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Abstract. 

Purpose: This simulation study investigates the Extremely Randomized Survival Trees (EST) model, a machine 

learning technique expected to handle survival analysis, particularly in large survival datasets, effectively. The study 
compares the performance of the EST model with that of the Random Survival Forest (RSF) model, focusing on the C-

index value to determine which model performs better. 

Methods: The analysis begins with the generation of 540 simulated datasets, created by combining three levels of 

sample sizes, two levels of censoring proportions, three types of hazard functions, and 30 repetitions for each scenario. 
The simulation data were split into 80% training and 20% testing data. The training data were used to build the EST 

and RSF models, while the test data were used to evaluate their performance. The model with the highest C-index value 

was deemed the best performer, as a higher C-index indicates superior model performance. 

Result: The results indicate that the sample size, type of hazard function, and the method used influence that model 
performance. The EST model significantly outperformed the RSF model when the sample size was large, though no 

significant difference was observed when the sample size was small or medium. Additionally, the EST model 

consistently demonstrated faster computation times across all simulation scenarios. 

Novelty: This study provides a pioneering exploration into applying decision tree algorithms, specifically EST and 
RSF, in survival analysis. While these methods have been extensively studied in regression and classification contexts, 

their application in survival analysis remains relatively unexplored. 
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INTRODUCTION 
Machine learning modeling advances aim for better model performance and faster computational 

capabilities. One rapidly evolving machine learning model is based on the decision tree algorithm, known 

for its effectiveness in handling complex data and providing a visual explanation of predictions [1]. While 

decision trees have been extensively studied and implemented in classification and regression cases, their 

application in survival case studies remains limited. In July 2022, data scraping was conducted to gather 

information on the number of publications related to algorithm-based models, and the following table 

summarizes the findings: 

 

Table 1. Summary of publications for various tree algorithm-based models 

No Method 
Number of  

Publications 
Case of Study 

1 Classification and Regression Tree (CART) 906 Classification/regression 

2 Bagging 5,030 Classification/regression 

3 Random Forest 20,900 Classification/regression 

4 Extremely Randomized Trees 101 Classification/regression 

5 Double Random Forest 10 Classification/regression 

6 Random Survival Forest (RSF) 165 Survival 

7 Extremely Randomized Survival Trees (EST) Not Found Survival 

Source: Author's documentation, July 2022 
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Table 1 illustrates that the most frequently mentioned models in publications are the Random Forest model, 

with over 20,000 publications; Bagging, with over 5,000 publications; and the Classification and 

Regression Tree (CART), with over 900 publications. On the other hand, the models with the lowest number 

of publications are the Random Survival Forest (RSF), with over 100 publications; the Double Random 

Forest (DRF), with 10 publications; and the Extremely Randomized Survival Trees (EST) model, for which 

no publications were found. Another important observation from Table 1 is that models analyzing 

classification/regression case studies are more prevalent than those analyzing survival case studies. This 

finding reinforces that research on machine learning models for survival analysis remains limited. 

Consequently, this research focuses on one of the decision tree-based models for survival analysis, known 

as the survival tree model [2]. 

 

Survival analysis encompasses statistical methods or tools to analyze the time until an event occurs [3], [4]. 

The event experienced by an individual can be singular or multiple [5]. Survival analysis differs from 

general regression analysis because it involves censored data or data without complete information [6]. 

Censored data arises when the expected event does not occur within the observation period [7]. The 

presence of censored data renders ordinary statistical methods inadequate [8]. 

 

The EST model in survival analysis extends the Extremely Randomized Trees method introduced by Geurts 

[9] for classification and regression case studies. In various classification and regression cases, the Extra 

Trees model has outperformed other machine learning models, such as Random Forest (RF), Single CART, 

K-nearest Neighbor (KNN), Bagging, XGBoost (XGB), Quadratic Discriminant Analysis (QDA), and 

Bayesian models [10], [11], [12]. Dey introduced the EST model [13]. The RSF model was first introduced 

by Ishwaran et al. [14]. The RSF model is chosen as a comparison method because it shares characteristics 

suitable for comparison with EST, including the nature of the data used to build the model, the involvement 

of predictor variables in the splitting process, and the inclusion of candidate cut points during tree 

formation. This study aims to compare the performance of the Extremely Randomized Survival Trees (EST) 

and Random Survival Forest (RSF) models. 

 

METHODS 

The analysis commenced with generating 540 simulated datasets, created by combining three sample sizes, 

two levels of censoring proportions, three types of hazard functions, and 30 repetitions for each scenario. 

Each simulated dataset was partitioned into 80% training and 20% testing data [15]. The training data were 

used to build the Extremely Randomized Survival Trees (EST) and Random Survival Forest (RSF) models, 

while the testing data were employed to evaluate model performance. The best model was identified based 

on the C-index value, where a higher C-index indicates superior performance compared to models with 

lower C-index values  [16]. The process flow for data generation and modeling is illustrated in Figure 1. 

 

 
Figure 1. Analysis method 
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Scenario variables for simulation data 

A simulation study with right-censored data was conducted using RStudio 2022.7.2 software. The data 

were generated by combining numerical and categorical predictor variables, three types of hazard functions, 

two levels of censored data proportions (p), and three levels of the number of observations (n). The hazard 

function represents the probability that an individual will experience a risk/event within a specific time 

interval [17]. 

 

Five variables were generated according to the survival data scenario, comprising one categorical predictor 

variable, two numerical predictor variables, one survival time variable, and one censored status variable. 

The predictor variables were generated following uniform and binomial distributions. Due to the data 

generation process, the appearance of predictor variable data is random. However, in the modeling context, 

the existence of predictor variables is considered constant. The survival time variable was generated 

following a Weibull distribution with shape parameter 𝛼 and scale parameter 𝜆 in three scenario forms 

based on hazard aspects.  

 

The form of the hazard function depends on the value of the parameter 𝛼 [18]. First, the decreasing Weibull 

distribution, or decreasing hazard function, occurs when the shape parameter 𝛼 < 1. Secondly, the 

increasing Weibull distribution, or increasing hazard function, occurs when the shape parameter 𝛼 > 1. 
Third, the constant Weibull distribution, or constant hazard function, occurs when 𝛼 = 1. 

 

Survival data simulation 

The following are the steps for generating simulation data as conducted , [19], [20]: 

1) Determine the number of observations (𝑛) to be 300, 600, and 1.200, then determine the proportion 

of censored data (𝑝) to be 20% and 50%. 

2) Determine the 𝛽0 value with three scenarios: 

a. 𝛽0 = −0,69 for the decreasing hazard function; 

b. 𝛽0 = −2,08 for the increasing hazard function; 

c. 𝛽0 = −1,39 for the constant hazard function; 

3) Determine 𝛽1, 𝛽2, 𝑎𝑛𝑑 𝛽3 values with three scenarios: 

a. 𝛽1 = 0,1,  𝛽2 = −0,1,  𝛽3 = 0,5  for the decreasing hazard function; 

b. 𝛽1 = 0,1,  𝛽2 = −0,8,  𝛽3 = 0,5  for the increasing hazard function; 

c. 𝛽1 = 0,4,  𝛽2 = −0,7,  𝛽3 = 1  for the constant hazard function; 

4) Determine categorical predictor variable 𝑋1~𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛; 0,5), and numerical predictor variables 

𝑋2~𝑈(0,1) and 𝑋3~𝑈(0,1). 

5) Generate survival time 𝑇𝑖~𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝛼, 𝜆) with three scenarios: 

a. 𝛼𝑡 = 0,4 for the decreasing hazard function; 

b. 𝛼𝑡 = 1,5 for the increasing hazard function; 

c. 𝛼𝑡 = 1 for the constant hazard function; 

The value of parameter 𝜆 is obtained as follows [21]: 

𝜆 = exp (−
𝛽0

𝛼
− ∑

𝛽𝑘

𝛼

𝑛 
𝑘=1 𝑋𝑘) , 𝑤ℎ𝑒𝑟𝑒 𝑘 = 1,2,3.           (1) 

6) Generate sensor time 𝐶𝑖~𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝛼, 𝜆) with three scenarios: 

a. 𝛼𝑡 = 0,4 for the decreasing hazard function; 

b. 𝛼𝑡 = 1,5 for the increasing hazard function; 

c. 𝛼𝑡 = 1 for the constant hazard function; 

The value of parameter λ is obtained from the uniroot algorithm [22]. 

7) Set the censored state variable 𝛿𝑖, where: 

𝛿𝑖 = {
0,   𝑐𝑒𝑛𝑐𝑜𝑟𝑒𝑑 𝑖𝑓 𝑇𝑖 > 𝐶𝑖

1, 𝑢𝑛𝑐𝑒𝑛𝑐𝑜𝑟𝑒𝑑 𝑖𝑓 𝑇𝑖 ≤ 𝐶𝑖
           (2) 

8) Combine all variables into a data frame and repeat the process from 1 to 8 with 30 repetitions. 

 

Random survival forest 

1) Draw 𝑩 bootstrap samples from the data by sampling with replacement. Each bootstrap sample is used 

to form a survival tree. Approximately 37% of the data are omitted from each bootstrap sample, known 

as out-of-bag (OOB) data. 

2) For each terminal node in the tree, randomly select 𝑚 predictor variables for splitting. 
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3) Split a node using the log-rank splitting rule based on the predictor variable that produces the most 

significant difference between the two survival functions of its child nodes. 

4) Repeat steps (2) and (3) until a large number of trees are obtained, with the stopping rule criteria being 

that each terminal node has a minimum of 𝑑0 >  0 unique failure data points. 

5) Calculate the Cumulative Hazard Function (CHF) value for each terminal node in each tree using the 

Nelson-Alaen estimator: 

�̂�ℎ(𝑡) = ∑ 𝑡𝑙,ℎ <  
𝑡𝑑𝑙,ℎ

𝑟𝑙,ℎ
            (3) 

where 𝑡𝑙,ℎ denotes the time to event – 𝑙 in cluster ℎ. 𝑑𝑙,ℎ is the number of events at  𝑡𝑙,ℎ, and 𝑟𝑙,ℎ is the 

number of individuals at risk 𝑡𝑙,ℎ. 

6) Find the CHF ensemble value by averaging the CHF values of all trees to obtain the CHF ensemble 

bootstrap: 

𝐻𝑒
∗∗(𝑡|𝑋𝑖) =

1

𝑏
 ∑ 𝐻𝑏

∗(𝑡|𝑋𝑖)
𝐵
𝑏=1            (4) 

7) Use the OOB data to calculate the prediction error of the CHF ensemble: 

𝐻𝑒
∗∗(𝑡|𝑋𝑖) =  

∑ 𝐼𝑖𝐻𝑏
∗(𝑡|𝑋𝑖)𝐵

𝑏=1

∑ 𝐼𝑖,𝑏
𝐵
𝑏=1

            (5) 

 

Extremely randomized survival trees 

1) For each tree formed by the training data samples, do the following: 

a. For each tree node, randomly select √𝑛 predictors for splitting. 

b. For each selected predictor, select a set of candidates for split points. 

c. Using the log-rank criterion, split a node by the predictor that maximizes the survival difference 

between child nodes. 

d. Repeat steps a, b, and c above until each terminal node contains no more than 0.632 times the 

number of events. 

2) Calculate the CHF for each tree to obtain an ensemble of estimated values for the cumulative hazard. 

 

Modeling 

The modeling process for EST and RSF utilizes the ExtraSurvivalTrees and RandomSurvivalForest 

libraries within the scikit-survival 0.22.2 module using the Python programming language. The following 

are the steps of analysis for the simulation data: 

1) Split the data into training data (80%) and testing data (20%). 

2) Construct the RSF and EST models based on the training data. The default model parameters are set 

to create 500 trees, with a minimum of 10 samples required for the splitting process and 15 samples 

per leaf node. 

3) Evaluate the models using the testing data based on the C-index value. 

4) Determine the best model, compare the average C-index values using a paired t-test, and assess 

influential factors using Analysis of Variance (ANOVA) [23]. The paired t-test is employed because 

the data are from the same source [24]. 

 

RESULTS AND DISCUSSIONS  

Majority votes 

Analysis was conducted on 180 simulations for each hazard function group: increasing, constant, and 

decreasing, resulting in 540 simulations. The frequency of model superiority based on C-index values for 

each simulation is presented in Table 2. 

 

Table 2. EST and RSF comparisons based on c-index 
No Value of C-index Frequency Percentage 

1 EST > RSF 365 67% 

2 RSF > EST 175 33% 

Total 540 100% 

 

Based on Table 2, out of 540 simulations, the C-index value of the EST model appeared 365 times (67%), 

surpassing the C-index value of the RSF model, which appeared 175 times (33%). According to the majority 

vote rule, the EST model outperforms the RSF model. 
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Model performance 

Next, an analysis of model performance was conducted for the constant, increasing, and decreasing hazard 

function groups. This analysis was conducted to understand better the model's behavior within each hazard 

function group. 

 

Table 3. Model performance based on hazard function groups 

𝑛 𝑝 

Constant Hazard Function Increasing Hazard Function Decreasing Hazard Function 

Mean of C-index Paired t-test Mean of C-index Paired t-test Mean of C-index Paired t-test 

EST RSF t-hit p-value EST RSF t-hit p-value EST RSF t-hit p-value 

300 0.2 0.6060 0.6099 0.917 0.367 0.5778 0.5774 -0.074 0.941 0.5335 0.5348 0.238 0.814 

0.5 0.6236 0.6133 -1.508 0.142 0.5744 0.5740 0.000 0.983 0.5345 0.5352 0.123 0.903 

600 0.2 0.6136 0.6108 -1.040 0.307 0.5670 0.5625 -1.888 0.069 0.5215 0.5229 0.371 0.713 

0.5 0.6131 0.6085 -1.083 0.288 0.5619 0.5567 -1.593 0.122 0.5208 0.5172 -0.720 0.477 

1.200 0.2 0.6108 0.6005 -7.905 0.000 0.5754 0.5621 -7.199 0.000 0.5410 0.5256 -6.543 0.000 

0.5 0.6103 0.5940 -6.458 0.000 0.5729 0.5560 -5.980 0.000 0.5313 0.5156 -3.807 0.001 

 

Analysis of Table 3 shows that in the constant hazard function group, when the number of observations is 

small (𝑛 = 300) or medium (𝑛 = 600), there is no significant difference between the average C-index 

values of the EST and RSF models, both for the 20% and 50% censored data proportions. However, when 

the number of observations is large (𝑛 = 1,200) across all censored data classes (𝑝 = 20%;  50%), the 

average C-index value of the EST model is significantly higher than that of the RSF model (𝑝𝑣𝑎𝑙𝑢𝑒 =
0,000 <  𝛼 = 5%). Specifically, with a large number of observations (𝑛 = 1.200) and a censored data 

proportion of 𝑝 = 20%, the average C-index value of the EST model is 0.6108, higher than the RSF model's 

average C-index value of 0.6005. Similarly, with many observations and a censored data proportion of 𝑝 =
50%, the EST model's average C-index value is 0.6103, compared to the RSF model's average C-index 

value of 0.5940. The comparison indicates that the EST model performs better due to having a higher C-

index value than the RSF model. 

 

Similar trends are observed in the increasing and decreasing hazard function groups. When the number of 

observations is small or medium, there is no significant difference between the average C-index values of 

the EST and RSF models. However, with many observations across all censored data classes (𝑝 =
20%;  50%), the average C-index value of the EST model is significantly higher than that of the RSF model. 

The average C-index values for the increasing hazard function group are 0.5754 and 0.5729 for the EST 

model, compared to 0.5621 and 0.5560 for the RSF model. The average C-index values for the decreasing 

hazard function group are 0.5410 and 0.5313 for the EST model, compared to 0.5256 and 0.5156 for the 

RSF model. 
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Computation time for the model 

 

 

  
(a) 𝑛 = 300, 𝑝 = 0,2 (b)  𝑛 = 300, 𝑝 = 0,5 

  
(c) 𝑛 = 600, 𝑝 = 0,2 (d) 𝑛 = 600, 𝑝 = 0,5 

  
(e)  𝑛 = 1.200, 𝑝 = 0,2 (f)  𝑛 = 1.200, 𝑝 = 0,5 

Figure 2. Computation time graph for the constant hazard function group 

 

The analysis of Figure 2 indicates that within the constant hazard function group, the EST model 

consistently exhibits faster computation times than the RSF model. Specifically, the EST model's average 

computation time is 1.07 times faster than the RSF model for small observation classes (Figures 2a and 2b), 

1.30 times faster for medium observation classes (Figures 2c and 2d), and 1.80 times faster for large 

observation classes (Figures 2e and 2f). 
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(a) 𝑛 = 300, 𝑝 = 0,2 (b)  𝑛 = 300, 𝑝 = 0,5 

  
(c) 𝑛 = 600, 𝑝 = 0,2 (d) 𝑛 = 600, 𝑝 = 0,5 

  
(e)  𝑛 = 1.200, 𝑝 = 0,2 (f)  𝑛 = 1.200, 𝑝 = 0,5 

Figure 4. Computation time graph for the decreasing hazard function group 

 

The analysis of Figure 4 shows that within the decreasing hazard function group, the EST model 

consistently has faster computation times than the RSF model. Specifically, the average computation time 

of the EST model is 1.08 times faster than the RSF model for small observation classes (Figures 4a and 

4b), 1.32 times faster for medium observation classes (Figures 4c and 4d), and 1.74 times faster for large 

observation classes (Figures 4e and 4f). 

 

Table 4. Computation of the model 

𝑛 𝑝 
Constant Hazard Function Increasing Hazard Function Decreasing Hazard Function 

EST (s) RSF (s) EST (s) RSF (s) EST (s) RSF (s) 

300 0,2 0,969 1,075 1,382 1,483 1,039 1,135 

  0,5 0,852 0,929 1,126 1,210 1,465 1,591 

600 0,2 1,563 2,027 1,435 1,803 1,696 2,217 

  0,5 1,152 1,621 1,385 1,841 1,584 2,123 

1200 0,2 2,373 4,230 2,697 4,465 2,759 4,782 

  0,5 2,593 4,376 2,051 4,055 2,672 4,662 

Note: (s) indicates the unit of seconds. 

 

The computation time of a model is directly proportional to the size of the observation class. Larger 

observation classes generally require longer computation times, while smaller observation classes lead to 

faster computation times. For example, in the RSF model with a constant hazard function group and a 

censored data proportion of 20%, the average computation time required is 1.075 seconds for 𝑛=300 

observations. When the number of observations 𝑛 increases to 600, the computation time is 2.207 seconds, 

and for 𝑛=1,200 observations, the computation time increases to 4.230 seconds. 
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Influencing Factors 

 

Table 5. Influencing factors by analysis of variance (ANOVA) 
Factor Degrees of Freedom p-value Results 

𝑛 2 0,008 Significant 

𝛼 2 0,000 Significant 

𝑝 1 0,425 Not significant 

𝑚𝑒𝑡𝑜𝑑𝑒 1 0,025 Significant 

Interaction 𝑛&𝑎 4 0,334 Not significant 

Interaction 𝑛&𝑝 2 0,437 Not significant 

Interaction 𝑛&𝑚𝑒𝑡𝑜𝑑𝑒 2 0,094 Not significant 

Interaction 𝛼&𝑝 2 0,584 Not significant 

Interaction 𝛼&𝑚𝑒𝑡𝑜𝑑𝑒 2 0,967 Not significant 

Interaction 𝑝&𝑚𝑒𝑡𝑜𝑑𝑒 1 0,517 Not significant 

 

Based on the results in Table 5, it is evident that the number of observations (𝑛), hazard function type (𝛼), 

and method significantly influence the model performance (C-index value), as indicated by 𝑝𝑣𝑎𝑙𝑢𝑒𝑠 <
 5% [25]. This suggests that any changes in 𝑛, 𝛼, or 𝑚𝑒𝑡ℎ𝑜𝑑 will likely impact the model's performance. 

However, interactions involving 𝑛 with 𝛼, 𝑝, and 𝑚𝑒𝑡ℎ𝑜𝑑 do not show significant effects, implying that 

the model's performance tends to remain similar even when interactions occur between 𝑛, 𝛼, 𝑝, and 𝑚𝑒𝑡ℎ𝑜𝑑 

factors and other variables. 

 

CONCLUSION 

This study explores the performance differences between the EST and RSF models. The research involves 

several key stages, including generating survival data simulations, resulting in 540 simulations across 

various scenarios, model training, and model evaluation to determine the best performance based on the C-

index metric. The simulation analysis reveals no significant performance difference between the EST and 

RSF models for small and medium sample sizes across all censoring proportions. However, the EST model 

significantly outperforms the RSF model for large sample sizes based on the C-index metric across all 

censoring proportions. Additionally, regarding computational time, the EST model consistently 

demonstrates faster computation times than the RSF model. The study recommends that future research 

include a comparative analysis of the EST and RSF models with more variables (e.g., more than 20), k-fold 

cross-validation, and parameter tuning to optimize model performance. 
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