
Scientific Journal of Informatics
 Vol. 11, No. 2, May 2024

p-ISSN 2407-7658 https://journal.unnes.ac.id/journals/sji/index e-ISSN 2460-0040

Scientific Journal of Informatics, Vol. 11, No. 2, May 2024 | 387

OffensiveRezzer: A Novel Black-Box Fuzzing Tool for Web API

Danar Gumilang Putera1, Ruki Harwahyu2*
1,2Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia

Abstract.

Purpose: The purpose of this study is to introduce OffensiveRezzer, a novel tool designed for black-box fuzzing on

Web APIs, and to evaluate its effectiveness in detecting errors, particularly focusing on errors related to input validation

implementation.

Methods: We introduced OffensiveRezzer and conducted a comparative analysis against existing fuzzing tools such
as EvoMaster, Schemathesis, RestTestGen, Restler, and Tcases to assess its performance. Fuzzing experiments were

carried out on a custom Web API application with different input validation levels, namely no input validation, partial

input validation, and full input validation.

Result: OffensiveRezzer demonstrated superior performance compared to other fuzzing tools in identifying errors in
Web APIs. It outperformed competitors by detecting the highest number of unique errors. The total number of errors

found by OffensiveRezzer in the application without validation, the application with partial validation, and the

application with full validation was 416, followed by Restler (240), RestTestGen (145), EvoMaster (138), Tcases (78),

and Schemathesis (42).
Novelty: The study has presented OffensiveRezzer as a novel tool specifically designed for black-box fuzzing on Web

APIs, with a primary focus on testing input validation implementation. This tool fills a gap in existing fuzzing tools

and offers improved capabilities for detecting errors in Web APIs.

Keywords: Black-box testing, Fuzzing, REST, Web API

Received May 2024 / Revised May 2024 / Accepted May 2024

This work is licensed under a Creative Commons Attribution 4.0 International License.

INTRODUCTION
Web API technology has found widespread implementation across diverse applications, enabling different

application services to engage and exchange information over network platforms [1]. It enables applications

to expose their functionalities for use by others, making it a prominent choice for application integration.

For example, third-party applications like payment gateways or real-time notification services can

efficiently send and receive data from corporation applications via Web API. Web API interaction requires

provider and consumer applications to adhere to a specific communication architecture. Various

communication architectures, such as REST, GraphQL, and RPC, can be implemented within Web API,

with REST emerging as the most used architecture [2].

Like web applications, Web API is vulnerable to various cybersecurity threats. Furthermore, the rising

prevalence of Web API across diverse application infrastructures has captured the interest of malicious

actors, leading them to target vulnerabilities within applications that make use of Web API [3]. Notable

security weaknesses associated with Web API include CVE-2021-21972 and CVE-2023-34048 in vCenter

software, as well as data breaches at Optus and T-Mobile. Regarding vCenter software, critical endpoints

lack appropriate authentication, and insecure input validation methods lead to remote code execution

(RCE). Similarly, the security breaches at Optus and T-Mobile resulted from a lack of authentication in one

of their API endpoints. These examples show how configuration and security implementation often evades

the attention of application developers [4], [5].

Preventing vulnerabilities arising from misconfigurations and flawed security implementations can be

achieved before application deployment through security testing. Good security testing must be able to

cover all possible errors that could occur in an application [6]. Fuzzing, also referred to as fuzz testing,

stands out as a pivotal method for functionality and security testing. It involves testing insecure input

validations to uncover security vulnerabilities. During the fuzzing process, the tested application received

*
Corresponding author.

Email addresses: danar.gumilang@ui.ac.id (Putera), ruki.hwyu@gmail.com (Harwahyu)*

DOI: 10.15294/sji.v11i2.4631

http://creativecommons.org/licenses/by/4.0/
https://journal.unnes.ac.id/journals/sji/article/view/4631

388 | Scientific Journal of Informatics, Vol. 11, No. 2, May 2024

various data inputs, including random data, data not matching specifications, and data containing malicious

content, to assess the application's defense against potential damage caused by malicious inputs [7]. Fuzzing

uses various methodologies, including black-box and white-box approaches [8]. Fuzzing with a black-box

approach usually generates test scenario coverage that is not too broad compared to fuzzing with a white-

box approach. In the black-box approach, the generated fuzzing test scenarios are only based on general

application specifications, such as data input specifications. This is different from the white-box approach,

where apart from analyzing the general specifications of the application, white-box fuzzing also analyses

the application source code so that it can understand the internal processes of the application and generate

better test scenario coverage.

In the context of fuzzing for Web API, previous research has developed various fuzzing tools with different

fuzzing algorithms. Atlidakis et al. [9], [10] and Godefroid et al. [11] developed a tool for performing black-

box fuzzing on Web APIs called Restler. In fuzzing experiments carried out by the authors, Restler

succeeded in finding new errors in Office365, Gitlab, and AzureDNS application services. Arcuri [12]

developed a tool called EvoMaster, which can be used to perform black-box and white-box fuzzing on Web

APIs. Through fuzzing experiments with EvoMaster, the author managed to find errors in several open-

source-based Web APIs. Viglianisi et al. [13] and Corradini et al. [14] developed a tool for black-box

fuzzing on Web APIs called RestTestGen. Through fuzzing experiments on several public Web API

applications, RestTestGen succeeded in finding errors in several application endpoints. Laranjeiro et al.

[15] also developed a black-box fuzzing tool called bBOXRT, which focuses on testing input validation

mechanisms in applications. Hatfield-Dodds et al. [16] developed a tool called Schemathesis, which is

designed to perform black-box fuzzing quickly with comprehensive findings. Alonso et al. [17] developed

ARTE, a fuzzing algorithm designed to generate valid and invalid data inputs based on syntax and

semantics. Lei et al. [18] developed a tool called Leif, which can be used to perform black-box fuzzing on

Web APIs. In generating test scenarios, Leif uses application input specifications to generate test payloads

that match the input type or format, such as string data input, which can have many formats and patterns.

For applications with complex data input structures, such as input consisting of many fields with different

data types, current state-of-the-art fuzzing tools are still less effective in exploiting errors, as seen in the

experimental results of this study. Apart from that, some state-of-the-art fuzzing tools tend not to exploit

further errors when they have succeeded in finding errors or no longer find errors, so the error found is less

comprehensive. Because there are still limitations in the current state-of-the-art fuzzing tools, we proposed

OffensiveRezzer, a novel fuzzing tool specifically designed for black-box fuzzing on Web APIs. The

primary contributions of this study are outlined below:

1) We developed OffensiveRezzer, a novel fuzzing tool for Web API designed to exploit errors effectively

and efficiently in each input field so that it can find all possible errors related to data input.

2) We developed a custom Web API application specifically designed as a benchmark to measure the

performance of fuzzing tools. This application has complex data input structures and configurations to

set the input validation level. The input validation levels that can be set in this application are no

validation, partial validation, and full validation. By implementing different levels of validation, we

can find out the actual performance of a fuzzing tool.

OffensiveRezzer (short for Offensive RESTful Fuzzer) is a tool we developed to perform black-box fuzzing

on Web API applications that implement REST architecture. The main focus of OffensiveRezzer is to test

the implementation of input validation mechanisms in the application. In testing the validation mechanism,

OffensiveRezzer tries to exploit types of errors related to data input, namely missing required, invalid type,

and constraint violation. For missing required errors, OffensiveRezzer will delete the fields in the data input

structure individually. For invalid type errors, OffensiveRezzer will change the data type of the input field.

For example, suppose the application expects an input field to have a string data type. In that case,

OffensiveRezzer will mutate the input field with another data type, for example, an integer, object, or array.

For constraint violation errors, OffensiveRezzer will send input with the expected data type but with a value

that does not match the specified minimum or maximum constraint.

Missing required, invalid type, and constraint violation mutations will be applied to each input field so that

the fuzzing payloads generated by OffensiveRezzer can find hidden errors/bugs in the application.

OffensiveRezzer relies heavily on the application specification written in OpenAPI version 3 to create

fuzzing payloads. The more complete the specification information, the more comprehensive the fuzzing

payload coverage generated by OffensiveRezzer. At present, OffensiveRezzer remains in its initial

Scientific Journal of Informatics, Vol. 11, No. 2, May 2024 | 389

prototype phase and is undergoing continuous development. At this stage, OffensiveRezzer can dispatch

fuzzing payloads to application endpoints through various HTTP methods such as GET, POST, PATCH,

PUT, and DELETE. Fuzzing payloads generated by OffensiveRezzer apply to data input in the request

body, query parameters, and path parameters. One of OffensiveRezzer's limitations is that OffensiveRezzer

still cannot perform fuzzing on application endpoints that require authentication to be accessed. The source

code and how to use OffensiveRezzer can be seen in our GitHub repository [19].

In the context of the OpenAPI specification, input types are generally divided into two main categories,

namely primitive types and complex types. Primitive types consist of string, number, integer, and boolean

data types, while complex types consist of object and array data types. The object data type consists of

several attributes or fields, each with its own value and data type. An attribute in an object can have a value

with a primitive or complex data type. For example, if an attribute in an object has a value with the object

data type, then the entire object will form a nested object. Then, the array data type contains a collection of

elements with the same data type. An array can contain a collection of values with primitive or complex

types. For example, if an array contains a collection of values with the object data type where the object

has the same structure for each element, then the entire array will form an array of objects. Especially for

the string data type, the expected value can contain a specific format or pattern. For example, the string data

type may include additional format information with the datetime value indicating that the given input

string value must be a valid datetime format. The string data type can also include certain pattern

information, which is usually denoted with regular expression syntax.

In creating variations of fuzzing payloads, OffensiveRezzer will first create valid data input. Creating valid

data input is an essential initial process, and this valid input will be used as a basis for performing input

mutations. For integer and number data types, OffensiveRezzer will generate two value variations, namely

value 1 (default) and minimum value (optional), if the specification contains information regarding the

minimum value of an input field. For the boolean data type, OffensiveRezzer will randomly generate true

or false values. For the string data type, OffensiveRezzer will first generate two value variations, namely

'fuzz' (default) and the character 'f' multiplied by the number of minimum character lengths if the

specification contains information regarding the minimum character length. Giving default values and

values matching the minimum constraint ensures the generated input is valid. Because the string data type

can contain information about formats or patterns, OffensiveRezzer will perform further analysis to be able

to generate string values that match specific formats or patterns. OffensiveRezzer will use a regular

expression to generate a string value that matches the pattern if there is information about a pattern. If there

is information regarding the format and the format is a datetime/date format, OffensiveRezzer will then

create a current datetime/date value, which is then converted into a string value with a valid datetime/date

format. For the object data type, OffensiveRezzer will create an object that contains various fields and their

values according to the data type of each field. For the array data type, OffensiveRezzer will create a data

array containing one element with a value according to the specification. Figure 1 shows an example of

valid data input generated by OffensiveRezzer based on the definitions in the application specification.

After generating valid data input, OffensiveRezzer will perform various value mutations based on that data

input. To be able to mutate values, OffensiveRezzer requires a valid input example along with input

specification information. The first mutation variation performed by OffensiveRezzer is the missing

required mutation. In performing the missing required mutation, OffensiveRezzer will first copy the

generated valid input. From the copy of the valid data, OffensiveRezzer will delete the input fields one by

one. For example, suppose an input is an object type consisting of fields A and B. In that case,

OffensiveRezzer will generate two fuzzing payloads: a data object that only consists of field B and a data

object that only contains field A. Especially for input with the array data type, apart from eliminating the

input field, OffensiverRezzer will also mutate the value by assigning a value in the form of an empty array.

An empty array is an array that does not have a single element. Figure 2 shows an example of a missing

required mutation generated by OffensiverRezzer based on the application specification and the valid input

example.

390 | Scientific Journal of Informatics, Vol. 11, No. 2, May 2024

Figure 1. Example of valid input generated by OffensiveRezzer.

Figure 2. Example of missing field input generated by OffensiveRezzer.

After performing the missing required mutation, the following mutation variation performed by

OffensiveRezzer is the invalid type mutation. In performing the invalid type mutation, OffensiveRezzer

will also first copy the generated valid input. From the copy of the valid data, OffensiveRezzer will assign

values with inappropriate data types to each input field in turn. The invalid type mutation algorithm used

by OffensiveRezzer is quite simple. For each input field that has a primitive data type (string, integer,

number, and boolean), it will be given a value with the object data type. In contrast, input fields with

Scientific Journal of Informatics, Vol. 11, No. 2, May 2024 | 391

complex data types (object and array) will be given a value with the string data type. Each input field with

a primitive data type will have its value mutated to “{fuzz: ‘fuzz’}” while the input field with a complex

data type will have its value mutated to the string “fuzz”. Especially for input with an array data type, apart

from assigning values with a primitive data type, OffensiveRezzer will also perform invalid type mutations

on the elements in the array. For instance, suppose an input has an array type containing string elements.

In that case, OffensiveRezzer will perform an invalid type mutation by assigning a value in the form of a

data array containing object elements. On the other hand, arrays with complex elements will get an invalid

type mutation to an array with primitive elements. Figure 3 shows an example of an invalid type mutation

generated by OffensiverRezzer based on the application specification and the valid input example.

Figure 3. Example of invalid type input generated by OffensiveRezzer.

After performing the invalid type mutation, the final mutation variation performed by OffensiveRezzer is

the constraint violation mutation. As the name suggests, the constraint violation mutation will generate

input values that do not match the minimum/maximum constraints in the application specification. The

constraint violation mutation performed by OffensiveRezzer only applies to string, integer, and number

data types. Before performing the constraint violation mutation, OffensiveRezzer will first copy the

generated valid data input. From the copy of the valid data, OffensiveRezzer will assign values that do not

match the constraints to each string, number, or integer input field in turn. Especially for input with the

array data type, if the array elements have the string, number, or integer data type, OffensiveRezzer will

also perform the constraint violation mutation on the array elements. The constraint violation mutation

algorithm used by OffensiveRezzer is quite simple, namely by assigning extreme values to each input field.

For example, for input with a number or integer data type, OffensiveRezzer will generate a huge value like

101000. Suppose the application specification contains information regarding the minimum/maximum value.

In that case, OffensiveRezzer will also assign an input value that is less than the minimum requirement and

greater than the maximum requirement. For example, we subtract 109 from the minimum allowed value,

and add 109 to the maximum allowed value. Another example is if an input has a string data type with a

datetime format, then OffensiveRezzer will perform a mutation by subtracting and adding 105 years to the

valid datetime value. Figure 4 shows an example of the constraint violation mutation generated by

OffensiverRezzer based on the application specification and the valid input example.

392 | Scientific Journal of Informatics, Vol. 11, No. 2, May 2024

Figure 4. Example of constraint violation input generated by OffensiveRezzer.

METHODS

Tested web API application

The fuzzing target in this experiment was a custom Web API application that we developed ourselves,

specifically designed as a benchmark for measuring the performance of fuzzing tools. This application is

built with Python, the Flask HTTP framework, and the Pydantic input validation library. This application

has configurations to set the level of input validation that will be applied to the application. The input

validation levels that can be set are no validation, partial validation, and full validation. In the application

with partial validation, it will only check the input type, while full validation will check the data type and

constraints of the input. For example, the application has an input field with a string data type, a minimum

character length of 3, and a maximum character length of 1000. In this example, partial validation will only

check whether the data input received by the application is string-type input without checking the character

length of the data input, while full validation will also check whether the received input value matches

constraint specifications.

The tested application is an e-commerce Web API that has 7 endpoints that can be accessed via the POST

method. Details regarding all application endpoints and application source code can be seen in our GitHub

repository [20]. Each endpoint has a different input structure or specification. The endpoint URL name

represents the composition of the data input that must be sent. For example, at the /product endpoint, the

client must send data input containing fields related to the Product entity. Figure 5 shows an example of

data input for the /product endpoint. Another example is the /product-tag-category endpoint, which has

more complex input specifications than the /product endpoint. Apart from sending data input containing

fields related to the Product entity, the client must also send input fields related to the Tag and Category

entities. Figure 6 shows an example of data input for the /product-tag-category endpoint.

We did not use existing benchmark applications or open-source/real-world applications because we wanted

to perform fuzzing experiments on applications with complex input structures and applications with

different input validation level implementations. It will be easier for us to build our applications rather than

looking for real-world applications that can meet the needs of this research experiment. Performing fuzzing

on applications with complex input structures and different validation levels is very important because it

can measure the actual performance of fuzzing tools in detecting errors. Another reason is that

OffensiveRezzer still has limited features such as not being able to perform fuzzing on endpoints that

require authentication. Real-world applications usually have endpoints that require authentication to be

accessed.

Scientific Journal of Informatics, Vol. 11, No. 2, May 2024 | 393

Figure 5. Example and input specifications for endpoint /product.

Figure 6. Example and input specifications for endpoint /product-tag-category.

Fuzzing tools used in the study

To conduct the fuzzing experiment in this study, we employed OffensiveRezzer and several state-of-the-

art fuzzing tools, namely Restler v9.0.1 [9], [21], EvoMaster v1.6.1 [12], [22], RestTestGen v23.9 [13],

[23], Tcases v4.0.2 [24], and Schemathesis v3.22.1 [16], [25]. Each fuzzing tool will run using its default

configuration. For time-based fuzzing tools such as EvoMaster and Restler, the fuzzing process will run for

1 hour. For fuzzing tools that are not time-based, the fuzzing process will be performed 5 times to get

consistent results.

Performance metric

The performance metric used in this study was the fuzzing tools' effectiveness level, which was measured

by counting the number of distinct or unique errors found in the application. An error condition in the

application is identified by an application response that has a status code of 500 or Internal Server Error.

Status code 500 indicates the application encountered an unexpected or unhandled error condition. Status

code 500 can also indicate that the application is in a crashed condition and could experience Denial of

Service if it keeps encountering unhandled errors.

To ascertain the count of distinct errors, we opted not to rely on the fuzzing report produced by individual

tools, given their varying formats and methods of error calculation. For instance, EvoMaster solely records

the number of endpoints with errors, meaning that if there are multiple distinct error messages within a

single endpoint, they are consistently tallied as a single error in the application. Another example is that

RestTestGen will report errors as many as the number of fuzzing requests that successfully trigger an error

without paying attention to the unique mutation of fuzzing payloads. So, the reported number of errors can

be inaccurate and tends to be greater than the actual number of unique errors. In contrast to EvoMaster and

RestTestGen, Restler can calculate the number of errors better by paying attention to the unique mutations

of fuzzing payloads. OffensiveRezzer itself still doesn't have an accurate error calculation system, and the

way the error calculation works is similar to that of RestTestGen.

394 | Scientific Journal of Informatics, Vol. 11, No. 2, May 2024

For precise data regarding the count of distinct errors, we conducted error calculations by analyzing the

error log files produced by the target application. The application we developed has a log system that will

record every unhandled error and information on the endpoint where the error occurred. The approach of

counting distinct errors via error log file analysis was also performed by [16] and [26]. If same error arises

at two distinct endpoints, it will be registered as two distinct errors. For instance, if the endpoints /user and

/user-address display the identical error message, "Column 'first_name' cannot be null", it will be

considered as two distinct errors within the application. Moreover, we standardized error messages that

included input parameter details from the client. If two error messages share the same context but

encompass different input parameters, they will be tallied as a single error. For instance, if the /user-

address-product endpoint presents the error messages "Incorrect decimal value: 'abcdef' for column

'discount_price' " and "Incorrect decimal value: '{fuzz: fuzz}' for column 'discount_price' ", they will be

treated as one error. We used Python scripts to count the number of unique errors found by the fuzzing

tools. The Python scripts can be viewed in our GitHub repository [27].

Experiment model

Figure 7 shows the experiment model carried out in this research. Each fuzzing tool will perform fuzzing

in turn on the target applications. For fuzzing tools that are not time-based, namely OffensiveRezzer,

RestTestGen, Tcases, and Schemathesis, the fuzzing process will be carried out in 5 iterations. For time-

based fuzzing tools, namely Restler and EvoMaster, the fuzzing process will be carried out for 1 hour.

Fuzzing experiments will be carried out in turns on the application without validation, the application with

partial validation, and the application with full validation. The target applications are equipped with a log

system to record any server errors that occur. The log system will record the error message along with the

endpoint location where the error occurred. After all the fuzzing processes are complete, an analysis of the

error log file is carried out using Python scripts. This analysis was performed to count the number of unique

errors and classify the error types found by each fuzzing tool.

Figure 7. The experiment model carried out in the research.

RESULTS AND DISCUSSIONS

Fuzzing tools performance on application without validation

Figure 8 shows the comparison of distinct error counts detected by fuzzing tools in the application without

input validation. In the application without input validation, there are several types of errors that can be

found, namely errors caused by the minimum/maximum input length not being in accordance with

specifications (constraint violation), errors caused by the missing input fields that must be sent (missing

fields), and errors caused by data input types that do not comply with specifications (invalid type).

OffensiveRezzer outperformed other fuzzing tools by detecting the highest number of unique errors,

followed by Restler, RestTestGen, Tcases, EvoMaster, and Schemathesis. OffensiveRezzer managed to

find 55.49% more errors compared to Restler, 136.11% more than RestTestGen, 254.17% more than

Scientific Journal of Informatics, Vol. 11, No. 2, May 2024 | 395

Tcases, 264.29% more than EvoMaster, and 537.50% more than Schemathesis. This result showed that

OffensiveRezzer most effectively exploited possible errors in each input field.

Figure 8. Unique error counts and error types detected by fuzzing tools

in the application that has no input validation.

Figure 8 also shows the composition of the error types found by each fuzzing tool so that we can identify

the tendency of each fuzzing tool to exploit the error types. For example, OffensiveRezzer and RestTestGen

exploited more missing field and constraint violation errors and less exploited invalid type errors. Then,

Restler, which was in the second position, exploited more constraint violations and invalid type errors.

When compared with OffensiveRezzer, Restler was better at exploiting invalid type errors. Tcases and

Schemathesis had the same error type composition, namely exploiting more invalid type and missing field

errors and minimal exploiting constraint violation errors. EvoMaster, which was in the fifth position, tended

to focus more on exploiting constraint violation errors and did not exploit invalid type and missing field

errors at all, whereas, in the application without validation, the invalid type and missing field errors should

be straightforward to find.

Fuzzing tool performance on application with partial validation

Figure 9 shows the comparison of distinct error counts detected by fuzzing tools in the application with

partial input validation. In the application with partial input validation, the only type of error that can be

found is constraint violation error, namely errors caused by the minimum/maximum length of data input

that does not comply with specifications. OffensiveRezzer outperformed other fuzzing tools by detecting

the highest number of unique errors, followed by Restler, EvoMaster, RestTestGen, Tcases, and

Schemathesis.

396 | Scientific Journal of Informatics, Vol. 11, No. 2, May 2024

Figure 9. Unique error counts and error types detected by fuzzing tools

in the application that has partial input validation.

OffensiveRezzer had the highest number of unique error findings because it exploited constraint violation

errors across all fields within the input structure, no matter how complex the structure is. For instance, the

/user-address-product-shipping endpoint has a complex data input structure consisting of fields related to

the User, Address, Product, and Shipping entities. On this endpoint, OffensiveRezzer successfully applied

constraint violation for each field in the User, Address, Product, and Shipping entities. On the other hand,

Restler, which was in second place, did not exploit the /user-address-product-shipping endpoint. Restler is

a time-based fuzzing tool, and the 1-hour fuzzing time used in this experiment was not enough to perform

fuzzing on all application endpoints. Of the total of 7 endpoints, Restler only succeeded in fuzzing 5

endpoints, while the other fuzzing tools all succeeded in fuzzing 7 endpoints. Despite having the lowest

test coverage percentage, Restler identified the second-largest number of unique errors after

OffensiveRezzer. Restler was also effective in applying constraint violations to each input field. For

example, the /product-tag-category-coupon endpoint is another endpoint that has a complex input structure,

as does the /user-address-product-shipping endpoint. The input structure at the /product-tag-category-

coupon endpoint consists of fields related to the Product, Tag, Category, and Coupon entities. At this

endpoint, Restler performed fuzzing in the form of constraint violation for each input field in the Product,

Tag, Category, and Coupon entities. The main limitation of Restler is that it required a long fuzzing duration

to be able to fuzz every input field in all application endpoints.

EvoMaster is another fuzzing tool besides Restler which is also time-based. In contrast to Restler, with a

fuzzing duration of 1 hour, EvoMaster successfully fuzzed all endpoints in the application. Even though it

had 100% endpoint coverage, the number of error findings from EvoMaster was still less than Restler's

finding. This showed that EvoMaster did not exploit errors in every field. For instance, on the /user-address-

product-shipping endpoint, EvoMaster only applied constraint violations to several fields in the data input

structure. EvoMaster only applied constraint violation to the first_name and last_name fields in the User

entity. Meanwhile, the User entity has 3 other fields, namely email, phone_code, and phone_number, which

are also vulnerable to constraint violations. Further experiments need to be conducted to determine whether

the number of error findings from EvoMaster can increase by increasing the fuzzing duration.

Scientific Journal of Informatics, Vol. 11, No. 2, May 2024 | 397

RestTestGen is a fuzzing tool that is not time-based, such as OffensiveRezzer, Tcases, and Schemathesis.

In this experiment, RestTestGen could only find a small number of constraint violation errors. The small

number of error findings showed that RestTestGen also did not exploit errors in every input field. For

instance, on the /user-address-product-shipping endpoint, RestTestGen only applied constraint violations

for the User entity fields and did not apply constraint violations for other fields in the Address, Product,

and Shipping entities. Tcases and Schemathesis are the fuzzing tools that found the fewest constraint

violation errors. Tcases only found 5 errors, while Schemathesis found 2 errors. This error finding aligns

with the result of fuzzing experiments on the application without validations, where Tcases and

Schemathesis focused more on exploiting missing fields and invalid type errors than constraint violation

errors.

Fuzzing tool performance on application with full validation

Figure 10 shows the comparison of distinct error counts detected by fuzzing tools in the application with

full input validation. In the application with full input validation, errors should no longer be found.

However, to test the effectiveness of the fuzzing tool, we deliberately did not apply full validation to some

input fields. Some of these input fields are the charge field in the Shipping entity, the regular_price field

in the Product entity, and the max_usage field in the Coupon entity. With such a configuration, there are

still constraint violation errors that can be found in the application with full input validation, namely at the

endpoints /user-address-product-shipping, /user-address-product, /product-tag-category-coupon,

/product, and /product-tag-category. OffensiveRezzer outperformed other fuzzing tools by detecting the

highest number of unique errors, followed by Restler, RestTestGen, Tcases, EvoMaster, and Schemathesis.

Figure 10. Unique error counts and error types detected by fuzzing tools

in the application that has full input validation.

OffensiveRezzer succeeded in finding all remaining errors in the five endpoints related to the charge field

in the Shipping entity, the regular_price field in the Product entity, and the max_usage field in the Coupon

entity. Restler, who was in second place, only found constraint violation errors for the regular_price and

max_usage fields in the endpoints /product-tag-category-coupon, /product, and /product-tag-category.

Restler still failed to find the remaining errors in the endpoints /user-address-product-shipping and /user-

address-product. As previously explained, the main limitation of Restler is that it required a longer fuzzing

398 | Scientific Journal of Informatics, Vol. 11, No. 2, May 2024

duration to fuzz all application endpoints and find more errors. The third position is occupied by

RestTestGen, which only found constraint violation errors for the regular_price field (Product entity) in

the endpoints /product-tag-category-coupon, /product, and /product-tag-category.

Tcases, which is in the fourth position, only found 1 constraint violation error for the regular_price field

(Product entity) in the endpoint /product-tag-category. The last position was occupied by EvoMaster and

Schemathesis, where these two fuzzing tools failed to find any errors. This showed that EvoMaster and

Schemathesis did not exploit errors in every input field. Another possible cause is that EvoMaster and

Schemathesis did not perform further fuzzing processes when the application kept returning positive

responses, so these two fuzzing tools assumed no more errors can be exploited. As a result, these two

fuzzing tools failed to find any remaining errors. This is the opposite of how OffensiveRezzer worked.

OffensiveRezzer did not analyze the responses received from the application. OffensiveRezzer will keep

performing fuzzing based on the number of possible errors that can occur in an input field, where

information on possible errors is obtained through analysis of the application specification. Even though it

does not perform application response analysis and only relies on specification analysis, OffensiveRezzer

succeeded in being the most effective fuzzing tool in this experiment, compared to other fuzzing tools such

as EvoMaster, Schemathesis, RestTestGen, and Restler, which use a combination of specification and

application response analysis.

In this research, fuzzing experiments were performed on the custom Web API application that we developed

ourselves so that the results of this research, namely the effectiveness of fuzzing tools, only applied to the

case of this custom Web API application. The effectiveness of fuzzing tools could be different from the

results of this study if fuzzing experiments were performed on other applications. Then, in measuring the

fuzzing tools’ effectiveness level, we only used the unique error counts caused by invalid data input. We

did not include other error aspects, such as response data schemas that did not comply with application

specifications or invalid dependencies between endpoints. This is because OffensiveRezzer still has limited

features and cannot detect these other error aspects.

In this research, OffensiveRezzer became the most effective fuzzing tool compared to state-of-the-art

fuzzing tools. Because fuzzing experiments were performed on an application we developed ourselves, this

will undoubtedly threaten the validity of this research's results. There may be a bias or suspicion that our

application is designed to benefit OffensiveRezzer. To overcome this validity threat, we ensured that all

source codes used in this research, namely the OffensiveRezzer source code, the target application, and the

error calculation script, were all publicly available and accessible via GitHub. Anyone can check the source

codes to determine whether malicious code is implemented to benefit OffensiveRezzer. The application we

developed is just a simple application that performs the CREATE operation in the database. In the Tested

Web API Application subsection, we had also explained why we developed our applications for fuzzing

targets and did not use existing applications or benchmarks.

CONCLUSION

In this research, we proposed OffensiveRezzer, a novel black-box fuzzing tool for Web API applications

that implement REST architecture. We additionally assessed OffensiveRezzer's effectiveness level against

various fuzzing tools, including Restler, Tcases, RestTestGen, Schemathesis, and EvoMaster. The research

evaluated the effectiveness of these tools by counting the unique errors detected by each. In the application

without input validation mechanisms, OffensiveRezzer emerged as the most effective tool, namely by

finding the highest unique errors, trailed by Restler, RestTestGen, Tcases, EvoMaster, and Schemathesis.

For fuzzing experiments on the application that has partial input validation, OffensiveRezzer was again the

most effective tool, namely by finding the highest unique errors, trailed by Restler, EvoMaster,

RestTestGen, Tcases, and Schemathesis. For fuzzing experiments on the application with full input

validation, OffensiveRezzer was also the most effective tool. Some tools, such as Schemathesis and

EvoMaster, failed to find even one error.

This research showed that despite its limited features, OffensiveRezzer has quite promising performance in

exploiting potential errors that may arise in application data input. For future work, we will develop

OffensiveRezzer with comprehensive fuzzing features comparable to current state-of-the-art fuzzing tools.

We will assess OffensiveRezzer's effectiveness again using real-world applications and other existing

benchmark applications.

Scientific Journal of Informatics, Vol. 11, No. 2, May 2024 | 399

REFERENCES

[1] H. Subramanian and P. Raj, Hands-On RESTful API Design Patterns and Best Practices: Design,

develop, and deploy highly adaptable, scalable, and secure RESTful web APIs. Packt Publishing

Ltd, 2019.

[2] S. A. Bello et al., “Cloud computing in construction industry: Use cases, benefits and challenges,”

Automation in Construction, vol. 122, p. 103441, 2021.

[3] A. Ehsan, M. A. M. E. Abuhaliqa, C. Catal, and D. Mishra, “RESTful API testing methodologies:

Rationale, challenges, and solution directions,” Applied Sciences, vol. 12, no. 9, p. 4369, 2022.

[4] H. Tabrizchi and M. Kuchaki Rafsanjani, “A survey on security challenges in cloud computing:

issues, threats, and solutions,” The journal of supercomputing, vol. 76, no. 12, pp. 9493–9532,

2020.

[5] H. Assal and S. Chiasson, “‘Think secure from the beginning’ A Survey with Software

Developers,” in Proceedings of the 2019 CHI conference on human factors in computing systems,

2019, pp. 1–13.

[6] M. Humayun, N. Jhanjhi, M. F. Almufareh, and M. I. Khalil, “Security threat and vulnerability

assessment and measurement in secure software development,” Comput. Mater. Contin, vol. 71,

pp. 5039–5059, 2022.

[7] P. Godefroid, “Fuzzing: Hack, art, and science,” Communications of the ACM, vol. 63, no. 2, pp.

70–76, 2020.

[8] C. Beaman, M. Redbourne, J. D. Mummery, and S. Hakak, “Fuzzing vulnerability discovery

techniques: Survey, challenges and future directions,” Computers & Security, vol. 120, p. 102813,

2022.

[9] V. Atlidakis, P. Godefroid, and M. Polishchuk, “Restler: Stateful rest api fuzzing,” in 2019

IEEE/ACM 41st International Conference on Software Engineering (ICSE), 2019, pp. 748–758.

[10] V. Atlidakis, P. Godefroid, and M. Polishchuk, “Checking security properties of cloud service

REST APIs,” in 2020 IEEE 13th International Conference on Software Testing, Validation and

Verification (ICST), 2020, pp. 387–397.

[11] P. Godefroid, B.-Y. Huang, and M. Polishchuk, “Intelligent REST API data fuzzing,” in

Proceedings of the 28th ACM joint meeting on European software engineering conference and

symposium on the foundations of software engineering, 2020, pp. 725–736.

[12] A. Arcuri, “RESTful API automated test case generation with EvoMaster,” ACM Transactions on

Software Engineering and Methodology (TOSEM), vol. 28, no. 1, pp. 1–37, 2019.

[13] E. Viglianisi, M. Dallago, and M. Ceccato, “Resttestgen: automated black-box testing of restful

apis,” in 2020 IEEE 13th International Conference on Software Testing, Validation and

Verification (ICST), 2020, pp. 142–152.

[14] D. Corradini, A. Zampieri, M. Pasqua, E. Viglianisi, M. Dallago, and M. Ceccato, “Automated

black-box testing of nominal and error scenarios in RESTful APIs,” Software Testing, Verification

and Reliability, vol. 32, no. 5, p. e1808, 2022.

[15] N. Laranjeiro, J. Agnelo, and J. Bernardino, “A black box tool for robustness testing of REST

services,” IEEE Access, vol. 9, pp. 24738–24754, 2021.

[16] Z. Hatfield-Dodds and D. Dygalo, “Deriving semantics-aware fuzzers from web api schemas,” in

Proceedings of the ACM/IEEE 44th International Conference on Software Engineering:

Companion Proceedings, 2022, pp. 345–346.

[17] J. C. Alonso, A. Martin-Lopez, S. Segura, J. M. García, and A. Ruiz-Cortés, “ARTE: Automated

Generation of Realistic Test Inputs for Web APIs,” IEEE Transactions on Software Engineering,

vol. 49, no. 1, pp. 348–363, 2023, doi: 10.1109/TSE.2022.3150618.

[18] Z. Lei, Y. Chen, Y. Yang, M. Xia, and Z. Qi, “Bootstrapping Automated Testing for RESTful Web

Services,” IEEE Transactions on Software Engineering, vol. 49, no. 4, pp. 1561–1579, 2023, doi:

10.1109/TSE.2022.3182663.

[19] D. G. Putera, “OffensiveRezzer,” bungdanar/offensive-rezzer,

https://github.com/bungdanar/offensive-rezzer (accessed May 8, 2024).

[20] D. G. Putera, “Python REST Fuzzing,” bungdanar/python-rest-fuzzing,

https://github.com/bungdanar/python-rest-fuzzing (accessed May 8, 2023).

[21] “RESTler,” GitHub, https://github.com/microsoft/restler-fuzzer (accessed May 8, 2024).

[22] “EvoMaster: A Tool For Automatically Generating System-Level Test Cases,” GitHub,

https://github.com/EMResearch/EvoMaster (accessed May 8, 2024).

[23] “RestTestGen,” GitHub, https://github.com/SeUniVr/RestTestGen (accessed May 8,

https://github.com/bungdanar/offensive-rezzer
https://github.com/bungdanar/python-rest-fuzzing
https://github.com/microsoft/restler-fuzzer
https://github.com/EMResearch/EvoMaster
https://github.com/SeUniVr/RestTestGen

400 | Scientific Journal of Informatics, Vol. 11, No. 2, May 2024

2023).

[24] “Cornutum/tcases,” GitHub, https://github.com/Cornutum/tcases (accessed May 8, 2024).

[25] Z. Hatfield-Dodds and D. Dygalo, “Deriving Semantics-Aware Fuzzers from Web API Schemas,”

GitHub, Dec. 01, 2021. https://github.com/schemathesis/schemathesis (accessed May 8,

2024).

[26] M. Kim, Q. Xin, S. Sinha, and A. Orso, “Automated test generation for rest apis: No time to rest

yet,” in Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and

Analysis, 2022, pp. 289–301.

[27] D. G. Putera, “Data Processing”, bungdanar/data-processing, https://github.com/bungdanar/data-

processing (accessed May 8, 2024).

https://github.com/Cornutum/tcases
https://github.com/schemathesis/schemathesis
https://github.com/bungdanar/data-processing
https://github.com/bungdanar/data-processing

