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Abstract. 

Purpose: This study explores diabetic retinopathy (DR), a complication of diabetes leading to blindness, emphasizing 
early diagnostic interventions. Leveraging Macular OCT scan data, it aims to optimize prevention strategies through 

tree-based ensemble learning. 

Methods: Data from RSKM Eye Center Padang (October-December 2022) were categorized into four scenarios based 

on physician certificates: Negative & non-diagnostic DR versus Positive DR, Negative versus Positive DR, Non-
Diagnosis versus Positive DR, and Negative DR versus non-Diagnosis versus Positive DR. The suitability of each 

scenario for ensemble learning was assessed. Class imbalance was addressed with SMOTE, while potential underfitting 

in random forest models was investigated. Models (RF, ET, XGBoost, DRF) were compared based on accuracy, 

precision, recall, and speed. 
Results: Tree-based ensemble learning effectively classifies DR, with RF performing exceptionally well (80% recall, 

78.15% precision). ET demonstrates superior speed. Scenario III, encompassing positive and undiagnosed DR, emerges 

as optimal, with the highest recall and precision values. These findings underscore the practical utility of tree-based 

ensemble learning in DR classification, notably in Scenario III. 
Novelty: This research distinguishes itself with its unique approach to validating tree-based ensemble learning for DR 

classification. This validation was accomplished using Macular OCT data and physician certificates, with ETDRS 

scores demonstrating promising classification capabilities.  
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INTRODUCTION 
Diabetic retinopathy stands as a significant complication of diabetes mellitus, capable of inducing blindness 

if not promptly identified and treated [1], [2]. The classification of diabetic retinopathy has gained 

paramount importance in light of the escalating global prevalence of diabetes [3]. Early detection facilitated 

by precise classification holds the potential to avert severe visual impairment and blindness, thereby 

underscoring the pivotal role of advanced diagnostic technologies. 

 

Ensemble models in machine learning, amalgamating multiple models to enhance predictive performance, 

present a promising avenue for diabetic retinopathy classification. Dietterich [4] contends that ensemble 

models, featuring an array of iterative classifiers, often yield more precise classification or prediction 

outcomes compared to individual classifiers. 

 

Optical coherence tomography (OCT) emerges as a pivotal technology in the early detection of diabetic 

retinopathy. OCT furnishes quantitative insights crucial for monitoring treatment responses and the 

progression of diverse ocular ailments [5]–[7]. Notably, the macula can be segmented into nine subfields 

following the Early Treatment of Diabetic Retinopathy Study (ETDRS) protocol, pivotal for clinical 

investigations. This segmentation encompasses three concentric circles with respective diameters of 1 mm, 
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3 mm, and 6 mm for the central, inner, and outer circles [5], each subdivided into four regions: superior, 

temporal, inferior, and nasal [6] elaborated in Figure 1 [8].  

 

 
Figure 1. Nine ETDRS subfields are in the right and left eye, and inner and outer parafoveal rings are in 

both eyes. 
 

Figure 1 presents ETDRS grids along with central thickness (C), inner superior (s1), inner temporal (t1), 

inner inferior (i1), inner nasal (n1), outer superior (s2), outer temporal (t2), outer inferior (i2), and outer 

nasal (n2) values. OCT measurements yield retinal thickness data for each subfield [6] with deviations from 

normal thickness serving as indicators of diabetic retinopathy, thus rendering OCT a valuable tool for early 

detection and prevention of blindness. 

 

Recent years have witnessed a surge in research on diabetic retinopathy employing machine learning or 

ensemble models. Prior investigations have showcased the efficacy of various machine learning techniques 

in diabetic retinopathy classification. These encompass Decision Trees, Bagging, Boosting, Support Vector 

Machines, Neural Networks, and Deep Learning, leveraging datasets sourced from the UCI Machine 

Learning repository [9]–[12]or clinical data [13]. Outcomes of these studies have reported disparate levels 

of accuracy, underlining the potential of machine learning models in refining the accuracy of diabetic 

retinopathy diagnosis. Our study extends this extant research, striving to augment the accuracy and efficacy 

of diabetic retinopathy classification.  

 

This study aims to classify diabetic retinopathy using a tree-based ensemble approach. We utilize Macular 

OCT data, emphasizing ETDRS values and information from medical certificates, to attain optimal 

classification results. The ensemble methods employed include Random Forest (RF), Extremely 

Randomized Trees (ET), Extreme Gradient Boosting (XGBoost), and Double Random Forest (DRF). We 

conduct a comprehensive evaluation of each model's performance to comprehend their effectiveness in 

identifying and classifying diabetic retinopathy, ultimately contributing to the prevention of vision loss 

associated with this disease. 

 

METHODS 

Prior to data analysis, the macular OCT scan data obtained from RSKM Padang Eye Center were initially 

entered into Microsoft Excel. Subsequently, the data were categorized into three groups based on available 

doctor's certificates: positive and negative for diabetic retinopathy, as well as non-diagnosis, thereby 

facilitating the data classification process. Following this categorization, data encoding was conducted in 

RStudio, converting categorical data into numeric factors. This phase is also referred to as the preprocessing 

stage. The subsequent step involved data exploration to assess the data's condition and identify any 

imbalanced classes and potential underfitting. Following this, the machine learning stage and model 

performance evaluation were executed. The flowchart of the data analysis stages is illustrated in Figure 2. 

In this study, the recall value serves as the most crucial measure of goodness-of-fit, accurately classifying 

positive observations [14]. 
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Figure 2. Flowchart of diabetic retinopathy data analysis stages 

 

Data Collection 

This research utilizes secondary data from the Padang Eye Center, a specialized eye hospital in Padang, 

West Sumatra. Data on macular OCT scan results were collected from October to December 2022. 

Examples of macular OCT scan results are presented in Figure 3 [15].  

 

 
Figure 3. Figure 5 example of macular OCT scan results 

 

The dataset comprises 455 macular OCT scan results from 631 scanned eyeballs, which were entered 

individually into Microsoft Excel. The inputted data is subsequently analyzed using RStudio 3.4.0. There 

are 15 predictor variables extracted from the macular OCT scan results, as detailed in Table 1. Generally, 

the selected predictor variables consist of ETDRS data along with age, gender, and eye type variables. The 

inclusion of these variables is a novel approach in classifying diabetic retinopathy through the utilization 

of macular OCT scan data. 
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Table 1. Predictor variables 
Variable Variable Descriptions Descriptions 

x1 Gender 1 = Male 

0 = Female 

x2 Age Numeric 

x3 Eye Type 1 = Right Eye 

0 = Left Eye 

x4 Average Thickness Numeric 

x5 Center Thickness  Numeric 

x6 Total Volume Numeric 

x7 Foveal Thickness (C) Numeric 

x8 Inner Superior (s1) Numeric 

x9 Inner Nasal (n1) Numeric 

x10 Inner Inferior (i1) Numeric 

x11 Inner Temporal (t1) Numeric 

x12 Outer Superior (s2) Numeric 

x13 Outer Nasal (n2) Numeric 

x14 Outer Inferior (i2) Numeric 

x15 Outer Temporal (t2) Numeric 

 

Meanwhile, data from the doctors' notes regarding the scan results are utilized for the response variable. 

Among these, 140 eyeballs lack notes, categorized as non-diagnosis (healthy eyes), while 491 eyeballs 

possess disease notes, segmented into positive and negative for diabetic retinopathy. Four research 

scenarios have been formulated to facilitate effective analysis in the early prevention of retinopathy. The 

primary distinction among these scenarios lies in the response variable, while the predictor variables used 

in each scenario remain consistent. Table 2 below describes the response variables utilized in each scenario. 

 

Table 2. Response variables 
Scenario Class used Number of Observations Type of Response Variables 

First (I) 
0 = Negative DR and non-Diagnosis 

1 = Positive DR 
631 Binary 

Second (II) 
0 = Negative DR 

1 = Positive DR 
491 Binary 

Third (III) 
0 = non-Diagnosis 

1 = Positive DR 
276 Binary 

Fourth (IV) 

0 = Negative DR 

1 = non-Diagnosis 

2 = Positive DR 

631 Multiclass 

 

Random Forest 

Random Forest constructs a model by employing bootstrap and aggregation (bagging) techniques and 

selects the optimal tree separation through random feature selection. According to [16], succinctly, the 

algorithm for forming a Random Forest can be outlined as follows: 

1) The training dataset is of size 𝑛 with 𝑝 explanatory variables. 

2) Perform bootstrap to construct trees by drawing random samples of size 𝑛 from the training 

dataset. 

3) Randomly select m predictor variables (𝑚 < 𝑝) at each tree split in the random feature selection 

phase. The number of m predictor variables is approximately 𝑚 ≈ √𝑝 or 𝑚 ≈
𝑝

3
. 

4) Repeat steps (2) and (3) 𝑘 times to obtain 𝑘 random trees. 

5) Combine the prediction results from 𝑘 random trees in the aggregation phase. 

6) Calculate the majority vote for classification data. 

 

Extremely Randomized Trees 

Extremely Randomized Trees, commonly known as Extra-trees (ET), are among the ensemble models that 

employ thorough randomization. The ET model randomizes the selection of m predictor variables and split 

points while utilizing the entire training data to construct a tree. This randomization process aims to reduce 

the variance of prediction outcomes from each tree while utilizing the entire training data to mitigate bias 

[17], [18]. According to [18], comprehensive randomization simplifies the node-splitting procedure, 
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resulting in reduced computation time for the ET model. The algorithm for building ET can be elucidated 

as follows [18]: 

1) Form trees using all training data (𝐷). Each tree is built using the same data, so 𝐷 = 𝐷1 = 𝐷2 =
𝐷3 = ⋯ = 𝐷𝑘. 

2) Select the best split using the following steps: 

a. Randomly select 𝑚 predictor variables (𝑚 < 𝑝) at each tree split using random feature 

selection. The number of 𝑚 predictor variables is approximately 𝑚 ≈ √𝑝 or 𝑚 ≈
𝑝

3
. 

b. Randomly select 𝑘 split points. 

c. Repeat steps (a) and (b) until the stopping criteria are reached to obtain the prediction 

results from one tree. 

3) Repeat steps (1) and (2) until 𝑀 trees are formed. 

4) Combine the prediction results from 𝑘 random trees during the aggregation stage. 

5) Calculate the majority vote for data classification. 

 

Extreme Gradient Boosting  

XGBoost, an acronym for Extreme Gradient Boosting, represents a refinement of the Gradient Boosting 

model, initially developed by Chen and Guestrin [19]. The Gradient Boosting method constructs trees 

sequentially or in a sequence. In boosting, there exists a term called the loss function, which evaluates the 

quality of the tree structure. The smaller the value of the loss function, the higher the quality of the 

constructed model. The loss function in Gradient Boosting is minimized using partial derivatives or 

gradients. 

 

Each model is constructed in one round with a weak learner, and its prediction results are contrasted with 

the anticipated results. The disparity between the predicted and anticipated results is termed the error rate, 

which indicates the extent of the model's inaccuracies. Model parameters can be adjusted to mitigate errors 

in the subsequent training round. Consequently, the gradient employed in the training in the preceding 

iteration will influence the tree to be constructed in the subsequent iteration [20]. 

 

In XGBoost, the loss function is minimized using the second partial derivative, which also aids in 

comprehending gradient trends. The model training process employing XGBoost can be parallelized, 

leading to expedited computational processes compared to gradient-boosting models [20]. 

 

Double Random Forest 

he Double Random Forest (DRF) model, developed by Han et al. [21], aims to enhance the performance of 

RF. The primary distinction lies in the tree construction methodology. While RF employs the bootstrap 

method solely at the root node, DRF applies bootstrap at every node during tree-building. This approach 

grants DRF a more varied set of trees, thereby augmenting the likelihood of more accurate prediction 

results. Succinctly, the algorithm for constructing DRF can be delineated as follows [21]: 

1) Forming trees using the entire training data (𝐷). 

2) Selecting the best splitting with the following steps: 

a. At each node 𝑡, perform random sampling of size 𝑛𝑡
∗ with replacement (bootstrap),  

if 𝑛𝑡 > 𝑛 × 0.1. If not met, skip the bootstrap. 

b. Randomly select 𝑚 variables from the set of 𝑝 predictor variables. 

c. Determine the best splitting criteria. 

d. Repeat steps (a) to (c) until the stopping criteria are met to obtain the prediction result of 

one tree.  

3) Repeat steps (1) and (2) until a total of 𝑀 classification trees are formed. 

4) Combine the prediction results from each tree using a majority vote for classification data. 

 

Evaluation model 

A measure of model goodness is utilized to assess the performance of the model in classification tasks. 

Evaluating the model's efficacy involves computing the number of observations correctly predicted as 

positive or negative classes and the number of observations incorrectly predicted as positive or negative 

classes [22]. These four calculations constitute the confusion matrix in Table 3 for the binary classification 

scenario. 
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Table 3. Confusion matrix for binary classification 

Actual 
Prediction 

Positive Class (1) Negative Class (0) 

Positive Class (1) TP FN 

Negative Class (0) FP TN 

 

Table 3 illustrates TP (True Positive) as the count of correctly predicted positive class members (1). TN 

(True Negative) represents the count of correctly predicted negative class members (0). FP (False Positive) 

signifies the count of positive class members (1) erroneously predicted. Finally, FN (False Negative) 

denotes the count of negative class members (0) inaccurately identified. Additionally, Equations (1)-(3) 

below outline the computations for accuracy, recall, and precision values. 

1) Accuracy serves as a metric indicating the model's capability to make accurate predictions. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
 (1) 

2) Recall assesses the model's ability to correctly identify positive observations. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

3) Precision quantifies the proportion of predicted positive cases that are truly positive. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

 

Binary class classification pertains to two classes in the response variable: positive and negative, 

whereas multi-class classification involves more than two classes. This disparity impacts the utilization of 

the confusion matrix as the evaluation metric for model performance. The confusion matrix for multi-class 

classification is depicted in Table 4 below. 

 

Table 4. Confusion matrix for multi-class classification 

 
Prediction 

Class 1 Class 2 ⋯ Class 𝑁 

A
ct

u
al

 

Class 1 𝐶1,1 FP ⋯ 𝐶1,3 

Class 2 FN TP ⋯ FN 

⋯ ⋯ ⋯ ⋯ ⋯ 

Class 𝑁 𝐶𝑁,1 FP ⋯ 𝐶𝑁,𝑁 

 

The blue and yellow colors in Table 4 indicate that the present example centers on classifying class 2 

against other classes. The metrics employed to assess the performance of the multi-class classification 

model include accuracy and recall. Equations (4)-(6) are employed to compute the accuracy, recall, and 

precision values for multi-class classification [23]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝑇𝑃(𝐶𝑖)

𝑁
𝑖=1

∑ ∑ 𝐶𝑖,𝑗
𝑁
𝑗=1

𝑁
𝑖=1

 (4) 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝐶𝑖) =
𝑇𝑃(𝐶𝑖)

𝑇𝑃(𝐶𝑖) + 𝐹𝑁(𝐶𝑖)
 (5) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐶𝑖) =
𝑇𝑃(𝐶𝑖)

𝑇𝑃(𝐶𝑖) + 𝐹𝑃(𝐶𝑖)
 (6) 

 

RESULTS AND DISCUSSIONS 

The distribution of data from ETDRS OCT results of retinopathy patients, as depicted in Figure 4a, reveals 

that the maximum age range is 72 years, with the majority of data falling between ages 50 to 63 years. The 

data tends to cluster around the median age of 58 years. Additionally, Figure 4a highlights one data outlier 

with an age of 29 years. Moreover, concerning gender distribution, as illustrated in Figure 4b, diabetic 

retinopathy patients are predominantly female, constituting 59% of 136 patients. In contrast, male patients 
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afflicted with diabetic retinopathy comprise 41%. Boxplots and pie charts elucidating the distribution of 

diabetic retinopathy patients are presented in Figure 4. 
 

 
(a) 

 
(b) 

Figure 4. Patients with diabetic retinopathy (a) Boxplot by age, (b) Pie chart by gender 

 

Identification of Imbalanced Classes in The Data 

Most scenarios exhibit imbalanced classes, which can result in misclassification. Minority classes tend to 

be misclassified more often than majority classes [24]. The issue arises when the minority class data 

contains vital information, such as in ETDRS data. In scenarios I, II, and IV, the diabetic retinopathy 

positive class represents the minority class. Classification errors can lead to decision-making errors, 

particularly in the accuracy of minority class predictions [24]. 

 

Class imbalance can be identified through the calculation of the Imbalance Ratio (IR). According to [25], 

when 𝐼𝑅 = 1, the class is considered balanced, while 𝐼𝑅 > 1 indicates an imbalanced class. The larger the 

IR value, the greater the class imbalance level. For binary classes, IR is defined by Equation (7), where 

𝑁𝑚𝑎𝑗 represents the number of majority classes and 𝑁𝑚𝑖𝑛 represents the number of minority classes. 

Meanwhile, for multi-classes, IR is defined by Equation (8) [26]. Unlike Equation (7), the IR calculation 

utilizes the proportions of the majority class (�̂�𝑚𝑎𝑗) and the minority class (�̂�𝑚𝑖𝑛).  

𝐼𝑅𝑏𝑖𝑛𝑒𝑟 =
𝑁𝑚𝑎𝑗

𝑁𝑚𝑖𝑛
 (7) 

𝐼𝑅𝑚𝑢𝑙𝑡𝑖 =
�̂�𝑚𝑎𝑗

�̂�𝑚𝑖𝑛
 (8) 

 

The class distribution of each scenario is outlined in Table 5. In scenarios I, II, and IV, the class distributions 

of the response variables are imbalanced, whereas those in scenario III tend to be balanced. The imbalanced 

classes were addressed using the Synthetic Minority Over-sampling Technique (SMOTE) algorithm. 

 

Table 5. Class distribution of each scenario 

Skenario 
Distribusi Kelas 

IR 
0 1 2 

I 495 136 - 3,64 

II 355 136 - 2,61 

III 140 136 - 1,03 

IV 355 140 136 2,61 

 

Table 5 compares class distributions before and after implementing techniques for handling imbalanced 

classes. The bar chart in Figure 5 illustrates that SMOTE effectively addresses class imbalance. As per [27], 

[28] employing SMOTE to handle imbalanced classes can enhance model performance by generating 

synthetic data from minority classes 
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(a) 

 
(b) 

Figure 5. Scenario I, II, and IV class distribution bar charts (a) before SMOTE, (b) after SMOTE 

 

Identification of The Possibility of Underfitting 

The identification of underfitting possibility is crucial for assessing the condition of the RF model during 

data modeling. Underfitting may occur in the RF model if the relative test accuracy value is consistently 

below one at each specified nodesize. The relative test accuracy value is obtained from the comparison of 

the accuracy value of nodesize = 1with the accuracy value of nodesize < 1 [21]. In this study, nodesizes 

of 1 ; 0,1𝑛; 0,09𝑛 ; … ; 0,03𝑛  and 0,02𝑛 are utilized, where n represents the number of training data. 

Evaluation results indicate that all scenarios exhibit signs of underfitting possibility. Figure 6 provides a 

visualization of the relative test accuracy for the data used. 

 

 
Figure 6. Relative test accuracy 

 

Figure 6 illustrates that the relative test accuracy in each scenario is less than one. This suggests that all 

scenarios indicate the possibility of underfitting in the RF model. Detailed relative test accuracy values are 

provided in Table 6. 

Table 6 Relative test accuracy 
Nodesize Scenario I Scenario II Scenario III Scenario IV 

0,10n 0,9479 0,9676 0,9834 0,8918 

0,09n 0,9510 0,9705 0,9834 0,9044 

0,08n 0,9590 0,9756 0,9827 0,9175 

0,07n 0,9655 0,9788 0,9831 0,9318 

0,06n 0,9732 0,9834 0,9861 0,9460 

0,05n 0,9807 0,9883 0,9875 0,9619 

0,04n 0,9864 0,9922 0,9903 0,9719 

0,03n 0,9935 0,9925 0,9944 0,9828 

0,02n 0,9973 0,9945 0,9944 0,9935 

 

Modeling and model performance evaluation 

In this research, the data is divided into two parts: 70% training data and 30% test data. The training data 

is utilized for machine learning, whereas the test data is employed to evaluate the model's performance. 
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The data is repeatedly divided for model performance evaluation until the process is iterated 100 times. The 

results of model performance evaluation for each ensemble tree are depicted in Figures 7, 8, and 9 below. 

 

 
Figure 7. Accuracy of scenarios I, II, III, dan IV 

 

Analysis of Figure 7 reveals that Scenario I exhibit higher accuracy compared to the other scenarios, while 

Scenario IV demonstrates the lowest accuracy. Additionally, the distribution of accuracy values in Scenario 

I is narrower, contrasting with Scenario III, where the distribution is more varied. Scenario I is deemed the 

best-performing, with accuracy values for each model of 79.27% for DRF and RF, 78.05% for ET, and 

74.39% for XGBoost. Even though Scenario I received the highest rating based on accuracy, the positive 

class received more attention in this study, so evaluations that considered positive values, such as recall and 

precision, were prioritized. Consequently, the subsequent evaluation will concentrate on the recall and 

precision values of the model, as illustrated in Figure 8 below. 

 

 
(a) 

 
(b) 

 

Figure 8. Evaluation measure for a positive class of scenarios I, II, III, and IV (a) Recall,  

(b) Precision 

 

Previously, Scenario I was considered the best based on accuracy; however, its recall performance was less 

than optimal when considering recall and precision. The classification of patients positive for diabetic 

retinopathy in Scenario I exhibited lower recall values compared to other scenarios for each ensemble-tree 

model. Conversely, Scenario III demonstrated superior recall values compared to Scenarios I, II, and IV. 

The recall values obtained for each model in Scenario III were 80% for RF and ET, 78.75% for DRF, and 

72.50% for XGBoost. Notably, due to the smaller distribution of recall values in the RF model compared 

to other models, the RF model emerged as the best model based on recall values. Similarly, in terms of 

precision values, Scenario III showed superiority over different scenarios. The precision values in Scenario 

III also indicated that the RF model outperformed other ensemble-tree models, achieving a precision value 

of 78.15%, compared to 77.64% for the DRF model, 76.74% for the ET model, and 73.68% for the 

XGBoost model. 
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In this study, the model's performance was evaluated using various measures, providing essential guidelines 

for determining the best scenario for classifying diabetic retinopathy diseases using Macular OCT scan 

data. The model performance evaluation results indicated that Scenario III tended to be more effective in 

classifying diabetic retinopathy diseases. 

 

These four scenarios also presented the results of ensemble-tree model performance. However, the resulting 

ensemble-tree model performance did not exhibit a clear tendency toward the best model. Yet, in terms of 

computing time, the ET model demonstrated quick machine learning performance. The model's speed in 

performing machine learning varied depending on the device used; however, generally, the more 

sophisticated the device, the faster the computation time. In this research, a device with 8 GB RAM and an 

Intel Core i5 processor was utilized. The computation time of each ensemble-tree model is presented in 

Table 7 below. 

Table 7. Computation time of ensemble-tree 

Scenario 
Computation time (sec) 

RF ET XGB DRF 

I 0,3476 0,2293 1,2495 1,9943 

II 0,2448 0,1693 1,4056 1,1055 

III 0,1058 0,1022 1,1463 0,3996 

IV 0,5062 0,3779 1,8484 2,6307 

 

Table 7 shows the computation time of the ensemble-tree model during machine learning. The study 

revealed that the ET model efficiently performed machine learning, requiring only a short time. This finding 

aligns with the research results of [18], which state that the ET model can execute machine learning quickly. 

On average, the ET model took approximately 0.2 seconds in Scenarios I and II, 0.1 seconds in Scenario 

III, and 0.4 seconds in Scenario IV. Additionally, the RF model also exhibited high speed and emerged as 

the fastest model following the ET model. 

 

CONCLUSION 

This research encompassed several critical stages, including data collection, pre-processing, applying the 

SMOTE technique to handle data imbalance, and training an ensemble model to classify diabetic 

retinopathy using a decision tree-based ensemble approach. The models employed included RF, XGBoost, 

ET, and DRF. Evaluation results highlighted that Scenario III, comprising positive and undiagnosed 

diabetic retinopathy classes, was optimal with superior recall and precision values. Even though the RF 

model experiences the possibility of underfitting, the RF model can still provide the best performance. The 

RF model stood out with a recall value of 80% and a precision of 78.15%, while the ET model demonstrated 

the best performance in computing speed. These findings affirm the effectiveness of the proposed method 

in predicting the detection of diabetic retinopathy with high accuracy and sensitivity. 
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