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Abstract. 
Purpose: Autoignition Temperature (AIT) is the lowest temperature at which a substance will spontaneously ignite in normal air 

without any external ignition source. AIT is an important safety parameter in industries that handles flammable materials. Measuring 
AIT with conventional method is unfortunately slow, costly, and dangerous. As an alternative, an AIT prediction model can be 

developed using in silico approaches, specifically based on machine learning.  

Methods: One of the methods that can be used is Long Short-Term Memory (LSTM) since it is good at modeling the complex 
relationships that is involved, but unfortunately it is difficult to tune manually due to their numerous hyperparameters. Therefore, an 

automated strategy can be used to find the best hyperparameters for the architecture. This study aims to develop an AIT prediction 

model as a hazard indicator using an LSTM model optimized with Simulated Annealing (SA).  
Result: The experiment showed that the SA-LSTM model which uses a cooling schedule of Delta T = 0.7 outperformed the 

unoptimized baseline model.  
Novelty: The optimization raised the R2 on test data from 0.5682 to 0.5939 while also lowering the RMSE from 74.35 K to 72.10 K 

and the MAPE from 9.29% to 8.87%. These results confirmed that optimizing LSTM with SA gave a more robust tool for hazard 

indicator. 
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INTRODUCTION 
Autoignition temperature (AIT) is the lowest temperature at which a substance can ignite in air at normal 

atmospheric pressure without requiring an external energy source such as fire [1], [2], [3], [4], [5]. AIT is 

an important safety parameter in many common situations related to the fire potential of chemicals, such 

as production, processing, handling, shipping, and storage of materials [2]. Knowledge of AIT is crucial in 

industrial environments because this concept is used to minimize potential losses and incidents that could 

endanger safety. One example of its application is for electrical classification purposes, such as in NFPA 

70 Section 500.8, which states that Class I equipment must not have open surfaces operating at temperatures 

exceeding the ignition temperature of certain gases or vapors [3]. 

 

Unfortunately, experimental studies measuring AIT are relatively rare. These measurements are known to 

be time-consuming and require expensive equipment. Testing usually takes 48 to 60 hours and operators 

are required to be present in some cases [3]. Conventional way of measuring AIT is also very risky when 

researchers handle hazardous chemicals [3]. Not to mention the average AIT measurement error is around 

30°C according to some estimates [4]. Therefore, an alternative approach is needed in the form of a machine 

learning based in silico method for developing AIT prediction models as a hazard indicator to minimize 

testing time, costs, and risks. 

 

Several studies have developed AIT prediction models using machine learning approaches. Pan et al. (2009) 

[5] utilized Support Vector Machine (SVM) to predict AIT with a dataset of 446 diverse organic 

compounds. The model achieved a Mean Absolute Error (MAE) of 28.88°C and a Root Mean Square Error 

(RMSE) of 36.86°C. Dashti et al. (2019) [6] explored various soft computing approaches, including Genetic 
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Programming (GP) and Adaptive Network-based Fuzzy Inference System (ANFIS), demonstrating the 

capability of non-linear modeling in capturing AIT characteristics. 

 

Several studies that utilized deep learning methods have also contributed to this domain. Pan et al. (2008) 

[7] developed an Artificial Neural Network (ANN)-based Quantitative Structure-Property Relationship 

(QSPR) model for 118 hydrocarbon compounds. The model yielded an RMSE of 31.09°C. Similarly, 

Gharaghezi (2011) [8] employed an Artificial Neural Network-Group Contribution (ANN-GC) method on 

a larger dataset of 1025 pure compounds and the model achieved a high correlation coefficient of 0.984 and 

an RMSE of 15.44 K. Guo et al. (2024) [9] has also implemented advanced architectures. They specifically 

implemented Back Propagation Neural Network (BPNN) and One Dimensional Convolutional Neural 

Network (1DCNN) in their research. Their study highlighted the superiority of deep learning features, with 

the BPNN and 1DCNN models producing RMSE values of 3.613°C and 5.284°C respectively. 

 

AIT prediction models’ performance has room for improvement despite these research advancements. The 

Long Short-Term Memory (LSTM) network can be used as an alternative for QSPR modeling due to its 

potential in learning latent patterns from data that cannot be captured by ordinary feedforward models [10]. 

But it is noted that the success of an LSTM model depends entirely on how its hyperparameters are 

configured. The architecture involves a complex search space which includes embedding dimensions, 

number of units, dropout rates, and learning rates. This is why manual tuning in LSTM is inefficient and 

prone to sub-optimal convergence. It is important to employ an automated optimization strategy to fine-

tune these parameters. 

 

The use of metaheuristic optimization in AIT prediction has been validated in prior researches. Lazzus 

(2010) [11] developed a hybrid model which combines the Group Contribution Method (GCM) with ANN 

and Particle Swarm Optimization (PSO). The model predicted AIT values for external compounds with an 

Average Absolute Relative Deviation (AARD) of only 1.7%. Similarly, Dashti et al. [12] demonstrated that 

optimizing ANFIS with evolutionary algorithms such as Genetic Algorithms (GA), Differential Evolution 

(DE), and PSO significantly improved prediction accuracy. The model achieved AARD values as low as 

6.29%. 

 

To the best of our knowledge, there has been no prior research investigating the specific application of 

Simulated Annealing to optimize LSTM networks for the prediction of AIT. This study aims to develop an 

AIT value prediction model as a hazard indicator using the LSTM method optimized with SA. With the 

combination of LSTM and SA, it is expected that the resulting AIT prediction model will provide better 

performance than the unoptimized model. This study will compare the performance of the LSTM model 

optimized using SA with the LSTM model without optimization. 

 

METHODS 

 

 
Figure 1. Research workflow 

 

This study developed an AIT prediction model designed to function as a hazard indicator. The methodology 

follows a sequential workflow and it is illustrated in Figure 1. It begins with the SMILES2Vec technique 

to transform SMILES into vector representations. It is followed by data preprocessing to handle missing 

values and normalize the AIT target variable, which then the dataset is partitioned into an 80:20 train-test 
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split. A baseline LSTM model is then developed. It is followed by the process of optimizing the baseline 

LSTM model using SA to optimize the hyperparameters. The process ends with the testing and evaluation 

of the final model. 

 
The dataset used in this research was obtained from Taylor & Francis Online website [13]. The dataset is 

in CSV format. It contains information of 801 hydrocarbon compounds and their physical and chemical 

properties. This dataset contains 126 descriptors for each hydrocarbon compound. The descriptors cover a 

lot of properties such as molecular structure, thermodynamic properties, and other physical and chemical 

properties. The target variable in this dataset is the AIT value which serves as the label for prediction. The 

input feature is the SMILES column which is later vectorized with SMILES2Vec. The histogram of AIT 

values is shown in Figure 2. The AIT spans from approximately 300 K to over 900 K with a slightly 

positively skewed distribution centered around 650-700 K. The AIT values were then normalized to ensure 

stable gradient behavior. 

 

 
Figure 2. Histogram of AIT values 

 
The SMILES2Vec method is used in this study to convert SMILES (Simplified Molecular-Input Line-Entry 

System) strings into numerical vector representations [14], [15]. It acts like a translator that takes a chemical 

sentence and turn it into a list of numbers that can be processed by deep learning architectures such as 

LSTM model which is proposed in this research. The SMILES2Vec flowchart is shown in Figure 3. It 

begins with the extraction of unique characters from the dataset to build a mapping dictionary. It is followed 

by identifying the maximum sequence length within the dataset. Padding is then applied to ensure that all 

input vectors possess the same dimension. It is followed by the process of converting each SMILES string 

into a matrix representation. The process is concluded with dimensionality reduction where specific 

functions are applied to compress the vector space. This step is used to reduce the computational complexity 

while preserving essential structural information. 

 

 
Figure 3. SMILES2Vec flowchart 

 
The Long Short-Term Memory (LSTM) neural network is utilized in this study. LSTM is a variant of the 

Recurrent Neural Network (RNN) which is designed to overcome the exploding and vanishing gradient. 
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These problems usually arise when learning long term dependencies in a sequential data [16]. These issues 

are mitigated through the use of a Constant Error Carousel (CEC) which stabilizes the flow of error signals 

within each cell. It allows gradients to propagate over extended time periods without diminishing or 

growing uncontrollably. 

 

The LSTM architecture mitigates the vanishing gradient problem through a gating mechanism that regulates 

the information flow [16]. The main core of LSTM architecture is the cell state. The cell state functions as 

the memory component that stores information across different time intervals. The process begins with the 

calculation of the block input, or candidate state, 𝑧(𝑡) which is formulated in Equation 1 and it represents 

new information potentially relevant to the sequence. 

 

The gates regulate the flow of information into, out of, and within the cell. The input gate determines which 

new information from the block input should be stored and it is calculated in Equation 2. The forget gate 

controls which information from the previous memory state that should be discarded. It is calculated in 

Equation 3. The current cell state 𝑐(𝑡) is then updated in Equation 4 by combining the retained previous 

memory and the significant new input. The output gate regulates how much of the cell state contributes to 

the hidden state at each time step and it is calculated in Equation 5. And lastly the hidden state or network 

output 𝑦(𝑡)is calculated in Equation 6 by filtering the activated cell state through the output gate. 

 

𝑧(𝑡) = 𝑔(𝑊𝑧𝑥(𝑡) + 𝑅𝑧𝑦(𝑡−1) + 𝑏𝑧) 

𝑖(𝑡) = 𝜎(𝑊𝑖𝑥
(𝑡) + 𝑅𝑖𝑦

(𝑡−1) + 𝑝𝑖ʘ𝑐(𝑡−1) + 𝑏𝑖) 

𝑓(𝑡) = 𝜎(𝑊𝑓𝑥(𝑡) + 𝑅𝑓𝑦(𝑡−1) + 𝑝𝑓ʘ𝑐(𝑡−1) + 𝑏𝑓) 

𝑐(𝑡) = 𝑧(𝑡) ʘ 𝑖(𝑡)  +  𝑐(𝑡−1) ʘ 𝑓(𝑡)) 

𝑜(𝑡) = 𝜎(𝑊𝑜𝑥(𝑡) + 𝑅𝑜𝑦(𝑡−1) + 𝑝𝑜ʘ𝑐(𝑡) + 𝑏𝑜) 

𝑦(𝑡) = 𝑔(𝑐(𝑡)) ʘ 𝑜(𝑡) 

() 

 () 

 () 

 () 

   () 

(6) 

 

A series of baseline LSTM models were trained to establish a performance benchmark for this experiment. 

To evaluate the impact of network depth on the model’s performance, three different baseline schemes were 

constructed. The parameters of the three baseline LSTM models are shown in Table 1. These three baseline 

models utilized a fixed and standardized configuration. The Rectified Linear Unit (ReLU) activation 

function and Adam optimizer were employed to isolate the influence of structural depth prior to the 

application of the Simulated Annealing hyperparameter optimization. 

 

Table 1. Parameter of LSTM model  

Scheme 
Hidden 

Layer Unit Activation Optimization Batch Size 

Baseline 1 1 [64] 
ReLU Adam 32 Baseline 2 2 [64, 64] 

Baseline 3 3 [64, 64, 64] 

 

The Simulated Annealing (SA) algorithm is used in this study to optimize the hyperparameters of the LSTM 

model. SA is a meta-heuristic local search algorithm capable of escaping local optima through its hill-

climbing mechanism [17], [18], [19]. SA is usually employed to solve discrete optimization problems. Its 

primary advantages over other local search methods include its flexibility and capacity to approach global 

optimality and also its robustness in handling highly non-linear models [18].  

 

The procedure of the Simulated Annealing algorithm iterates through a sequence of neighbor generation 

and evaluation steps designed to locate the global minimum of the loss landscape [18]. At each iteration, a 

new candidate solution is generated by applying a random perturbation to the current set of LSTM 

hyperparameters. The algorithm then evaluates the quality of this candidate by calculating the change in 

the objective function (validation MSE), denoted as 𝛿𝑓. If the candidate solution yields a lower error (𝛿𝑓 <
0), it is automatically accepted as the new current state. However, to facilitate the escape from local optima, 

the algorithm employs a stochastic acceptance mechanism for non-improving solutions. A candidate that 

increases the error (𝛿𝑓 < 0) is not immediately discarded. Instead, it is accepted with a specific probability 

determined by the Metropolis criterion. This probability p relies on the current temperature T and the 

magnitude of the performance degradation, as formulated in Equation 7. 
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 𝑝 = exp (−
𝛿𝑓

𝑇
)     () 

The bounds of SA algorithm used in this research are shown in Table 2. The algorithm starts with an initial 

temperature of 10.0 and proceeds for a maximum of 20 iterations to facilitate an extensive initial search of 

the hyperparameter space. A very important aspect of the configuration is the perturbation logic. It dictates 

how new candidate solutions are generated from the current state. Specific step sizes were assigned based 

on the parameter type. Discrete additive steps (±10 or ±20) were applied to structural integers (embedding 

and units). Finer continuous adjustments were utilized for the dropout rate (±0.05) and learning rate (±20%) 

to allow for precise tuning. 

 

Table 2. Configuration parameters for the SA algorithm 
SA Parameter Value 

Initial Temperature 10 
Max Iterations 20 

Perturbation (Emb and Unit) ±{10, 20} 

Perturbation (Dropout) ±0.05 

Perturbation (LR) ±20% 

 

Three different cooling schemes were evaluated to analyze the impact of the cooling rate on the algorithm’s 

behavior. The three cooling schemes are presented in Table 3. SA1 (ΔT = 0.7) represents a fast-cooling 

strategy used to maximize the computational efficiency. It sounds good because it prioritizes rapid 

convergence but it has a higher risk of premature entrapment in local minima. SA2 (ΔT = 0.8) serves as an 

intermediate control configuration to investigate the optimal balance between search thoroughness and 

convergence speed. SA3 (ΔT = 0.9) represents a slow cooling approach. It maintains higher temperatures 

for a prolonged duration to maximize the probability of escaping local optima through extensive exploration 

of the solution space. 

 

Table 3. Experimental cooling schemes for SA 
Scheme Cooling Factor (ΔT) Classification 

1 0.7 Fast Cooling 
2 0.8 Moderate Cooling 
3 0.9 Slow Cooling 

 

The embedding dimension, the number of LSTM units, the dropout rate, and the learning rate of the LSTM 

model were selected for modification and the defined search space is summarized in Table 4. 

 

Table 4. Search space and bounds for LSTM hyperparameters  
Hyperparameter Data Type

 
Lower Bound Upper Bound 

Embedding Dimension Integer 10 500 
LSTM Units Integer 20 500 
Dropout Rate Float 0.2 0.5 
Learning Rate Float 0.0001 0.01 

 

Three statistical metrics were employed to assess the predictive capability and generalization performance 

of the proposed model. These metrics are the Coefficient of Determination (R2), Root Mean Squared Error 

(RMSE), and Mean Absolute Percentage Error (MAPE). These three metrics provide a comprehensive 

evaluation of the model's accuracy in predicting the AIT of chemical compounds. 

 

The R2 score indicates the goodness of fit which represents the proportion of variance in the dependent 

variable (AIT) that is predictable from the feature [19]. An R2 closer to 1 indicates a model that perfectly 

predicts the observed data, meanwhile a value of 0 indicates no correlation. R2 is calculated in Equation 8. 

RMSE is particularly significant for hazard prediction as it penalizes larger errors more heavily than smaller 

ones [20]. Minimizing large deviations is very important to prevent underestimation of safety risks 

especially in the context of AIT. The formula is given in Equation 9. MAPE expresses the prediction 

accuracy as a percentage. It provides an intuitive measure of the error relative to the magnitude of the actual 

AIT values [21]. This allows for a clear interpretation of the model's reliability across different temperature 

ranges. MAPE is formulated in Equation 10. 
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In these equations, 𝑦𝑖  represents the actual experimental AIT values and ŷ𝑖 represents the AIT value 

predicted by the model. The variable ӯ represents the mean of the observed experimental values and lastly 

the variable n represents the total number of the samples in the dataset. 

 𝑅2 = 1 −
∑ (𝑦𝑖−ŷ𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−ӯ)2𝑛
𝑖=1

    () 

 𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑦𝑖 − ŷ𝑖)

2𝑛
𝑖=1     () 

 𝑀𝐴𝑃𝐸 =  
100%

𝑛
∑ |

𝑦𝑖−ŷ𝑖

𝑦𝑖
|𝑛

𝑖=1     () 

 

RESULT AND DISCUSSION 
Three different baseline LSTM configurations were constructed in the beginning of this study. These three 

models used standard hyperparameter configurations without optimization as discussed in the previous 

chapter. The objective was to investigate the influence of the layer depth and unit count on the model 

performance while also determining the baseline capability and identify the limitations when using 

manually selected parameter. 

 

The performance metrics for the baseline models are shown in Table 5. While all three models demonstrated 

the ability to learn the underlying patterns in the training data, achieving training R2 scores between 0.63 

and 0.66, their performance significantly degraded when applied to the unseen testing dataset. 

 

Table 5. Comparative of performance metrics of baseline LSTM models  
Train Data 

Scheme R2 RMSE MAPE 
Baseline 1 0.6529 66.7547 8.44% 
Baseline 2 0.6321 68.7244 8.59% 
Baseline 3 0.6589 66.1812 8.20% 

Test Data 
Scheme R2 RMSE MAPE 

Baseline 1 0.5682 74.3549 9.29% 
Baseline 2 0.5421 76.5678 9.25% 
Baseline 3 0.5586 75.1797 9.05% 

 

As observed in Table 5, the average testing R2 across the three baselines is approximately 0.56. This 

indicates that these unoptimized models can only explain roughly 56% of the variance in the AIT data. 

Furthermore, the testing RMSE values range from 74.35 K to 76.57 K. In the context of hazard indicators, 

a deviation of this magnitude suggests a high risk of misclassification. Lastly, the testing MAPE is in the 

range of 9.05% to 9.29% which is considerable. 

 

The learning behavior of the baseline models is visually represented in Figure 4. This figure displays the 

convergence of Loss (MSE) over the training epochs. Baseline 1 shows a rapid decrease in training loss 

initially. However, a noticeable gap emerges between the training and validation curves around epoch 20. 

The validation loss plateaus and exhibits noise which suggests the model is struggling to generalize features 

from the training set to the validation set. Other than that, baseline 2 exhibits the clearest signs of instability. 

While the training loss continues to decrease, the validation loss flattens significantly earlier. Lastly, the 

convergence plot of baseline 3 reveals that the validation loss stops improving relative to the training loss 

which indicates overfitting. 
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Figure 4. Convergence of training and validation loss plot of baseline 1 (a), baseline 2 (b), 

and baseline 3 (c) 
 

To overcome the performance limitations observed in the baseline models, SA algorithm was employed to 

navigate the hyperparameter space in accordance with the cooling schemes previously outlined. The 

convergence of the MSE for each baseline is presented in Figure 5. For baseline 1, scheme 1 demonstrated 

the most efficient trajectory which rapidly converging to the global minimum MSE of 0.412 by the 4th 

iteration. For baseline 2, scheme 1 also yielded the lowest final error which shows a sharp descent after the 

11th iteration. Lastly, for baseline 3, scheme 3 emerged as the superior strategy with the lowest final MSE 

of 0.421 at the 19th iteration. 

 

 
Figure 5. Comparative simulated annealing convergence of baseline 1 (a), baseline 2 (b), 

and baseline 3 (c) 
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The SA algorithm explored a search space consisting of embedding dimension, number of LSTM units, 

dropout rate, and learning rate. The optimal configurations identified for each baseline and scheme are 

summarized in Table 6. Among these configurations, the set yielding the lowest validation MSE was 

selected as the final SA-LSTM model for the detailed performance validation discussed in the following 

section. 

Table 6. Optimal hyperparameters identified by SA 

Baseline Scheme 
SA 

Scheme 

Embedding 

Dim 

LSTM 

Unit 

Dropout 

Rate 

Learning 

Rate 

Baseline 1 SA1 233 184 0.485 0.00182 

SA2 55 482 0.349 0.00040 

SA3 44 229 0.256 0.00270 

Baseline 2 SA1 279 366 0.476 0.00613 

SA2 140 38 0.285 0.00325 

SA3 351 456 0.248 0.00081 

Baseline 3 SA1 106 74 0.200 0.00863 

SA2 81 55 0.422 0.00263 

SA3 45 61 0.312 0.00772 

 

Following the optimization phase, the best performing configurations for each baseline were evaluated. The 

models that were chosen are Baseline 1-SA1, Baseline 2-SA1, and Baseline 3-SA3 and the final training 

and testing metrics for these optimized models are summarized in Table 7. Baseline 1-SA1 emerged to be 

the superior model. It succeeded in achieving the highest testing R2 (0.5939) and the lowest testing RMSE 

(72.10 K). This model demonstrated the best generalization capability, which can be seen in the minimal 

performance gap between training and testing scores. Baseline 2-SA1 showed signs of overfitting in 

contrast to Baseline 1-SA1. The training R2 of Baseline 2-SA1 (0.6324) was competitive, but the testing R2 

dropped significantly to 0.4991. The RMSE and MAPE also spiked to 80.08 K and 9.64%. This showed 

that the Baseline 2-SA1 memorized noise in the training data rather than learning the true chemical 

characteristics of the data. Baseline 3-SA3 also performed moderately but failed to surpass Baseline 1-SA1. 

The performance metrics of Baseline 3-SA3 showed a testing MAPE of 9.30% which indicates a higher 

relative error margin compared to the 8.87% achieved by Baseline 1-SA1. 

 

Table 7. Performance metrics of the optimized SA-LSTM models  
Train Data 

Scheme R2 RMSE MAPE 
Baseline 1-SA1 0.6491 67.12 8.44% 
Baseline 2-SA1 0.6324 68.70 8.28% 
Baseline 3-SA3 0.6073 71.01 8.89% 

Test Data 
Scheme R2 RMSE MAPE 

Baseline 1-SA1 0.5939 72.10 8.87% 
Baseline 2-SA1 0.4991 80.08 9.64% 
Baseline 3-SA3 0.5356 77.11 9.30% 

 

Baseline 1-SA1 model was selected as the final proposed model based on the model’s performances. The 

hyperparameters identified for Baseline 1-SA1 were an embedding dimension of 233, 184 LSTM units, a 

dropout rate of 0.485, and a learning rate of 0.00182. The robustness of this configuration can be attributed 

to the interaction between these parameters that were selected. The effectiveness of the SA optimization is 

evident when comparing the performance of the final best model against the unoptimized baseline model. 

The comparison between the unoptimized and optimized Baseline 1 model can be seen in Figure 6. The 

optimization with SA improved the testing R2 from 0.5682 to 0.5939 and reduced the MAPE from 9.29% 

to 8.87%. An R2 of approximately 0.59 indicates that the complexity of chemical structure-property 

relationships is still challenging to capture fully, but the reduction in RMSE from 74.35 to 72.10 K 

represents a real improvement in safety estimation. This reduction narrows the uncertainty window. It 

allows for a more reliable screening of chemical autoignition risks. 

 



 

 
Scientific Journal of Informatics, Vol. 12, No. 4, November 2025 | 729 

 
Figure 6. Performance comparison of baseline 1 and baseline 1-SA1 

 

CONCLUSION 

This study presented an optimized Long Short-Term Memory (LSTM) model optimized using Simulated 

Annealing (SA) to predict the Autoignition Temperature (AIT) of chemical compounds. The experimental 

results showed that the SA algorithm is effective in improving the performance of the unoptimized LSTM 

model. It can be seen from the performance of the best model selected, specifically Baseline 1-SA1. 

Baseline 1-SA1 model demonstrated the most efficient convergence that minimized the prediction error. 

The optimization using SA increased the R2 from 0.5682 to 0.5939. It also succeeded in reducing the MAPE 

from 9.29% to 8.87% and the RMSE from 74.35 K to 72.10 K. Despite the improvements achieved, this 

study acknowledges certain limitations to the proposed model and methodology. The performance of deep 

learning architectures like LSTM is heavily dependent on the volume and diversity of the dataset used. The 

dataset utilized in this study may suffer from data scarcity regarding rare or highly specialized chemical 

families even though it is representative of common industrial chemicals. To advance the capabilities of 

the current framework, future research may explore more deep learning architectures like Graph Neural 

Network (GNNs) or Transformers. Future works might also explore more parameters of SA to further refine 

the search trajectory and enhance the algorithm's precision. 

 

REFERENCES 
[1] C.-C. Chen and Y.-C. Hsieh, “Effect of Experimental Conditions on Measuring Autoignition 

Temperatures of Liquid Chemicals,” Ind. Eng. Chem. Res., vol. 49, no. 12, pp. 5925–5932, Jun. 

2010, doi: 10.1021/ie9020649. 

[2] B. E. Mitchell and P. C. Jurs, “Prediction of Autoignition Temperatures of Organic Compounds 

from Molecular Structure,” J. Chem. Inf. Comput. Sci., vol. 37, no. 3, pp. 538–547, May 1997, doi: 

10.1021/ci960175l. 

[3] C. C. Chen, T. H. Han, S. X. Hong, and D. J. Hsu, “Auto-Ignition Temperature Data for Selected 

Ketones,” Adv. Mat. Res., vol. 560–561, pp. 145–151, Aug. 2012, doi: 

10.4028/www.scientific.net/AMR.560-561.145. 

[4] I. I. Baskin, S. Lozano, M. Durot, G. Marcou, D. Horvath, and A. Varnek, “Autoignition 

temperature: comprehensive data analysis and predictive models,” SAR QSAR Environ. Res., vol. 

31, no. 8, pp. 597–613, Aug. 2020, doi: 10.1080/1062936X.2020.1785933. 

[5] Y. Pan, J. Jiang, R. Wang, H. Cao, and Y. Cui, “Predicting the auto-ignition temperatures of organic 

compounds from molecular structure using support vector machine,” J. Hazard. Mater., vol. 164, 

no. 2–3, pp. 1242–1249, May 2009, doi: 10.1016/j.jhazmat.2008.09.031. 

[6] A. Dashti, M. Jokar, F. Amirkhani, and A. H. Mohammadi, “Quantitative structure property 

relationship schemes for estimation of autoignition temperatures of organic compounds,” J. Mol. 

Liq., vol. 300, p. 111797, Feb. 2020, doi: 10.1016/j.molliq.2019.111797. 

[7] Y. Pan, J. Jiang, R. Wang, and H. Cao, “Advantages of support vector machine in QSPR studies 

for predicting auto-ignition temperatures of organic compounds,” Chemometrics and Intelligent 

Laboratory Systems, vol. 92, no. 2, pp. 169–178, Jul. 2008, doi: 10.1016/j.chemolab.2008.03.002. 

[8] F. Gharagheizi, “An accurate model for prediction of autoignition temperature of pure compounds,” 

J. Hazard. Mater., vol. 189, no. 1–2, pp. 211–221, May 2011, doi: 10.1016/j.jhazmat.2011.02.014. 



 

730 | Scientific Journal of Informatics, Vol. 12, No. 4, November 2025  

[9] B. Guo, Z. Cheng, and S. Hu, “Neural network-based prediction of auto-ignition temperature of 

ternary mixed liquids,” Heliyon, vol. 10, no. 7, p. e28713, Apr. 2024, doi: 

10.1016/j.heliyon.2024.e28713. 

[10] M. Sundermeyer, H. Ney, and R. Schluter, “From Feedforward to Recurrent LSTM Neural 

Networks for Language Modeling,” IEEE/ACM Trans. Audio Speech Lang. Process., vol. 23, no. 

3, pp. 517–529, Mar. 2015, doi: 10.1109/TASLP.2015.2400218. 

[11] J. A. Lazzús, “Autoignition Temperature Prediction Using an Artificial Neural Network with 

Particle Swarm Optimization,” Int. J. Thermophys., vol. 32, no. 5, pp. 957–973, May 2011, doi: 

10.1007/s10765-011-0956-4. 

[12] A. Dashti, M. Jokar, F. Amirkhani, and A. H. Mohammadi, “Quantitative structure property 

relationship schemes for estimation of autoignition temperatures of organic compounds,” J. Mol. 

Liq., vol. 300, p. 111797, Feb. 2020, doi: 10.1016/j.molliq.2019.111797. 

[13] J. Chen, L. Zhu, and J. Wang, “Quantitative structure-property relationship modelling on 

autoignition temperature: evaluation and comparative analysis,” SAR QSAR Environ. Res., vol. 

35, no. 3, pp. 199–218, Mar. 2024, doi: 10.1080/1062936X.2024.2312527. 

[14] A. M. Afinda, A. F. Karimah, and I. Kurniawan, “Gated Recurrent Unit with SMILES2Vec-based 

Descriptor for Predicting Drug Side Effects: Case Study of Hepatobiliary Disorders,” in 2023 

International Conference on Data Science and Its Applications (ICoDSA), IEEE, Aug. 2023, pp. 

426–431. doi: 10.1109/ICoDSA58501.2023.10276594. 

[15] A. F. Karimah, A. M. Afinda, and I. Kurniawan, “Implementation of SMILES2Vec-based LSTM 

for Predicting Drug Side Effects: Case Study of Hepatobiliary Disorder,” in 2023 International 

Conference on Data Science and Its Applications (ICoDSA), IEEE, Aug. 2023, pp. 333–338. doi: 

10.1109/ICoDSA58501.2023.10277245. 

[16] G. Van Houdt, C. Mosquera, and G. Nápoles, “A review on the long short-term memory model,” 

Artif. Intell. Rev., vol. 53, no. 8, pp. 5929–5955, Dec. 2020, doi: 10.1007/s10462-020-09838-1. 

[17] D. Bertsimas and J. Tsitsiklis, “Simulated Annealing,” Statistical Science, vol. 8, no. 1, Feb. 1993, 

doi: 10.1214/ss/1177011077. 

[18] D. Henderson, S. H. Jacobson, and A. W. Johnson, “The Theory and Practice of Simulated 

Annealing,” in Handbook of Metaheuristics, Boston: Kluwer Academic Publishers, pp. 287–319. 

doi: 10.1007/0-306-48056-5_10. 

[19] F. Busetti, “Simulated annealing overview.” [Online]. Available: http://www.geocities.com/ 

[20] M. S. Lewis-Beck and A. Skalaban, “The R -Squared: Some Straight Talk,” Political Analysis, vol. 

2, pp. 153–171, Jan. 1990, doi: 10.1093/pan/2.1.153. 

[21] T. O. Hodson, “Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them 

or not,” Geosci. Model Dev., vol. 15, no. 14, pp. 5481–5487, Jul. 2022, doi: 10.5194/gmd-15-5481-

2022. 

  


