophrenic angle
measured from the inner edge of the rib [2].

Data preparation

The collected image data was obtained from a public repository, namely the Kaggle platform, which
consists of 694 images. The collected image data was first processed by standardizing the pixel size to
640%640 to ensure consistency of input to the object detection model [12]. Next, each image underwent an
automatic orientation process to ensure that all images were displayed uniformly and ready for the training
stage. After that, the dataset was divided proportionally into training data and testing data with a ratio of
80:20 [13].

Data augmentation

To improve model generalization and prevent overfitting due to limited data, data augmentation techniques
are applied to the training set [14]. Data augmentation is a key technique in deep learning that significantly
improves model performance and generalization [15]. This augmentation artificially creates new data
variations through a series of geometric and photometric transformations, such as horizontal flipping,
rotation, scaling, and color adjustment [16].
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Proposed hybrid architecture (YOLOvV8-ResNet50)

The basic architecture used is YOLOvVS, a single-shot object detection model known for its speed and
accuracy [17]. The main contribution of this research is the modification of the standard YOLOv8
architecture by integrating a backbone inspired by ResNet-50. ResNet was chosen for its proven ability to
extract deep hierarchical features through the use of residual connections, which effectively overcome the
vanishing gradient problem in very deep networks [18]. This integration aims to improve the model's ability
to recognize specific features in medical images. The YOLOvV8- ResNet50 model architecture can be seen
in Figure 3.
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Figure 3. Visualization of the YOLOvS8-ResNet50 model architecture. (a) Backbone structure (Feature
extractor). (b) Neck structure (PANet feature fusion) and detection head

Figure 3 illustrates the YOLOv8-ResNet50 architecture for predicting Cardiomegaly through Chest X-ray
images. The input image, measuring 640x640 pixels, is processed through several stages of convolution
with increasingly larger filters (64, 128, 256, 512) and the Czf x n technique, which strengthens features
with residual connections. After that, SPPF (Spatial Pyramid Pooling Fusion) is used to combine multi-
scale spatial information and generate a 1024-sized feature vector. Upsampling and downsampling
techniques combine features from various levels (P3, P4, P5) to improve prediction accuracy. At the end
of the architecture, YOLO Head is used to detect bounding boxes and classify Cardiomegaly, enabling real-
time and accurate object detection in medical images [19].

Hyperparameter tuning

Adjustments to key hyperparameters such as learning rate, batch size, optimizer, and augmentation intensity
were performed iteratively based on evaluation of the validation data, resulting in the most optimal model
configuration for the Cardiomegaly prediction task [20].

Model training & testing

The model training process begins with the initialization of the YOLOv8-ResNet50 architecture, which is
trained for 150 epochs. This training is configured using a series of hyperparameters that have been
optimized through the previous tuning stage, including learning rate, momentum, and loss function weights
[21]. During this iterative process, real-time data augmentation such as flipping, scaling, and color variation
was applied to each batch of images to improve model generalization. Model performance was monitored
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after each epoch using the validation data set, and the weights from the epoch with the best mAP score were
saved as the final model. After the entire training process is complete, a testing phase is conducted as a final
objective evaluation, in which the best model is tested on a separate test set that has never been used before
to measure final performance metrics such as mAP, Precision, and Recall [22].

Model evaluation

The evaluation of model prediction results was carried out using a confusion matrix, which consists of
several key metrics such as precision, recall, and F1-score [23]. Precision indicates the proportion of correct
positive predictions to the total positive predictions generated by the model. Meanwhile, recall measures
how many correct positive predictions there are compared to the total number of positive data available.
The F1-score is the harmonic mean between precision and recall, which are analysed together. Accuracy
and confusion matrix can be formulated through a number of equations, namely equations (2), (3), and (4).

TP

Precision = (2)
TP+FP
Recall = —= 3)
TP+FN
F1= 2 x Precision X Recall (4)

Precision + Recall

Where TP is True Positive, TN is True Negative, FP is False Positive, and FN is False Negative serve as
key parameters that indicate whether the model can accurately identify and classify objects in each detection
result.

Meanwhile, mean average precision (mAP) is used as the main measure of accuracy in object detection
tasks, where mAP is obtained by calculating the average precision value across all tested classes [24]. This
value is calculated by integrating the precision-recall curve for each category, then taking the average of all
average precision (AP) values obtained [25], where N is the total number of classes evaluated. The formula
for mAP is described in Equation (5).

mAP =~ ¥3_; APc Q)

RESULTS AND DISCUSSION
Data preprocessing
This study used a dataset from the Keggle website containing frontal Chest X-ray images of patients, with
a total of 694 image datasets. The resolution and pixel size in the dataset was 640x640 pixels for each
image. Data annotation was performed on unlabeled images by placing bounding boxes on the images [26].
The labels given to the images consisted of two classes, namely the heart and chest cavity, which had been
defined at the data collection stage. At the image augmentation stage, augmentation techniques (e.g.,
horizontal flip, blur, mosaic, saturation, and brightness adjustment) were applied sequentially:

1. Flip: Horizontal (65% probability).
Hue: Small color shift, +2.8%.
Saturation: Range of approximately —67% to +67%.
Brightness (Value/Intensity): Range of approximately —44% to +44%.
Translate (Shift): Maximum +5.7% from the original position.
Scale (Zoom in/out): Change in object size up to +61%.
Mosaic: Always applied (100%) — combines 4 images in 1 frame.
Close Mosaic: Mosaic is disabled in the last 10 epochs to stabilize the model.

PRI R LN

The data augmentation process in YOLOvV8 does not increase the number of image files, so the dataset still
consists of 563 training images and 131 validation images. However, each batch of images that enters the
model undergoes on-the-fly augmentation such as flip, scale, translate, hue, saturation, brightness, and
mosaic. Thus, even though the number of files does not change, the variety of images seen by the model
increases significantly. In one epoch, all 563 training images are processed with random augmentation, so
that in 150 epochs the model has the potential to see up to 84,450 unique image variations. This mechanism
helps improve model generalization and reduces the risk of overfitting. Conversely, augmentation is not
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applied to the validation data (only resizing and normalization), so that the model performance evaluation
remains objective and reflects the prediction capabilities on the original images.

Hyperparameter tuning

In this study, the model training process was carried out by optimizing a number of hyperparameters that
play an important role in determining the quality of learning and model convergence. Hyperparameter
adjustments include optimization, regularization, and weights on the loss function used by YOLOVS [27].
The tuning results in Table 1 show the optimal configuration used in the final training, which significantly
contributed to improving the model's performance in detecting cardiomegaly in Chest X-ray images.

Table 1. Hyperparameters optimized in YOLOv8-ResNet50 training

Hyperparameter Value Function

Learning Rate Awal (Ir0) 0.00795 Set the size of the weight update step at the beginning of training.

Learning Rate Final (Irf) 0.00727 The learning rate value after the decay process maintains stability at the
end of training.

Momentum 0.84997 Maintain the stability of the gradient direction so that it does not easily
get stuck at local minima.

Weight Decay 0.00078 Regularization to prevent overfitting by reducing excessive weights.

Warmup Epochs 3.08136 The initial number of epochs for gradually increasing the learning rate.

Warmup Momentum 0.69663 Momentum values during the warmup phase help make the initial
transition to training smoother.

Box Loss Gain 8.6415 The weight of the loss function for bounding box prediction accuracy.

Class Loss Gain (cls) 0.59359 The weight of the loss function for object class classification.

Distribution Focal Loss 1.61848 The weight of the ToU-based bounding box distribution loss function for

(dfl) higher precision.

CTR computation pipeline after detection output

Detection of Heart
and Thoracic Cavity

[

Extraction of
Horizontal Diameters

l

CTR=CD/TD

[ Post-processing and Validation ]

!

[ Clinical Interpretation Output ]

Figure 4. CTR Computation pipeline after detection output from proposed YOLOvS-ResNet50
architecture

Figure 4. illustrates the computational pipeline used to automatically derive the Cardiothoracic Ratio (CTR)
from the bounding box predictions produced by the proposed YOLOv8-ResNet50 architecture. After
inference, the model generates two key bounding boxes corresponding to the cardiac silhouette (heart) and
thoracic cavity (chest). Each bounding box consists of coordinates (Xmin’ Vimin’ Xmax’ Ymax) that are
extracted directly from the detection output.

In the first processing stage, the cardiac diameter is computed by measuring the horizontal distance between
the leftmost and rightmost points of the predicted heart bounding box. Similarly, the thoracic diameter is
obtained from the width of the chest bounding box. Because CTR is a dimensionless ratio, both
measurements are derived in pixel units without the need for calibration to physical dimensions. The second
stage calculates the CTR value using the standard clinical formula on equations (6):

Cardiac Diameter

CTR = (6)

Thoracic Diameter
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The computed CTR is then compared with the established clinical threshold of 0.50. A ratio greater than
0.50 indicates cardiomegaly, while values at or below the threshold represent normal heart size. This
classification output is automatically generated alongside the numerical CTR value, enabling real-time
decision support [28].

Finally, the CTR result, bounding-box visualization, and classification are transmitted to the user interface
or API endpoint. This automated CTR pipeline ensures consistency, eliminates inter-observer variability,
and enhances the model’s role not only as an object detector but also as a quantitative diagnostic support
tool. This integrated capability strengthens the clinical relevance of the proposed ResNet-YOLOvVS
architecture.

Model evaluation

The results of the experiments in this study show the effectiveness of the ResNet-YOLOVS architecture in
detecting cardiomegaly in chest X-ray images. The evaluation was carried out through statistical analysis
of the dataset annotations, training curve analysis, confusion matrix, and comparison with several standard
variants of YOLOVS.

Figure 5 presents four plots, each of which provides unique insights into the dataset. The first plot on the
top left shows the distribution of the number of instances for each class. It can be seen that this dataset is
very balanced, with exactly the same number of instances for the ‘Chest’ and ‘Heart’ classes, namely 563
instances. This class balance is ideal because it can prevent the model from becoming biased towards the
majority class during the training process.

563

500 -

400 -

instances
w
=]
=)
'

200 -

100 -

Chest
Heart

0.70 -
0.65 - 0.8- . .ﬁ.
0.60 -

.. 0.55- e
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0.45 - . 0.2-
0.40-

01 02 03 04 05 06 0.2 0.4 06 08
X width
Figure 5. Statistical visualization of Heart and Chest cavity data annotations
Visual analysis of the annotation data in Figure 5 confirms the quality and suitability of the dataset for
training. The results show that the dataset is perfectly balanced with 563 instances for each class (‘Chest’

and ‘Heart’), which prevents potential bias in the model. The spatial distribution of objects is also consistent
with radiographic images, where objects are centered and the ‘Heart’ class is located within the ‘Chest’.
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Furthermore, bounding box dimension analysis shows two distinct clusters of different sizes between the
two classes, validating this dataset as a strong basis for training a cardiomegaly detection model.

Next, Figure 6 shows the training and validation curves, where the box loss, classification loss, and
distribution focal loss values show a progressive downward trend as the number of epochs increases. This
decrease in loss values indicates that the model is able to learn feature representations well, reduce
prediction errors, and produce stable generalization. In addition, evaluation metrics such as precision, recall,
mAP50, and mAP50-95 also show consistent improvements, confirming the stability of the model's
convergence.

train/box_loss train/cls_loss train/dfl_loss metrics/precision(B) metrics/recall(B)
0.8 0.50 1 1.000 1.00
1.40 4
0.7 - 9591 0.99-
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Figure 6. Training results curve for the ResNet-YOLOv8 model

Further evaluation is shown in Figure 7, which is the confusion matrix of the validation results. The model
was able to correctly classify all samples into two classes (chest and heart), each with 131 data points. These
results indicate excellent predictive capabilities with minimal classification errors (false positives and false
negatives), proving that the proposed model is reliable in detecting cardiomegaly.

A comparison of the performance of the proposed architecture with the standard YOLOVS variants is shown
in Table 2. The results show that ResNet-YOLOVS (best) outperforms YOLOv8n, YOLOv8s, YOLOv8m,
and YOLOVS]I, particularly in terms of precision (0.9955), recall (0.9962), F1-score (0.9959), and mAP50-
95 (0.7578). Although YOLOVSI has a comparable mAP50-95 score (0.7582), the model is slower with a
latency of 7.27 ms/img, while the proposed model is much more efficient with only 4.5 ms/img.
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Figure 7. Confusion matrix of the evaluation results of the ResNet-YOLOvV8 model on the validation data

Table 2. Comparison of ResNet-YOLOVS8 performance with standard YOLOVS variants

Model mAP50-95 mAP50 Precision Recall F1-Score Latensi (ms/img)
YOLOv8n 0.7561 0.9934 0.9939 0.996 0.9949 6.31

YOLOVS8s 0.7529 0.9898 0.9922 0.9924 0.9923 5.22

YOLOvV8m 0.7537 0.9884 0.9902 0.9885 0.9894 6.32

YOLOVSI 0.7582 0.9931 0.9915 0.9924 0.9919 7.27

Proposed model (ResNet- 0.7578 0.9942 0.9955 0.9962 0.9959 4.5

YOLOVS)

This improvement in accuracy and inference efficiency confirms the great potential of the proposed
architecture to support the automatic early diagnosis of cardiomegaly, assist radiologists in clinical
decision-making, and reduce manual workload [29].

Qualitative detection results

To complement the quantitative evaluation, Figure 8 presents qualitative examples of cardiomegaly
detection using the proposed ResNet50-YOLOvS model. The visualizations show the predicted bounding
boxes for the cardiac silhouette and thoracic cavity along with their confidence scores. The model
consistently localizes both anatomical structures accurately across different chest X-ray samples, including
images with low contrast and varying patient anatomy.
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Figure 8. Example of prediction results on Chest X-ray Images using ResNet50-YOLOv8

The detection results demonstrate that the model is able to distinguish the heart and chest boundaries clearly,
which is essential for reliable Cardiothoracic Ratio (CTR) computation. These qualitative findings reinforce
the quantitative performance reported earlier and confirm the model’s capability to generalize to unseen
radiographs.

Although the proposed ResNet-YOLOVS architecture demonstrates improved performance in detecting
cardiomegaly, several important limitations must be considered. First, the dataset employed in this study
was sourced exclusively from two public repositories (Shenzhen and Montgomery), restricting the diversity
of image acquisition protocols, patient demographics, and clinical presentations [30]. This limitation may
affect the model’s generalizability to broader and heterogeneous clinical populations. Second, the relatively
modest dataset size constrains the models ability to robustly learn rare or atypical anatomical patterns, while
data augmentation was implemented, synthetic variations cannot fully replicate the complexity and
diversity observed in real-world clinical practice. Third, the evaluation in this study relied largely on object
detection metrics such as precision, recall, and mean average precision (mAP), which may not fully capture
clinically relevant decision factors or reflect radiologist level agreement. Lastly, rigorous clinical validation
including multi-center trials or integration with hospital PACS/EMR systems was beyond the present scope
and represents a necessary future direction for upcoming deployment.

CONCLUSION

This study proposes a ResNet-YOLOVS architecture for detecting cardiomegaly in chest X-ray images. By
integrating the ResNet-50 backbone into YOLOvS and performing hyperparameter tuning and data
augmentation strategies, the resulting model shows significant improvement over the standard YOLOvVS
variant. The experimental results show that the proposed model achieves a precision of 0.9955, recall of
0.9962, F1-score of 0.9959, and mAP50 of 0.9936, with an inference latency of only 4.5 ms/img, making
it superior in terms of both accuracy and efficiency.

These findings confirm that ResNet-YOLOVS is capable of improving visual feature extraction capabilities
and producing more precise cardiomegaly detection in medical images. With its high performance and good
computational efficiency, this model has great potential for use as a clinical decision support system in the
early diagnosis of cardiomegaly. However, this study is still limited to a small-scale, single-source dataset.
Therefore, future research can be directed towards validation with larger, multi-center datasets and the
development of integration with other architectures, such as transformer-based models, to further improve
accuracy and generalization.
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