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Abstract.

Purpose: Autoignition Temperature (AIT) is the lowest temperature at which a substance will spontaneously ignite in normal air
without any external ignition source. AlIT is an important safety parameter in industries that handles flammable materials. Measuring
AIT with conventional method is unfortunately slow, costly, and dangerous. As an alternative, an AIT prediction model can be
developed using in silico approaches, specifically based on machine learning.

Methods: One of the methods that can be used is Long Short-Term Memory (LSTM) since it is good at modeling the complex
relationships that is involved, but unfortunately it is difficult to tune manually due to their numerous hyperparameters. Therefore, an
automated strategy can be used to find the best hyperparameters for the architecture. This study aims to develop an AIT prediction
model as a hazard indicator using an LSTM model optimized with Simulated Annealing (SA).

Result: The experiment showed that the SA-LSTM model which uses a cooling schedule of Delta T = 0.7 outperformed the
unoptimized baseline model.

Novelty: The optimization raised the R? on test data from 0.5682 to 0.5939 while also lowering the RMSE from 74.35 K to 72.10 K
and the MAPE from 9.29% to 8.87%. These results confirmed that optimizing LSTM with SA gave a more robust tool for hazard
indicator.
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INTRODUCTION

Autoignition temperature (AIT) is the lowest temperature at which a substance can ignite in air at normal
atmospheric pressure without requiring an external energy source such as fire [1], [2], [3], [4], [5]. AIT is
an important safety parameter in many common situations related to the fire potential of chemicals, such
as production, processing, handling, shipping, and storage of materials [2]. Knowledge of AIT is crucial in
industrial environments because this concept is used to minimize potential losses and incidents that could
endanger safety. One example of its application is for electrical classification purposes, such as in NFPA
70 Section 500.8, which states that Class | equipment must not have open surfaces operating at temperatures
exceeding the ignition temperature of certain gases or vapors [3].

Unfortunately, experimental studies measuring AIT are relatively rare. These measurements are known to
be time-consuming and require expensive equipment. Testing usually takes 48 to 60 hours and operators
are required to be present in some cases [3]. Conventional way of measuring AIT is also very risky when
researchers handle hazardous chemicals [3]. Not to mention the average AIT measurement error is around
30°C according to some estimates [4]. Therefore, an alternative approach is needed in the form of a machine
learning based in silico method for developing AIT prediction models as a hazard indicator to minimize
testing time, costs, and risks.

Several studies have developed AIT prediction models using machine learning approaches. Pan et al. (2009)
[5] utilized Support Vector Machine (SVM) to predict AIT with a dataset of 446 diverse organic
compounds. The model achieved a Mean Absolute Error (MAE) of 28.88°C and a Root Mean Square Error
(RMSE) of 36.86°C. Dashti et al. (2019) [6] explored various soft computing approaches, including Genetic
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Programming (GP) and Adaptive Network-based Fuzzy Inference System (ANFIS), demonstrating the
capability of non-linear modeling in capturing AIT characteristics.

Several studies that utilized deep learning methods have also contributed to this domain. Pan et al. (2008)
[7] developed an Artificial Neural Network (ANN)-based Quantitative Structure-Property Relationship
(QSPR) model for 118 hydrocarbon compounds. The model yielded an RMSE of 31.09°C. Similarly,
Gharaghezi (2011) [8] employed an Artificial Neural Network-Group Contribution (ANN-GC) method on
a larger dataset of 1025 pure compounds and the model achieved a high correlation coefficient of 0.984 and
an RMSE of 15.44 K. Guo et al. (2024) [9] has also implemented advanced architectures. They specifically
implemented Back Propagation Neural Network (BPNN) and One Dimensional Convolutional Neural
Network (LDCNN) in their research. Their study highlighted the superiority of deep learning features, with
the BPNN and 1DCNN models producing RMSE values of 3.613°C and 5.284°C respectively.

AIT prediction models’ performance has room for improvement despite these research advancements. The
Long Short-Term Memory (LSTM) network can be used as an alternative for QSPR modeling due to its
potential in learning latent patterns from data that cannot be captured by ordinary feedforward models [10].
But it is noted that the success of an LSTM model depends entirely on how its hyperparameters are
configured. The architecture involves a complex search space which includes embedding dimensions,
number of units, dropout rates, and learning rates. This is why manual tuning in LSTM is inefficient and
prone to sub-optimal convergence. It is important to employ an automated optimization strategy to fine-
tune these parameters.

The use of metaheuristic optimization in AIT prediction has been validated in prior researches. Lazzus
(2010) [11] developed a hybrid model which combines the Group Contribution Method (GCM) with ANN
and Particle Swarm Optimization (PSO). The model predicted AIT values for external compounds with an
Average Absolute Relative Deviation (AARD) of only 1.7%. Similarly, Dashti et al. [12] demonstrated that
optimizing ANFIS with evolutionary algorithms such as Genetic Algorithms (GA), Differential Evolution
(DE), and PSO significantly improved prediction accuracy. The model achieved AARD values as low as
6.29%.

To the best of our knowledge, there has been no prior research investigating the specific application of
Simulated Annealing to optimize LSTM networks for the prediction of AIT. This study aims to develop an
AIT value prediction model as a hazard indicator using the LSTM method optimized with SA. With the
combination of LSTM and SA, it is expected that the resulting AIT prediction model will provide better
performance than the unoptimized model. This study will compare the performance of the LSTM model
optimized using SA with the LSTM model without optimization.

METHODS
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Figure 1. Research workflow

This study developed an AIT prediction model designed to function as a hazard indicator. The methodology
follows a sequential workflow and it is illustrated in Figure 1. It begins with the SMILES2Vec technique
to transform SMILES into vector representations. It is followed by data preprocessing to handle missing
values and normalize the AIT target variable, which then the dataset is partitioned into an 80:20 train-test
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split. A baseline LSTM model is then developed. It is followed by the process of optimizing the baseline
LSTM model using SA to optimize the hyperparameters. The process ends with the testing and evaluation
of the final model.

The dataset used in this research was obtained from Taylor & Francis Online website [13]. The dataset is
in CSV format. It contains information of 801 hydrocarbon compounds and their physical and chemical
properties. This dataset contains 126 descriptors for each hydrocarbon compound. The descriptors cover a
lot of properties such as molecular structure, thermodynamic properties, and other physical and chemical
properties. The target variable in this dataset is the AIT value which serves as the label for prediction. The
input feature is the SMILES column which is later vectorized with SMILES2Vec. The histogram of AIT
values is shown in Figure 2. The AIT spans from approximately 300 K to over 900 K with a slightly
positively skewed distribution centered around 650-700 K. The AIT values were then normalized to ensure
stable gradient behavior.
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Figure 2. Histogram of AIT values

The SMILES2Vec method is used in this study to convert SMILES (Simplified Molecular-Input Line-Entry
System) strings into numerical vector representations [14], [15]. It acts like a translator that takes a chemical
sentence and turn it into a list of numbers that can be processed by deep learning architectures such as
LSTM model which is proposed in this research. The SMILES2Vec flowchart is shown in Figure 3. It
begins with the extraction of unique characters from the dataset to build a mapping dictionary. It is followed
by identifying the maximum sequence length within the dataset. Padding is then applied to ensure that all
input vectors possess the same dimension. It is followed by the process of converting each SMILES string
into a matrix representation. The process is concluded with dimensionality reduction where specific
functions are applied to compress the vector space. This step is used to reduce the computational complexity
while preserving essential structural information.
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Figure 3. SMILES2Vec flowchart

The Long Short-Term Memory (LSTM) neural network is utilized in this study. LSTM is a variant of the
Recurrent Neural Network (RNN) which is designed to overcome the exploding and vanishing gradient.
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These problems usually arise when learning long term dependencies in a sequential data [16]. These issues
are mitigated through the use of a Constant Error Carousel (CEC) which stabilizes the flow of error signals
within each cell. It allows gradients to propagate over extended time periods without diminishing or
growing uncontrollably.

The LSTM architecture mitigates the vanishing gradient problem through a gating mechanism that regulates
the information flow [16]. The main core of LSTM architecture is the cell state. The cell state functions as
the memory component that stores information across different time intervals. The process begins with the
calculation of the block input, or candidate state, z® which is formulated in Equation 1 and it represents
new information potentially relevant to the sequence.

The gates regulate the flow of information into, out of, and within the cell. The input gate determines which
new information from the block input should be stored and it is calculated in Equation 2. The forget gate
controls which information from the previous memory state that should be discarded. It is calculated in
Equation 3. The current cell state ¢® is then updated in Equation 4 by combining the retained previous
memory and the significant new input. The output gate regulates how much of the cell state contributes to
the hidden state at each time step and it is calculated in Equation 5. And lastly the hidden state or network
output y®is calculated in Equation 6 by filtering the activated cell state through the output gate.

20 = gWx® + Ry ™V + b)) M
i®O=agWx® + Ryt D + p,0c® + b)) )
fO =oWx® + Ry + p0ctD + by) A3)
c®=7z00i0O 4 DO fFO) 4)
0® = g(W,x® + Ry + p,0c® + b,) )
y®© = g(c®)© o® (6)

A series of baseline LSTM models were trained to establish a performance benchmark for this experiment.
To evaluate the impact of network depth on the model’s performance, three different baseline schemes were
constructed. The parameters of the three baseline LSTM models are shown in Table 1. These three baseline
models utilized a fixed and standardized configuration. The Rectified Linear Unit (ReLU) activation
function and Adam optimizer were employed to isolate the influence of structural depth prior to the
application of the Simulated Annealing hyperparameter optimization.

Table 1. Parameter of LSTM model

Scheme Hidden Unit Activation Optimization Batch Size
Layer
Baseline 1 1 [64]
Baseline 2 2 [64, 64] ReLU Adam 32
Baseline 3 3 [64, 64, 64]

The Simulated Annealing (SA) algorithm is used in this study to optimize the hyperparameters of the LSTM
model. SA is a meta-heuristic local search algorithm capable of escaping local optima through its hill-
climbing mechanism [17], [18], [19]. SA is usually employed to solve discrete optimization problems. Its
primary advantages over other local search methods include its flexibility and capacity to approach global
optimality and also its robustness in handling highly non-linear models [18].

The procedure of the Simulated Annealing algorithm iterates through a sequence of neighbor generation
and evaluation steps designed to locate the global minimum of the loss landscape [18]. At each iteration, a
new candidate solution is generated by applying a random perturbation to the current set of LSTM
hyperparameters. The algorithm then evaluates the quality of this candidate by calculating the change in
the objective function (validation MSE), denoted as §f. If the candidate solution yields a lower error (6f <
0), itis automatically accepted as the new current state. However, to facilitate the escape from local optima,
the algorithm employs a stochastic acceptance mechanism for non-improving solutions. A candidate that
increases the error (6f < 0) is not immediately discarded. Instead, it is accepted with a specific probability
determined by the Metropolis criterion. This probability p relies on the current temperature T and the
magnitude of the performance degradation, as formulated in Equation 7.
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The bounds of SA algorithm used in this research are shown in Table 2. The algorithm starts with an initial
temperature of 10.0 and proceeds for a maximum of 20 iterations to facilitate an extensive initial search of
the hyperparameter space. A very important aspect of the configuration is the perturbation logic. It dictates
how new candidate solutions are generated from the current state. Specific step sizes were assigned based
on the parameter type. Discrete additive steps (10 or +20) were applied to structural integers (embedding
and units). Finer continuous adjustments were utilized for the dropout rate (+0.05) and learning rate (+20%)
to allow for precise tuning.

Table 2. Configuration parameters for the SA algorithm

SA Parameter Value
Initial Temperature 10
Max Iterations 20
Perturbation (Emb and Unit) +{10, 20}
Perturbation (Dropout) +0.05
Perturbation (LR) +20%

Three different cooling schemes were evaluated to analyze the impact of the cooling rate on the algorithm’s
behavior. The three cooling schemes are presented in Table 3. SA1 (AT = 0.7) represents a fast-cooling
strategy used to maximize the computational efficiency. It sounds good because it prioritizes rapid
convergence but it has a higher risk of premature entrapment in local minima. SA2 (AT = 0.8) serves as an
intermediate control configuration to investigate the optimal balance between search thoroughness and
convergence speed. SA3 (AT = 0.9) represents a slow cooling approach. It maintains higher temperatures
for a prolonged duration to maximize the probability of escaping local optima through extensive exploration
of the solution space.

Table 3. Experimental cooling schemes for SA

Scheme Cooling Factor (AT) Classification
1 0.7 Fast Cooling
2 0.8 Moderate Cooling
3 0.9 Slow Cooling

The embedding dimension, the number of LSTM units, the dropout rate, and the learning rate of the LSTM
model were selected for modification and the defined search space is summarized in Table 4.

Table 4. Search space and bounds for LSTM hyperparameters

Hyperparameter Data Type Lower Bound Upper Bound
Embedding Dimension Integer 10 500
LSTM Units Integer 20 500
Dropout Rate Float 0.2 0.5
Learning Rate Float 0.0001 0.01

Three statistical metrics were employed to assess the predictive capability and generalization performance
of the proposed model. These metrics are the Coefficient of Determination (R?), Root Mean Squared Error
(RMSE), and Mean Absolute Percentage Error (MAPE). These three metrics provide a comprehensive
evaluation of the model's accuracy in predicting the AIT of chemical compounds.

The R? score indicates the goodness of fit which represents the proportion of variance in the dependent
variable (AIT) that is predictable from the feature [19]. An R? closer to 1 indicates a model that perfectly
predicts the observed data, meanwhile a value of 0 indicates no correlation. R? is calculated in Equation 8.
RMSE is particularly significant for hazard prediction as it penalizes larger errors more heavily than smaller
ones [20]. Minimizing large deviations is very important to prevent underestimation of safety risks
especially in the context of AIT. The formula is given in Equation 9. MAPE expresses the prediction
accuracy as a percentage. It provides an intuitive measure of the error relative to the magnitude of the actual
AIT values [21]. This allows for a clear interpretation of the model's reliability across different temperature
ranges. MAPE is formulated in Equation 10.
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In these equations, y; represents the actual experimental AIT values and y; represents the AIT value
predicted by the model. The variable § represents the mean of the observed experimental values and lastly
the variable n represents the total number of the samples in the dataset.

2 _q _ LEa0im30?
R7=1 L 0i9)? ®
1 A
RMSE = |=Xi (v = §)? (€))
MAPE = 22y, || (10)

RESULT AND DISCUSSION

Three different baseline LSTM configurations were constructed in the beginning of this study. These three
models used standard hyperparameter configurations without optimization as discussed in the previous
chapter. The objective was to investigate the influence of the layer depth and unit count on the model
performance while also determining the baseline capability and identify the limitations when using
manually selected parameter.

The performance metrics for the baseline models are shown in Table 5. While all three models demonstrated
the ability to learn the underlying patterns in the training data, achieving training R? scores between 0.63
and 0.66, their performance significantly degraded when applied to the unseen testing dataset.

Table 5. Comparative of performance metrics of baseline LSTM models

Train Data
Scheme R? RMSE MAPE
Baseline 1 0.6529 66.7547 8.44%
Baseline 2 0.6321 68.7244 8.59%
Baseline 3 0.6589 66.1812 8.20%
Test Data
Scheme R? RMSE MAPE
Baseline 1 0.5682 74.3549 9.29%
Baseline 2 0.5421 76.5678 9.25%
Baseline 3 0.5586 75.1797 9.05%

As observed in Table 5, the average testing R? across the three baselines is approximately 0.56. This
indicates that these unoptimized models can only explain roughly 56% of the variance in the AIT data.
Furthermore, the testing RMSE values range from 74.35 K to 76.57 K. In the context of hazard indicators,
a deviation of this magnitude suggests a high risk of misclassification. Lastly, the testing MAPE is in the
range of 9.05% to 9.29% which is considerable.

The learning behavior of the baseline models is visually represented in Figure 4. This figure displays the
convergence of Loss (MSE) over the training epochs. Baseline 1 shows a rapid decrease in training loss
initially. However, a noticeable gap emerges between the training and validation curves around epoch 20.
The validation loss plateaus and exhibits noise which suggests the model is struggling to generalize features
from the training set to the validation set. Other than that, baseline 2 exhibits the clearest signs of instability.
While the training loss continues to decrease, the validation loss flattens significantly earlier. Lastly, the
convergence plot of baseline 3 reveals that the validation loss stops improving relative to the training loss
which indicates overfitting.
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Figure 4. Convergence of training and validation loss plot of baseline 1 (a), baseline 2 (b),
and baseline 3 (c)

To overcome the performance limitations observed in the baseline models, SA algorithm was employed to
navigate the hyperparameter space in accordance with the cooling schemes previously outlined. The
convergence of the MSE for each baseline is presented in Figure 5. For baseline 1, scheme 1 demonstrated
the most efficient trajectory which rapidly converging to the global minimum MSE of 0.412 by the 4th
iteration. For baseline 2, scheme 1 also yielded the lowest final error which shows a sharp descent after the

11th iteration. Lastly, for baseline 3, scheme 3 emerged as the superior strategy with the lowest final MSE
of 0.421 at the 19th iteration.

(a) (b}

Corrgm shvm S5 Canaw pance b Baaw ne

(c)
Figure 5. Comparative simulated annealing convergence of baseline 1 (a), baseline 2 (b),
and baseline 3 (c)
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The SA algorithm explored a search space consisting of embedding dimension, number of LSTM units,
dropout rate, and learning rate. The optimal configurations identified for each baseline and scheme are
summarized in Table 6. Among these configurations, the set yielding the lowest validation MSE was
selected as the final SA-LSTM model for the detailed performance validation discussed in the following
section.

Table 6. Optimal hyperparameters identified by SA

Baseline Scheme SA Emquding LSTM Dropout Learning
Scheme Dim Unit Rate Rate

Baseline 1 SAl 233 184 0.485 0.00182
SA2 55 482 0.349 0.00040

SA3 44 229 0.256 0.00270

Baseline 2 SAl 279 366 0.476 0.00613
SA2 140 38 0.285 0.00325

SA3 351 456 0.248 0.00081

Baseline 3 SAl 106 74 0.200 0.00863
SA2 81 55 0.422 0.00263

SA3 45 61 0.312 0.00772

Following the optimization phase, the best performing configurations for each baseline were evaluated. The
models that were chosen are Baseline 1-SAL, Baseline 2-SA1, and Baseline 3-SA3 and the final training
and testing metrics for these optimized models are summarized in Table 7. Baseline 1-SA1 emerged to be
the superior model. It succeeded in achieving the highest testing R? (0.5939) and the lowest testing RMSE
(72.10 K). This model demonstrated the best generalization capability, which can be seen in the minimal
performance gap between training and testing scores. Baseline 2-SAL1 showed signs of overfitting in
contrast to Baseline 1-SAL. The training R? of Baseline 2-SA1 (0.6324) was competitive, but the testing R?
dropped significantly to 0.4991. The RMSE and MAPE also spiked to 80.08 K and 9.64%. This showed
that the Baseline 2-SA1 memorized noise in the training data rather than learning the true chemical
characteristics of the data. Baseline 3-SA3 also performed moderately but failed to surpass Baseline 1-SA1.
The performance metrics of Baseline 3-SA3 showed a testing MAPE of 9.30% which indicates a higher
relative error margin compared to the 8.87% achieved by Baseline 1-SA1.

Table 7. Performance metrics of the optimized SA-LSTM models

Train Data
Scheme R? RMSE MAPE
Baseline 1-SA1 0.6491 67.12 8.44%
Baseline 2-SA1 0.6324 68.70 8.28%
Baseline 3-SA3 0.6073 71.01 8.89%
Test Data
Scheme R? RMSE MAPE
Baseline 1-SA1 0.5939 72.10 8.87%
Baseline 2-SA1 0.4991 80.08 9.64%
Baseline 3-SA3 0.5356 77.11 9.30%

Baseline 1-SA1 model was selected as the final proposed model based on the model’s performances. The
hyperparameters identified for Baseline 1-SA1 were an embedding dimension of 233, 184 LSTM units, a
dropout rate of 0.485, and a learning rate of 0.00182. The robustness of this configuration can be attributed
to the interaction between these parameters that were selected. The effectiveness of the SA optimization is
evident when comparing the performance of the final best model against the unoptimized baseline model.
The comparison between the unoptimized and optimized Baseline 1 model can be seen in Figure 6. The
optimization with SA improved the testing R? from 0.5682 to 0.5939 and reduced the MAPE from 9.29%
to 8.87%. An R? of approximately 0.59 indicates that the complexity of chemical structure-property
relationships is still challenging to capture fully, but the reduction in RMSE from 74.35 to 72.10 K
represents a real improvement in safety estimation. This reduction narrows the uncertainty window. It
allows for a more reliable screening of chemical autoignition risks.
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Figure 6. Performance comparison of baseline 1 and baseline 1-SA1

CONCLUSION

This study presented an optimized Long Short-Term Memory (LSTM) model optimized using Simulated
Annealing (SA) to predict the Autoignition Temperature (AIT) of chemical compounds. The experimental
results showed that the SA algorithm is effective in improving the performance of the unoptimized LSTM
model. It can be seen from the performance of the best model selected, specifically Baseline 1-SAL.
Baseline 1-SA1 model demonstrated the most efficient convergence that minimized the prediction error.
The optimization using SA increased the R? from 0.5682 to 0.5939. It also succeeded in reducing the MAPE
from 9.29% to 8.87% and the RMSE from 74.35 K to 72.10 K. Despite the improvements achieved, this
study acknowledges certain limitations to the proposed model and methodology. The performance of deep
learning architectures like LSTM is heavily dependent on the volume and diversity of the dataset used. The
dataset utilized in this study may suffer from data scarcity regarding rare or highly specialized chemical
families even though it is representative of common industrial chemicals. To advance the capabilities of
the current framework, future research may explore more deep learning architectures like Graph Neural
Network (GNNSs) or Transformers. Future works might also explore more parameters of SA to further refine
the search trajectory and enhance the algorithm's precision.
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