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Abstract 

This article will present some classic problems in the Ancient Greece period: the ratio 
of the areas of two circles problem solved by Eudoxus and the area of a parabola 
segment problem solved by Archimedes. These problems can be used as alternative 
teaching resources to give the students an early understanding of the integral concept. 
This article focuses on finding alternatives for teaching integral material through 
theorems and historical understanding without calculus knowledge. This study used a 
systematic literature review method to analyze the mathematical content and the 
historical influences on their problem-solving methods. The literature sources were 
indirect sources such as journals, books, and other written literature. The results show 
that Eudoxus' principle has been a special limit problem since the period, helping solve 
the ratio of the areas of two circles problem, and there has been a special case of 
infinite geometric series solving the area of parabolic segment problem. This article 
gives some recommendations for the teachers at the end of the article, on how to give 
a representation of the propositions discussed in this article to the students so the 
students can understand the connections between the prior area problem (in which the 
area is bounded by its line segments) and the integral concept which will be learned. 

© 2024 Published by Mathematics Department, Universitas Negeri Semarang 

1.  Introduction 

The concept of integral in mathematics is one of the essential and fundamental concepts in calculus learning. 
It is a calculus concept that developed from the need to solve area and volume problems (Bauldry, 2009a). 
One of the learning difficulties experienced by students in the application of integral concepts for area 
problems is difficulty in understanding the basic concepts of integral (Susilo et al., 2019a). Significant 
indicators of conceptual understanding are students’ ability to present and explain different mathematical 
situations for various purposes and connect them with other related concepts. Conceptual Understanding is 
expected to be possessed by every learner. If a student has good concept understanding, then he/she can 
synthesize the important mathematical ideas learned and understand the types of contexts used (Kilpatrick, 
2001). 

According to the Merdeka Curriculum, calculus elements are found in the Learning Outcomes at the 
senior high school level. It means that before entering the undergraduate level, calculus learning learned at 
the high school level is the initial foundation for students in learning calculus. Previous knowledge can not 
only be a very strong support for students to receive further learning, but it can also lead students to build 
conceptual understanding which, if not appropriate, can be a barrier  in learning (Donovan, 2005). 

Known mathematical problems solved by the concept of integral refer to the concept of integral 
discussed by Leibniz (1646 - 1716). The integral concept was also contributed by the definition of limit 
discussed by Weierstrass (1815-1897). Little is known about the early classical forms of solving problems 
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of area and volume of geometric figures before the emergence of modern limit definition formulations. 
Previous methods used by mathematicians before Weierstrass in solving calculation problems of  area and 
volume of geometric figures underpinned the need for a limit definition that aided the concept of integrals. 
In the ancient Greek era, mathematicians such as Eudoxus (408 - 355 BC) and Archimedes (287 - 212 BC) 
illustrated the solution to the problem of the area bounded by curves. Both of them are based on the idea of 
the  integral concept. Yet, there are differences in their mathematical practices in solving it 

The methods they used at that time did not use the justification of the integral concept yet. But, it is 
undeniable that the ideas they used in solving the problems underlie the emergence of the integral concept 
that has been discovered. 

The reference records of previous mathematical discoveries provide information about the development 
of mathematical knowledge and procedures, the use of mathematics, and the types of important problems 
solved at that time (Katz, 1998a). The discoveries of previous mathematicians can show that there are still 
obstacles in solving mathematical problems  such as the tendency to ignore the failure of the method used 
or the difficulty to understand how a theorem applies in different contexts. The Awareness of the diversity 
of mathematical practices can invite us to explore further the mathematical concepts learned. 

The previous experience of mathematicians in solving problems regarding areas before they could be 
solved with the concept of integral in modern times can be an illustration for students to understand that 
various methods of solving for different problem contexts were used before the concept of integral emerged. 
Hence, by using historical understanding in integral learning, students are able to understand the different 
contexts of problems that can be summarised with modern integral ideas. 

Mathematics teaching through materials developed with the history of mathematics can increase 
students' learning achievement levels (Kaygin et al., 2011a). One of the contributions of applying 
mathematics history in mathematics learning can also provide a detailed understanding of mathematical 
concepts and theorems (Sukarani, 2022). 

Referring to the above background, the research focuses on finding alternatives to teach the integral 
concept through theorems and historical understanding without calculus knowledge. The discussed 
problems include the problem of the area of geometric figures solved by mathematicians in Ancient Greece 
(400-200 BC). Topics discussed  include the problem of the area of geometric figures solved by 
mathematicians in Ancient Greece (400-200 BC).  Moreover, the problem studied is also a problem that 
only requires prerequisite material that has been passed by high school students. The analysis results  in 
this article can contribute to providing alternatives that allow mathematics teachers to provide students with 
an initial understanding of the background of the integral concept. It is expected that with an understanding 
of the historical side, students can understand the basic concept of integral which further includes not only 
the concept, but also includes an understanding of problem-solving methods with the concept of integral. 
The analysis results in this article can contribute to providing alternatives that allow mathematics teachers 
to provide students with an initial understanding of the background of the integral concept. Hopefully, with 
an understanding of the historical side, students can understand the basic concept of integral which 
subsequently includes not only the concept, but also includes an understanding of problem-solving methods 
with the concept of integral. 

2.  Methods 

This research was conducted using the systematic literature review method. It is the process of identifying, 
reviewing, and evaluating existing research in a focused and interesting topic area, by presenting relevant 
research questions. In accordance with the purpose of this research, the method was used to present an 
alternative to the previous mathematical problems that underpinned the emergence of the integral concept. 
Hence, the focus of this research is to review the literature that conveys the ideas of Eudoxus and 
Archimedes regarding the solution of area problems as the background of the modern integral concept.  

The literature sources used are indirect sources. It presents historical facts conveyed by a third party (Y. 
Topolski, 2012). Besides, the classification of literature used is written literature. Included in this 
classification are sources taken from journals, books, or other written literature. Hence, in this research, the 
intent of the information conveyed in the literature used was reviewed. 

The initial stage of the research was to define the questions to be answered and agreed on the research 
objectives. Based on the objectives chosen, good quality literature is selected and answers the question that 
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has been set. Searching for sources to obtain related data or documents by studying secondary data sources 
regarding the research problem. 

The second stage of the research is the verification. In this stage, the verification is checking the relevant 
information listed in the source. The researcher checked the theorems presented from the sources by proving 
them using techniques that had been done at that time and techniques that were already known during the 
research if needed. The technique used during the figures solved the problem could be different from what 
is known at the time of this research. It is due to the continuous development of mathematical knowledge. 
Furthermore, the proof conducted is also reviewed whether the theorem researched is acceptable with high 
school student's knowledge level. It was done to achieve the objectives that have been stated in the 
introduction. 

The final stage is the interpretation of the facts obtained from the sources. In this research, the 
interpretation is done by explaining descriptively or descriptive explanation. This is a descriptive 
explanation that does not include an explanation of the causes and origins of related information that is 
difficult to find the original truth (Topolski, 2012). The description was chosen because the researcher will 
focus on the figure's mathematical understanding of the problem and the problem-solving method used. It 
is this description that is useful as an alternative to conveying the background of the integral concept by the 
teacher in explaining the integral concept. 

3.  Results & Discussions 

3.1.  The Area Ratio of Two Circles and The Eudoxus Principle 
It has been stated in the background that this article presents an alternative to conveying an initial 
understanding of the integral concepts to students from a historical perspective. The review of area 
problems in geometry solved in the ancient Greek period in this article is presented through the proof of 
the circle area theorem by Eudoxus and the parabolic segment by Archimedes. 

The number concept and magnitude used in this research refer to the concepts that prevailed in Ancient 
Greece. 

 
Definition 1. Numbers are natural numbers. 
 
Magnitude is the measure of the length of line segments, angle magnitude, area, and volume of a shape. 

In this article the length of line segment 𝐴𝐴𝐴𝐴 with endpoints 𝐴𝐴 and 𝐴𝐴 is denoted as |𝐴𝐴𝐴𝐴|. Also the area of 
triangle Δ𝐶𝐶𝐶𝐶𝐶𝐶 is denoted as |Δ𝐶𝐶𝐶𝐶𝐶𝐶|. For other areas of polygon with vertices 𝐴𝐴1,𝐴𝐴2,𝐴𝐴3, … and 𝐴𝐴𝑁𝑁 for 
some 𝑁𝑁 = 1,2,3, …, is denoted as |𝐴𝐴1𝐴𝐴2𝐴𝐴3 …𝐴𝐴𝑁𝑁|. 

Antiphon (480 - 411 BC) initiated the Method of Exhaustion. It is a method of determining the area of 
a circle by approximating it with the area of the regular polygon (stated in Definition 2) that inscribes it 
(Ball, 1960). 

 
Definition 2. Given a point  O and a number  N > 2. Select points  Ai with i = 1,2,3, … , N such that for 

every i holds |OAi| = r for some r and  |A1A2| = |A2A3| = |A3A4| = ⋯ |AN−1AN| = |ANAN+1| . The 
Union line segments is called an N-sided regular polygons, or can be abbreviated as a regular polygon. 
Furthermore, the length r is called the radius of the polygon. 
 

 Prior to the proof of  Eudoxus’ principle, there was a theorem about two areas of regular polygons with 
the same number of sides and different radii already known. 

 
Lemma 1. Let N be a number. Given regular polygons 𝒫𝒫1 and 𝒫𝒫2  which it’s sides sum are  N. If  𝒫𝒫1  

has polygon radius r1 and  𝒫𝒫2 has polygon radius r2, then the area of 𝒫𝒫1 and 𝒫𝒫2 is   
a(𝒫𝒫1)
a(𝒫𝒫2) =

r12

r22
. 

Proof of Lemma 1. Let a regular polygon 𝒫𝒫1 has midpoint 𝑂𝑂1 and radius 𝑟𝑟1. Let also that regular 
polygon 𝒫𝒫2  has midpoint  𝑂𝑂2 and radius 𝑟𝑟2. 𝒫𝒫1 dan 𝒫𝒫2  has 𝑁𝑁 sides. 
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Take an arbitrary points 𝐴𝐴1 and 𝐴𝐴2 on 𝒫𝒫1 such that |𝑂𝑂1 𝐴𝐴1| = |𝑂𝑂1 𝐴𝐴2| = 𝑟𝑟1. Let Δ𝐴𝐴1𝑂𝑂1𝐴𝐴2 has a height 
along 𝑡𝑡1 = 𝑘𝑘𝑟𝑟1 and the base 𝐴𝐴1𝐴𝐴2 with the length  |𝐴𝐴1𝐴𝐴2| = ℓ1 = 𝑞𝑞𝑟𝑟1 for a magnitude of the length 𝑘𝑘 and 
𝑞𝑞. 

Take such arbitrary points 𝐴𝐴1 and 𝐴𝐴2 on 𝒫𝒫2 that |𝑂𝑂2𝐴𝐴1| = |𝑂𝑂2𝐴𝐴2| = 𝑟𝑟2. Let Δ𝐴𝐴1𝑂𝑂2𝐴𝐴2 has the base 𝐴𝐴1𝐴𝐴2. 
Consider that 𝒫𝒫2  also an 𝑁𝑁 sided polygon, so it has height along 𝑡𝑡2 = 𝑘𝑘𝑟𝑟2 and |𝐴𝐴1𝐴𝐴2| = ℓ2 = 𝑞𝑞𝑟𝑟2. 

Since both 𝒫𝒫1 and  𝒫𝒫2 have 𝑁𝑁 sides, thus 𝑟𝑟1
ℓ1

 = 𝑟𝑟2
ℓ2

  and  𝑟𝑟1
𝑡𝑡1

= 𝑟𝑟2
𝑡𝑡2

. As a consequence, if  𝑟𝑟2 = 𝑐𝑐𝑟𝑟1 for a 
number 𝑐𝑐, then ℓ2  = 𝑐𝑐ℓ1 and 𝑡𝑡2 = 𝑐𝑐𝑡𝑡1. 

Consider that a rectangle area with  the length  ℓ1 and the width  𝑡𝑡1 has twice area of the triangle  
Δ𝐴𝐴1𝑂𝑂1𝐴𝐴2. Let the area of  Δ𝐴𝐴1𝑂𝑂1𝐴𝐴2 is equal with 𝑎𝑎(Δ𝐴𝐴1𝑂𝑂1𝐴𝐴2), then 𝑎𝑎(Δ𝐴𝐴1𝑂𝑂1𝐴𝐴2) = 1

2
ℓ1𝑡𝑡1 = 1

2
𝑞𝑞𝑟𝑟1 𝑘𝑘𝑟𝑟1  =

1
2
𝑞𝑞1𝑘𝑘𝑟𝑟12. The same applies to triangle Δ𝐴𝐴1𝑂𝑂2𝐴𝐴2  if  𝑎𝑎(Δ𝐴𝐴1𝑂𝑂2𝐴𝐴2) = 1

2
ℓ2𝑡𝑡2  = 1

2
𝑞𝑞𝑟𝑟2 𝑘𝑘𝑟𝑟2  = 1

2
𝑞𝑞𝑘𝑘 (𝑟𝑟2)2. 

Accordingly 
𝑎𝑎(𝒫𝒫1)
𝑎𝑎(𝒫𝒫2)

= 𝑁𝑁𝑎𝑎(Δ𝐴𝐴1 𝑂𝑂1𝐴𝐴2)
𝑁𝑁𝑎𝑎(Δ𝐵𝐵1𝑂𝑂2𝐵𝐵2)

=
𝑁𝑁12 𝑞𝑞𝑟𝑟 (𝑟𝑟1)2

𝑁𝑁12  𝑞𝑞𝑟𝑟 (𝑟𝑟2)2
 = 𝑟𝑟12

𝑟𝑟22
. 

 
In proving Antiphon's statement, other than the knowledge of Lemma 1, Eudoxus used his principle in 

Theorem 1. 
 
Theorem 1 : Prinsip Eudoxus.  Let M0 and ε are magnitudes with ε < M0 . If the sequence  

M1, M2, M3, …  meets  M1 < 1
2

M0, M2 < 1
2

M1, M3 < 1
2

M2,… then there is a number  N such that  MN < ε.   
 
Theorem 1 is a special case of the familiar modern concept of limits. Understanding about the limit in 

it leads to understanding the limit in terms of geometry. Theorem 1 applies to every kind of magnitude, 
including the area of a circle magnitude.   

 
Definition 3. Given a point O and length magnitude r. The Union of all points such that |OA| = r is 

called a circle with the center point  O and the radius r. 
 
Definition 4. Given a circle 𝒞𝒞 with the area a(𝒞𝒞) and a regular polygon  𝒫𝒫 with the area a(𝒫𝒫). 

𝒫𝒫 inscribes 𝒞𝒞  if and  only if every angle points of  𝒫𝒫 is in  𝒞𝒞.  
 
Theorem 2. Let 𝒞𝒞 is a circle. For every ε such that  0 < ε < a(𝒞𝒞) there is a number N for which the 

area of the regular polygons  𝒫𝒫N inscribing  𝒞𝒞 satisfies a(𝒞𝒞) − a(𝒫𝒫N) < ε. 
 
Proof : Let a circle 𝒞𝒞 has area 𝑎𝑎(𝒞𝒞) = 𝑀𝑀0. Take any 𝜀𝜀 such that 0 < 𝜀𝜀 < 𝑎𝑎(𝒞𝒞). Choose points 𝐴𝐴,𝐴𝐴,𝐶𝐶 

and 𝐶𝐶  on 𝒞𝒞 so that  𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶 is a 4 side regular polygon. Let 𝒫𝒫1 = 𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶. Define  

𝑀𝑀1 = 𝑀𝑀0 − 𝑎𝑎(𝒫𝒫1). (1)  

 
Figure 1. Circle inscribed by regular polygons. 

 
Then select points  𝐶𝐶,𝐹𝐹,𝐺𝐺 and 𝐻𝐻 on 𝒞𝒞 so that 𝐴𝐴𝐶𝐶𝐴𝐴𝐹𝐹𝐶𝐶𝐺𝐺𝐶𝐶𝐻𝐻 is a 8 sided regular polygon. Let 𝒫𝒫2 =

𝐴𝐴𝐶𝐶𝐴𝐴𝐹𝐹𝐶𝐶𝐺𝐺𝐶𝐶𝐻𝐻, then  
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𝑀𝑀2 = 𝑀𝑀0 − 𝑎𝑎(𝒫𝒫2).  (2) 

Using the same process, 𝒫𝒫𝑘𝑘+1 can be obtained from 𝒫𝒫𝑘𝑘 for each number 𝑘𝑘. Thus for each number it is 
obtained  𝑀𝑀𝑘𝑘 = 𝑀𝑀0 − 𝑎𝑎(𝒫𝒫𝑘𝑘). 

Select points 𝐴𝐴,𝐴𝐴,𝐶𝐶,𝐶𝐶 on 𝒞𝒞 so that  𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶 is a 4 sided regular polygon. Let 𝒫𝒫1 = 𝐴𝐴𝐴𝐴𝐶𝐶𝐶𝐶. Select points  
𝐴𝐴′,𝐴𝐴′,𝐶𝐶′,𝐶𝐶′ so that 𝐴𝐴 is the midpoint of line segment 𝐴𝐴′𝐶𝐶′, 𝐴𝐴 is the midpoint of line segment 𝐴𝐴′𝐴𝐴′, 𝐶𝐶 is the 
midpoint of line segment 𝐴𝐴′𝐶𝐶′, and  𝐴𝐴 is the midpoint of line segment  𝐶𝐶′𝐶𝐶′. Let the area of 𝒫𝒫1′ = 𝐴𝐴′𝐴𝐴′𝐶𝐶′𝐶𝐶′. 
Note that 𝑎𝑎(𝒫𝒫1) = 1

2
𝑎𝑎(𝒫𝒫1′) and  𝑎𝑎(𝒫𝒫1′) > 𝑀𝑀0. Therefore  

𝑀𝑀0 < 2𝑎𝑎(𝒫𝒫1). (3) 

Based on (1) and (3), obtained 
𝑀𝑀1 < 1

2
 𝑀𝑀0. 

 
Choose points  𝐶𝐶,𝐹𝐹,𝐺𝐺,𝐻𝐻 on 𝒞𝒞 such that 𝐴𝐴𝐶𝐶𝐴𝐴𝐹𝐹𝐶𝐶𝐺𝐺𝐶𝐶𝐻𝐻 is a 8 sided regular polygon. Also Select points 𝐼𝐼 

and 𝐽𝐽 so that line segment 𝐼𝐼𝐽𝐽 is parallel to the line segment  𝐶𝐶𝐴𝐴 and 𝐻𝐻 is the midpoint of the line segment 
𝐼𝐼𝐽𝐽. As  |𝐼𝐼𝐻𝐻| = |𝐻𝐻𝐽𝐽| and |𝐶𝐶𝐼𝐼| = |𝐽𝐽𝐴𝐴| and Δ𝐴𝐴𝐶𝐶𝐻𝐻,Δ𝐴𝐴𝐴𝐴𝐶𝐶,Δ𝐴𝐴𝐶𝐶𝐹𝐹 ,Δ𝐶𝐶𝐶𝐶𝐺𝐺 are congruent, then, 

𝑀𝑀1  <  2(𝒫𝒫2 − 𝒫𝒫1). (4) 

Based on (1), (2), and (4) obtained 
𝑀𝑀2 < 1

2
𝑀𝑀1. 

 
If  𝒞𝒞 is being reinscribed with regular polygons  𝑁𝑁 = 2𝑘𝑘−1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑟𝑟 𝑠𝑠𝑎𝑎𝑐𝑐ℎ 𝑘𝑘 = 3,4,5, . .., the we get 
 

𝑀𝑀𝑘𝑘−1 < 2(𝒫𝒫𝑘𝑘 − 𝒫𝒫𝑘𝑘−1). 
Consequently obtained  that 

𝑀𝑀1 < 1
2
𝑀𝑀0,𝑀𝑀2 < 1

2
𝑀𝑀1,𝑀𝑀3 < 1

2
𝑀𝑀2, . .. ∎ 

 
It is proved that the remains of the area that are consecutive to each process  fulfilling M1 < 1

2
M0, 

M2 < 1
2

M1, M3 < 1
2

M2,… 
 
This implies that according to Theorem 1, it holds that there is a number k such that  𝑀𝑀𝑘𝑘 < 𝜀𝜀. Select  

𝑁𝑁 = 𝑘𝑘.  𝑀𝑀𝑁𝑁 = 𝑀𝑀0 − 𝑎𝑎(𝒫𝒫𝑁𝑁) = 𝑎𝑎(𝒞𝒞) − 𝑎𝑎(𝒫𝒫𝑁𝑁) < 𝜀𝜀 is obtaied. ∎ 
It has been known that Antiphon's statement can be proved (see Theorem 1). For any selected magnitude 

ε, there will be a regular polygon that can inscribe the circle so that the difference between the area of the 
circle and the regular polygon is less than ε. 

 
 Theorem 2 explains that there is a link between the concept of limit and the concept of integral. 

Furthermore It will be reviewed how the method of exhaustion and the Eudoxus principle can produce the 
ratio of two circles with different radius magnitudes formula. 

 
Theorem 3. If circle C1 has the radius r1 and circle C2 has the radius r2, then  

𝑎𝑎(𝐶𝐶1)
𝑎𝑎(𝐶𝐶2) =

𝑟𝑟12

𝑟𝑟22
. 

 

Proof : Suppose  𝑎𝑎(𝐶𝐶1)
𝑎𝑎(𝐶𝐶2)

< 𝑟𝑟12

𝑟𝑟22
  is equivalent to 𝑎𝑎(𝐶𝐶2) > 𝑟𝑟22

𝑟𝑟12
𝑎𝑎(𝐶𝐶1). Let 𝑆𝑆 = 𝑟𝑟22

𝑟𝑟12
𝑎𝑎(𝐶𝐶1). Therefore 𝑆𝑆 < 𝑎𝑎(𝐶𝐶2). 
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Select 0 < 𝜀𝜀 < 𝑎𝑎(𝐶𝐶2) − 𝑆𝑆. Select also a regular polygon  𝒫𝒫2 𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑁𝑁 𝑤𝑤𝑠𝑠𝑡𝑡ℎ 𝑁𝑁 = 2𝑘𝑘+1 for a 𝑘𝑘 =
1,2,3, … whose  area 𝑎𝑎(𝒫𝒫2) inscribes the 𝐶𝐶2 such that it satisfies 𝑎𝑎(𝐶𝐶2) − 𝑎𝑎(𝒫𝒫2) < 𝜀𝜀 < 𝑎𝑎(𝐶𝐶2) − 𝑆𝑆. As a 
result  

𝑎𝑎(𝒫𝒫2) > 𝑆𝑆. (5)  

Select a regular polygon  𝒫𝒫1 the  𝑁𝑁 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑤𝑤ℎ𝑓𝑓𝑠𝑠𝑠𝑠 𝑎𝑎𝑟𝑟𝑠𝑠𝑎𝑎 𝑠𝑠𝑠𝑠  𝑎𝑎(𝒫𝒫1) so that it inscribes  𝐶𝐶1. Since  𝒫𝒫1 and 

𝒫𝒫2 have the same number of sides, then  according to  Lemma 1 𝑎𝑎(𝒫𝒫1)
𝑎𝑎(𝒫𝒫2)

= 𝑟𝑟12

𝑟𝑟22
= 𝑎𝑎(𝐶𝐶1)

𝑆𝑆
 is obtained. 

Since 𝑎𝑎(𝐶𝐶1) > 𝑎𝑎(𝒫𝒫1) > 0, then 𝑆𝑆 > 𝑎𝑎(𝒫𝒫2) is contradictory to (5). Thus, the supposition  𝑎𝑎(𝐶𝐶1)
𝑎𝑎(𝐶𝐶2)

< 𝑟𝑟12

𝑟𝑟22
 is 

incorrect. ∎ 

3.2.  The Parabolic Segment Area by Archimedes 
Stepping ahead from the circle, Archimedes solved a problem related to one of the sections of conics, 

the parabola. He calculated the area of a parabolic segment. The methods used were still similar to those of 
Eudoxus. Archimedes inscribed the empty spaces of the parabolic segment with triangles. 

Parabolic segment is one type of plane resulting from a conic section. In this aricle, cones and parabolic 
segments are defined according to the definition given by Apollonius (240 BC - 190 BC) of Perga.  

 
Definition 5. Let 𝐴𝐴 is a point and 𝒞𝒞 is a circle. The set of points on the lines which joining 𝐴𝐴 with points 

on the circle  𝒞𝒞 forms a surface called a cone. A double cone is an equal and opposite cone and meets at 
point 𝐴𝐴. 

 
Definition 6. An Apex is a point where a double cone meets. 
 
Definition 7. Given a cone and an infinite plane 𝒫𝒫. The intersection of the cone with 𝒫𝒫 is called as  

axial triangle if and only if the diameter line of the cone base and the apex point are in 𝒫𝒫. 
 
Theorem 4. Given a cone with base  𝒞𝒞 . The intersection of the cone with all the planes parallel to the 

circle of the cone base  𝒞𝒞 forms a circle. 
 
Proof : Given a cone with apex point 𝐴𝐴 and base 𝒞𝒞. Let 𝒞𝒞 has a midpoint 𝑂𝑂. Take an arbitrary point 𝐶𝐶 

on 𝒞𝒞. 
Given an infinite plane 𝒫𝒫. Let 𝒞𝒞′ is an arbitrary intersection 𝒫𝒫 with the cone such that 𝒫𝒫 is parallel to 

𝒞𝒞. As the consequence there is a point 𝑓𝑓 in 𝒞𝒞′ and a line segment 𝐴𝐴𝑂𝑂. Select point 𝑠𝑠 in  𝒞𝒞′ such that line 
segment 𝑓𝑓𝑠𝑠 is parallel to line segment  𝑂𝑂𝐶𝐶. 

Since triangles Δ𝐴𝐴𝑓𝑓𝑠𝑠 and Δ𝐴𝐴𝑂𝑂𝐶𝐶 are congruent, then  𝐴𝐴𝐴𝐴
𝐴𝐴𝑂𝑂

 = 𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴

.  Consequently 𝐴𝐴𝐴𝐴
𝑂𝑂𝑂𝑂

= 𝐴𝐴𝐴𝐴
𝐴𝐴𝑂𝑂

. 
𝒞𝒞 is a circle, so that for each 𝐶𝐶 in 𝒞𝒞 the length of segment 𝑂𝑂𝐶𝐶 is constant. Hence the length of space 𝑓𝑓𝑠𝑠 

is also constant  for every 𝑠𝑠 in 𝒞𝒞'. Thus, 𝒞𝒞' is a circle. ∎ 

 
Figure 2. Bases of a cone. 

 
Below is a discussion of the parabola as a conic section in accordance with the definition of Apollonius. 
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Definition 8. Given a cone and an infinite plane 𝒫𝒫. The intersection of the cone and 𝒫𝒫 such that one of 
the lines forming the surface of the cone is parallel to 𝒫𝒫 is called as a parabola. The Parabola bounded by 
the line at the base of the cone is called as parabolic segment. 

 
Definition 9. Given a parabola. Select arbitrary conic base 𝒞𝒞. The line segment connecting the points 

of the parabolic section with 𝒞𝒞 is called as the base of the parabolic segment 
 
Definition 9 explains how is the difference between a parabola with a parabolic segment. It leads the 

understanding to the next concept to be determined which is the area of a parabolic segment. Whereas 
Definition 9 leads us to the generalization of the concept for arbitrary parabolic segment base as per 
Definition 9. In this article, if a parabolic segment with base line segment 𝑄𝑄𝑞𝑞 and vertex 𝑃𝑃 is given, then it 
is denoted as the parabola segment 𝑄𝑄𝑃𝑃𝑞𝑞. 

To form the inscribed triangle, it is necessary to determine the third vertex other than the intersection 
points between the base of the parabolic segment and the parabola. Next, take the intersection point of the 
parabola with a line that intersects each midpoint (see Definition 10) of the parabolic segment base. 

 
Definition 10. 𝑉𝑉 is the midpoint of line segment 𝑄𝑄𝑄𝑄′ if and only if 𝑉𝑉 in on line 𝑄𝑄𝑄𝑄′ and |𝑄𝑄𝑉𝑉| = |𝑉𝑉𝑄𝑄′|. 
 
Lemma 2. Given a parabolic segment with base DE and midpoint M. Let QQ' be the points on the 

parabola such that QQ' is parallel to DE with V as the midpoint of QQ'. Then draw a line ℓ which  
connecting M with V. If R and R' are points on the parabola such that RR' is parallel to DE, then the 
midpoint of the line segment RR' is on line ℓ 

 
Proof : Let 𝐶𝐶𝐶𝐶 is at the base of cone 𝒞𝒞. Let also that point  𝐴𝐴 is the apex of the cone. 
Select points 𝐴𝐴 and 𝐶𝐶 on 𝒞𝒞 so that the line segment  𝐴𝐴𝐶𝐶 is through 𝑀𝑀 and perpendicular to 𝐶𝐶𝐶𝐶. 

Consequently  Δ𝐴𝐴𝐴𝐴𝐶𝐶 is an  axial triangle. 
Since the plane Δ𝐴𝐴𝐴𝐴𝐶𝐶 is perpendicular to 𝐶𝐶𝐶𝐶 and the line segment 𝑄𝑄𝑄𝑄′ is parallel to 𝐶𝐶𝐶𝐶, then the point 

 𝑠𝑠𝑖𝑖 𝑡𝑡ℎ𝑠𝑠 𝑝𝑝𝑝𝑝𝑎𝑎𝑖𝑖𝑠𝑠 Δ𝐴𝐴𝐴𝐴𝐶𝐶. As the consequence, the line ℓ is also in the plane Δ𝐴𝐴𝐴𝐴𝐶𝐶. 
Let 𝑅𝑅 and 𝑅𝑅′ are  points on the parabola so that the line segment 𝑅𝑅𝑅𝑅′ is parallel to 𝐶𝐶𝐶𝐶. Consequently  

the plane  Δ𝐴𝐴𝐴𝐴𝐶𝐶 is also perpendicular to 𝑅𝑅𝑅𝑅′. Hence the midpoint line of 𝑅𝑅𝑅𝑅′ is also in line ℓ. ∎ 
 
Based on Lemma 2 the line ℓ can intersect the parabola at a single point.  
 
Definition 11. Given a parabolic segment with base  𝐶𝐶𝐶𝐶. Let point 𝑀𝑀 is the midpoint of  segment 𝐶𝐶𝐶𝐶. 

Take an arbitrary point 𝑄𝑄 in the parabola. There is a point  𝑄𝑄′ in the parabola such that the line segment  
𝑄𝑄𝑄𝑄′ is parallel to 𝐶𝐶𝐶𝐶. Also Let point 𝑉𝑉 is the midpoint of  𝑄𝑄𝑄𝑄′. The line which connecting  𝑀𝑀 with 𝑉𝑉 is 
called diameter line . The intersection of the diameter with the parabola at a point called  vertex. 

 
Figure 3. Parabola resulted from the intersection of  𝑃𝑃 and the cone. 

 
It has been known from Definition 11 that there is a single vertex for every parallel segment base in a 

parabola. Hence, the initial inscribed triangle with its angle points being the intersection points of the 
segment base with the parabola and the vertex can be formed. Since there are still remaining region, the 
determination of the vertices of the inscribed triangle will be further explained as follows. 
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Figure 4. Diameter line at the parabolic segment. 
 
Definition 12.  Given a parabolic segment with base 𝐶𝐶𝐶𝐶. Let 𝑀𝑀 is the midpoint of 𝐶𝐶𝐶𝐶. Hereinafter 𝐶𝐶𝑀𝑀 

or 𝑀𝑀𝐶𝐶 is called ordinate. 
 
Definition 13.  Given a parabolic segment with base 𝐶𝐶𝐶𝐶. Let 𝑀𝑀 is the midpoint of 𝐶𝐶𝐶𝐶. Abscissa is a 

line segment on the diameter such that it connects point 𝑀𝑀 with the vertex of the parabola. 
 
Theorem 5.  Given a Cone 𝐴𝐴𝐴𝐴𝐶𝐶. Let the parabolic segment 𝐶𝐶𝑃𝑃𝐶𝐶 is the intersection of  𝐴𝐴𝐴𝐴𝐶𝐶. Let also 

 𝑀𝑀 is a point in 𝐶𝐶𝐶𝐶 so that line segment 𝑃𝑃𝑀𝑀 is the diameter od the parabolic segment which parallel to one 
side of the axial triangle  𝐴𝐴𝐴𝐴𝐶𝐶, call it as line segment  𝐴𝐴𝐶𝐶. Let 𝑄𝑄 is an arbitrary point of the parabolic 
segment and 𝑉𝑉 is a point in line segment  𝑃𝑃𝑀𝑀 so that line segment  𝑄𝑄𝑉𝑉 is the ordinate of diameter 𝑃𝑃𝑀𝑀. If 
line segment  𝑃𝑃𝑃𝑃 is perpendicular to the line segment  𝑃𝑃𝑀𝑀 such that 

|𝑂𝑂𝑃𝑃|
|𝑂𝑂𝐴𝐴|

= |𝐵𝐵𝐶𝐶|2

|𝐵𝐵𝐴𝐴|⋅|𝐴𝐴𝐶𝐶|
, (6) 

then 
 
|𝑄𝑄𝑉𝑉|2  =  |𝑃𝑃𝑃𝑃| ⋅  |𝑃𝑃𝑉𝑉|.  
 

Proof : Let the cone  𝐴𝐴𝐴𝐴𝐶𝐶 with the points 𝐴𝐴 and 𝐶𝐶 are on the base of the cone such that line segment 
𝐴𝐴𝐶𝐶 is the cone base diameter. 

Let  𝐶𝐶𝑃𝑃𝐶𝐶 is the parabolic segments resulting from the intersection of cone 𝐴𝐴𝐴𝐴𝐶𝐶 so that  𝐶𝐶𝐶𝐶 is the 
parabolic segment base and 𝑃𝑃  is on the line 𝐴𝐴𝐴𝐴. 

Let 𝑀𝑀 is the midpoint of line segment 𝐶𝐶𝐶𝐶. As a consequence point 𝑃𝑃 and 𝑀𝑀 are on the parabolic segment 
diameter . Take an arbitrary conic base with points  𝐻𝐻 and 𝐾𝐾 on the conic base such that line segment 𝐻𝐻𝐾𝐾 
is the diameter and intersects line segment 𝑃𝑃𝑀𝑀 at 𝑉𝑉. 

Since the line segment  𝑄𝑄𝑉𝑉 is an ordinate,then the line segment 𝑄𝑄𝑉𝑉 is parallel to the line segment 𝐶𝐶𝐶𝐶. 
Consider the circle through 𝐻𝐻𝑄𝑄𝐾𝐾. It is obtained that |𝑄𝑄𝑉𝑉|2 = |𝐻𝐻𝑉𝑉| ⋅  |𝐾𝐾𝑉𝑉|. 

 
Lets condiser the triangles Δ𝐴𝐴𝑃𝑃𝑀𝑀 and Δ𝐴𝐴𝐴𝐴𝐶𝐶. As  Δ𝐴𝐴𝑃𝑃𝑀𝑀 and Δ𝐻𝐻𝑃𝑃𝑉𝑉 are congruent and  Δ𝐴𝐴𝐴𝐴𝐶𝐶 and  

Δ𝐻𝐻𝐴𝐴𝐾𝐾 are congruent also ,it is obtained  |𝐻𝐻𝑉𝑉|: |𝑃𝑃𝑉𝑉| = |𝐴𝐴𝐶𝐶|: |𝐴𝐴𝐶𝐶| and  |𝑉𝑉𝑉𝑉|
|𝑂𝑂𝐴𝐴|

= |𝐵𝐵𝐶𝐶|
|𝐵𝐵𝐴𝐴|

. Due to this, we obtained  
|𝑄𝑄𝑉𝑉|2

|𝑂𝑂𝑉𝑉|⋅ |𝑂𝑂𝐴𝐴|
= |𝐵𝐵𝐶𝐶|2

|𝐵𝐵𝐴𝐴|⋅ |𝐴𝐴𝐶𝐶|
. 

 

 
Figure 5. Parabola as one of conic sections. 
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Since (6) is known , we get |𝑄𝑄𝑉𝑉|2

|𝑂𝑂𝑉𝑉|⋅ |𝑂𝑂𝐴𝐴|
= |𝑂𝑂𝑃𝑃|

|𝑂𝑂𝐴𝐴|
. Thus |𝑄𝑄𝑉𝑉|2 = |𝑃𝑃𝑃𝑃| ⋅  |𝑃𝑃𝑉𝑉|. 

 
Theorem 6.  Let 𝑄𝑄  is a point on a parabola. Point 𝑉𝑉 is an intersection point of the ordinate through  𝑄𝑄 

with the diameter. Also let point  𝑃𝑃 is the intersection point of the diameter and the parabola, and 𝑇𝑇 is a 
point on the diameter that lies outside the parabola  |𝑇𝑇𝑃𝑃|  =  |𝑃𝑃𝑉𝑉| if and only if  line 𝑇𝑇𝑄𝑄 is tangential the 
parabola at point 𝑄𝑄. 

 
Proof : ⟹ Let ℓ is the line  𝑇𝑇𝑄𝑄. It will be proved that ℓ does not pass inside the parabola. Consequently 
ℓis not a tangent line. 
 

Suppose  ℓ passes inside the parabola. Select arbitrary point  𝐾𝐾 on ℓ such that 𝐾𝐾 on the parabola ordinate. 
Let 𝑄𝑄𝑉𝑉 is an ordinate line segment. Select points 𝑄𝑄′ on the parabola and point 𝑉𝑉′on the diameter so that the 
line 𝑄𝑄′𝐾𝐾𝑉𝑉′ is parallel to the line segment 𝑄𝑄𝑉𝑉. 

 
Since |𝑄𝑄′𝑉𝑉′| > |𝐾𝐾𝑉𝑉′|, then 

�𝑄𝑄′𝑉𝑉′�2

|𝑄𝑄𝑉𝑉|2
> �𝑉𝑉𝑉𝑉′�2

|𝑄𝑄𝑉𝑉|2
. (7) 

Δ 𝑇𝑇𝑉𝑉′𝐾𝐾 is similar with Δ  𝑇𝑇𝑉𝑉𝑄𝑄, so that 

�𝑉𝑉𝑉𝑉′�
|𝑄𝑄𝑉𝑉|

= �𝑇𝑇𝑉𝑉′�
|𝑇𝑇𝑉𝑉|

. (8) 

Consequently 

�𝑄𝑄′𝑉𝑉′�2

|𝑄𝑄𝑉𝑉|2
> �𝑇𝑇𝑉𝑉′�2

|𝑇𝑇𝑉𝑉|2
 . (9) 

Based on the parabola parameters described in Theorem 5, we can get 

|𝑂𝑂𝑉𝑉′|
|𝑂𝑂𝑉𝑉|

> |𝑇𝑇𝑉𝑉′|2

|𝑇𝑇𝑉𝑉|2
  (10) 

 
Figure 6. Parabola as one of conic sections. 
 
Equivalent to 

4|𝑇𝑇𝑂𝑂|⋅ �𝑂𝑂𝑉𝑉′�
4|𝑇𝑇𝑂𝑂|⋅ |𝑂𝑂𝑉𝑉|

> �𝑇𝑇𝑉𝑉′�2

|𝑇𝑇𝑉𝑉|2
. (11) 

Since |𝑇𝑇𝑃𝑃| = |𝑃𝑃𝑉𝑉| dan |𝑇𝑇𝑉𝑉| = |𝑇𝑇𝑃𝑃| + |𝑃𝑃𝑉𝑉|, are known, it can be found  

4|𝑇𝑇𝑃𝑃| ⋅  |𝑃𝑃𝑉𝑉| =  2|𝑇𝑇𝑃𝑃| ⋅  2|𝑃𝑃𝑉𝑉|  =  |𝑇𝑇𝑉𝑉|2. (12) 

Consequently 
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4|𝑇𝑇𝑃𝑃| ⋅  |𝑃𝑃𝑉𝑉′| > |𝑇𝑇𝑉𝑉′|2. (13) 

 Yet, |𝑇𝑇𝑃𝑃| ≠  |𝑃𝑃𝑉𝑉′|. Consequently 

4|𝑇𝑇𝑃𝑃| ⋅  |𝑃𝑃𝑉𝑉′| < |𝑇𝑇𝑉𝑉′|2. 
 
Thus, the assumption of the line ℓ passing inside the parabola is incorrect. 

⟸ Let the line segment  𝑇𝑇𝑄𝑄 is a line tangent to point 𝑄𝑄. Select arbitrary point 𝑄𝑄′ on the, point 𝑉𝑉′ on 
the diameter, and point  𝐾𝐾 on the line segment  𝑇𝑇𝑄𝑄 such that there is a line segment 𝐾𝐾𝑄𝑄′𝑉𝑉′ parallel to line 
segment 𝑄𝑄𝑉𝑉. 

As the point 𝐾𝐾 is outside the curve such that |𝑄𝑄′𝑉𝑉′| < |𝐾𝐾𝑉𝑉′|, then 
|𝑄𝑄′𝑉𝑉′|2

|𝑄𝑄𝑉𝑉|2 <
|𝐾𝐾𝑉𝑉′|2

|𝑄𝑄𝑉𝑉|2  

Using the similar procedure to (10) to (13) obtained 
4|𝑇𝑇𝑃𝑃| ⋅  |𝑃𝑃𝑉𝑉′|
4|𝑇𝑇𝑃𝑃| ⋅  |𝑃𝑃𝑉𝑉| <

|𝑇𝑇𝑉𝑉′|2

|𝑇𝑇𝑉𝑉|2 . 

1. Let |𝑇𝑇𝑃𝑃|  =  |𝑃𝑃𝑉𝑉′|, then 4|𝑇𝑇𝑃𝑃| ⋅  |𝑃𝑃𝑉𝑉′| = |𝑇𝑇𝑉𝑉′|2. Consequently 4|𝑇𝑇𝑃𝑃| ⋅  |𝑃𝑃𝑉𝑉|  >  |𝑇𝑇𝑉𝑉|2. 
2. Let |𝑇𝑇𝑃𝑃| ≠  |𝑃𝑃𝑉𝑉′|, then 4|𝑇𝑇𝑃𝑃| ⋅  |𝑃𝑃𝑉𝑉′| < |𝑇𝑇𝑉𝑉′|2. Sonsequnetly 4|𝑇𝑇𝑃𝑃| ⋅  |𝑃𝑃𝑉𝑉|  =  |𝑇𝑇𝑉𝑉|2 or 4|𝑇𝑇𝑃𝑃| ⋅

 |𝑃𝑃𝑉𝑉|  >  |𝑇𝑇𝑉𝑉|2. 
If |𝑇𝑇𝑉𝑉|  =  |𝑇𝑇𝑃𝑃|  + |𝑃𝑃𝑉𝑉|, then 4|𝑇𝑇𝑃𝑃| ⋅  |𝑃𝑃𝑉𝑉| ≤  |𝑇𝑇𝑉𝑉|2. Therefore it should be 4|𝑇𝑇𝑃𝑃| ⋅  |𝑃𝑃𝑉𝑉|  =
 |𝑇𝑇𝑉𝑉′|2. Thus |𝑇𝑇𝑃𝑃|  =  |𝑃𝑃𝑉𝑉|. ∎ 

 

Lemma 3. Given a parabola with vertex 𝑃𝑃.let the points 𝑄𝑄,𝑅𝑅, and 𝑅𝑅′ are on the parabola so that line 
segment 𝑅𝑅𝑅𝑅′ is parallel to the parabola tangent line at point 𝑄𝑄. Also let  𝑊𝑊 is a point on the parabola 
diameter so that line segment  𝑅𝑅𝑊𝑊 is the abscissa ordinate of 𝑃𝑃𝑊𝑊. If point 𝐹𝐹 is on the line segment 𝑅𝑅𝑊𝑊 so 
that line 𝑄𝑄𝐹𝐹 is parallel to the parabola diameter , then the line 𝑄𝑄𝐹𝐹 intersects the line segment  𝑅𝑅𝑅𝑅′ at its 
midpoint. 

 

 
Figure 7. Diameter line of the new parabolic segment. 

 
Proof: Let the line 𝑅𝑅𝑅𝑅′ intersects the parabola diameter line at point 𝑈𝑈 and the parabola tangent line at 

point 𝑄𝑄 intersects the parabola diameter line at point 𝑇𝑇. Also Let point  𝐶𝐶 is the intersection line of  𝑄𝑄𝐹𝐹 and 
the line parallel to the ordinate segment through point  𝑃𝑃. As the consequence, there is point 𝑉𝑉  between  𝑃𝑃 
and 𝑊𝑊 so that line segment 𝑄𝑄𝑉𝑉 parallel to line segment 𝑅𝑅𝑊𝑊. Draw a line parallel to line segment  𝑄𝑄𝑉𝑉 at 
point 𝑃𝑃 so that it intersects the parabola diameter at point 𝑊𝑊′ and intersects line 𝐶𝐶𝐹𝐹 at 𝐹𝐹′. 

Let the point  𝑀𝑀 is between 𝑅𝑅 and 𝑅𝑅′. It will be shown  |𝑅𝑅𝑀𝑀| = |𝑅𝑅′𝑀𝑀|. 
Consider that line segment 𝑄𝑄𝑇𝑇 is on the parabola tangent line at point 𝑄𝑄. In accordance with Theorem 

6, it is obtained 

|𝑇𝑇𝑉𝑉|  =  2 |𝑃𝑃𝑉𝑉|. (14) 

Let the line 𝑄𝑄𝑇𝑇 intersects line segment 𝐶𝐶𝑃𝑃 on point 𝑂𝑂 and line 𝑅𝑅′𝑊𝑊′ intersects line segment 𝐶𝐶𝑄𝑄 point 
𝐹𝐹′ on. Since line 𝑄𝑄𝑉𝑉 parallel to line 𝐶𝐶𝑃𝑃 and line 𝑃𝑃𝑉𝑉 parallel to line 𝐶𝐶𝑄𝑄 thena |𝑃𝑃𝑉𝑉| = |𝐶𝐶𝑄𝑄| dan |𝑄𝑄𝑉𝑉| =
|𝐶𝐶𝑃𝑃|. Furthermore, from (14), obtained  |𝑇𝑇𝑃𝑃| = |𝑃𝑃𝑉𝑉|. Consequently  
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|𝑇𝑇𝑃𝑃|  =  |𝐶𝐶𝑄𝑄|. (15) 

As  Δ𝑇𝑇𝑉𝑉𝑄𝑄 and Δ𝑇𝑇𝑃𝑃𝑂𝑂 are similar and  (14), obtained 

|𝑄𝑄𝑉𝑉|  =  2 |𝑂𝑂𝑃𝑃|. (16) 

And 

|𝐶𝐶𝑃𝑃|  =  2 |𝑂𝑂𝑃𝑃|. (17) 

As the result  |𝐶𝐶𝑂𝑂| = |𝑂𝑂𝑃𝑃|. 
 

Based on (16) and (17) it is known that Δ 𝑂𝑂𝐶𝐶𝑄𝑄 congruent to Δ𝑂𝑂𝑃𝑃𝑇𝑇. Hence 

| 𝛥𝛥 𝑄𝑄𝑇𝑇𝑉𝑉|  =  |𝐶𝐶𝑃𝑃𝑉𝑉𝑄𝑄|. (18) 

Review ordinate  𝑄𝑄𝑉𝑉 and abscissa 𝑃𝑃𝑉𝑉 also ordinate 𝑅𝑅′𝑊𝑊′ and abscissa 𝑃𝑃𝑊𝑊′. From Theorem 6, obtained 
|𝑄𝑄𝑉𝑉|2

|𝑅𝑅′𝑊𝑊′|2  =
|𝑃𝑃𝑉𝑉|

|𝑃𝑃𝑊𝑊′|. 

Therefore from (18) as well , we get 

| 𝛥𝛥 𝑅𝑅′𝑈𝑈𝑊𝑊′|  =  |𝐶𝐶𝑃𝑃𝑊𝑊′𝐹𝐹′|. (19) 

Review ordinate 𝑄𝑄𝑉𝑉 and abscissa 𝑃𝑃𝑉𝑉 also ordinate 𝑅𝑅𝑊𝑊 and abscissa 𝑃𝑃𝑊𝑊. From Theorem 6 obtained 
|𝑄𝑄𝑉𝑉|2

|𝑅𝑅𝑊𝑊|2 =
𝑃𝑃𝑉𝑉
𝑃𝑃𝑊𝑊

. 

Therefore from (18) as well, we get 

|𝛥𝛥𝑅𝑅𝑈𝑈𝑊𝑊|  =  |𝐶𝐶𝑃𝑃𝑊𝑊𝐹𝐹|. (20) 

Consider the parallelogram 𝐶𝐶𝑃𝑃𝑊𝑊𝐹𝐹 and 𝐶𝐶𝑃𝑃𝑊𝑊′𝐹𝐹′. The area of the parallelogram 𝐶𝐶𝑃𝑃𝑊𝑊𝐹𝐹 when it 
subtracted from the area of the parallelogram 𝐶𝐶𝑃𝑃𝑊𝑊′𝐹𝐹′ will result the parallelogram 𝐹𝐹′𝑊𝑊′𝑊𝑊𝐹𝐹. Consider 
Δ𝑅𝑅𝑈𝑈𝑊𝑊 and Δ𝑅𝑅′𝑈𝑈𝑊𝑊′. The area of Δ𝑅𝑅𝑈𝑈𝑊𝑊 when subtracted from the area of 𝑅𝑅′𝑈𝑈𝑊𝑊′ will result polygon 
𝑅𝑅′𝑊𝑊′𝑊𝑊𝐹𝐹𝑀𝑀. Hence, from  (19) dan (20) obtained the area of parallelogram 𝐹𝐹′𝑊𝑊′𝑊𝑊𝐹𝐹 equals to the polygon 
𝑅𝑅′𝑊𝑊′𝑊𝑊𝐹𝐹𝑀𝑀. Consequently  

|Δ 𝑅𝑅′𝑀𝑀𝐹𝐹′|  =  |Δ 𝑅𝑅′𝑀𝑀𝐹𝐹′|. 
 
Since line 𝐹𝐹′𝑅𝑅′ is parallel to line 𝐹𝐹𝑅𝑅, then ∠ 𝐹𝐹′𝑅𝑅′𝑀𝑀 = ∠ 𝐹𝐹𝑅𝑅𝑀𝑀, ∠ 𝐹𝐹′𝑀𝑀𝑅𝑅′ = ∠ 𝐹𝐹𝑀𝑀𝑅𝑅, and ∠ 𝑅𝑅′𝐹𝐹′𝑀𝑀 =

∠ 𝑅𝑅𝐹𝐹𝑀𝑀. It means that Δ𝑅𝑅′𝑀𝑀𝐹𝐹′ is congruent to Δ𝑅𝑅𝑀𝑀𝐹𝐹. Thus, |𝑅𝑅′𝑀𝑀| = |𝑅𝑅𝑀𝑀|. ∎ 
 
It was found from the proof of Lemma 3 that the remaining area can be treated as parabolic segment 

having a base from the side of the triangle inscribed earlier and a diameter parallel to the diameter of the 
parabolic segment whose area is to be determined. As a result, the area comparison of the triangles  
inscribed on the parabolic segment is obtained as follows.  

 
Theorem 7. Given parabolic segment 𝑄𝑄𝑃𝑃𝑞𝑞. Let 𝑉𝑉 is the center point of the line segment 𝑄𝑄𝑞𝑞 and 𝑀𝑀 is 

the mid point of the line segment  𝑄𝑄𝑉𝑉. If 𝑅𝑅 is the point of intersection between the parabolic segment with 
the line through point 𝑀𝑀 and parallel to the  diameter of the drawn  parabola then,  

|Δ𝑄𝑄𝑃𝑃𝑞𝑞|  =  8 |Δ{𝑃𝑃𝑅𝑅𝑄𝑄}|. (21) 

Proof : Let point 𝑊𝑊 on the diameter and it is the intersection of a line parallel to line segment  𝑄𝑄𝑉𝑉  that 
passing through point  𝑅𝑅. 
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Referring to Theorem 6 it is obtained that  |𝑅𝑅𝑊𝑊|2  =  |𝑃𝑃𝑊𝑊| ⋅  𝑝𝑝 for a magnitude 𝑝𝑝 parabolic parameter  
In a similar way we can get that |𝑄𝑄𝑉𝑉|2  =  |𝑃𝑃𝑉𝑉| ⋅  𝑝𝑝. 

Consequently it obtained  
|𝑃𝑃𝑉𝑉|
|𝑃𝑃𝑊𝑊| =

|𝑄𝑄𝑉𝑉|2

|𝑅𝑅𝑊𝑊|2 

 

 

Figure 8. Inscribed triangles of the parabolic segment. 
 
Consequently  it obtained  

|𝑂𝑂𝑉𝑉|
|𝑂𝑂𝑃𝑃|

= |𝑄𝑄𝑉𝑉|2

|𝑅𝑅𝑃𝑃|2
|𝑃𝑃𝑉𝑉| = 4 |𝑃𝑃𝑊𝑊| = 4

3
|𝑅𝑅𝑀𝑀|. (22) 

Let 𝑌𝑌 is the intersection of line segments 𝑃𝑃𝑄𝑄 and 𝑅𝑅𝑀𝑀. As 𝑅𝑅𝑀𝑀 is parallel to 𝑃𝑃𝑉𝑉 and 𝑀𝑀 is the midpoint 
of 𝑄𝑄𝑉𝑉 so that |𝑃𝑃𝑌𝑌| = |𝑌𝑌𝑄𝑄|. 

Consider that 𝑌𝑌 is the midpoint 𝑃𝑃𝑄𝑄, 𝑀𝑀 is the midpoint 𝑄𝑄𝑉𝑉, and  Δ𝑃𝑃𝑉𝑉𝑄𝑄 is congruent with  Δ𝑌𝑌𝑀𝑀𝑄𝑄, thus 
|𝑃𝑃𝑉𝑉| = 2|𝑌𝑌𝑀𝑀|. Furthermore from (22) obtained, 

|𝑌𝑌𝑀𝑀| = 2|𝑅𝑅𝑌𝑌|. (23) 

Also consider that Δ𝑃𝑃𝑄𝑄𝑀𝑀 and Δ𝑃𝑃𝑅𝑅𝑄𝑄 have the same base, line segment 𝑃𝑃𝑄𝑄. From (23) and it is known 
that the angle ∠𝑅𝑅𝑌𝑌𝑃𝑃 = ∠𝑀𝑀𝑌𝑌𝑄𝑄, then the height line of Δ𝑃𝑃𝑄𝑄𝑀𝑀 is equal to two times with the height line of 
Δ𝑃𝑃𝑅𝑅𝑄𝑄. Consequently |Δ𝑃𝑃𝑄𝑄𝑀𝑀|  =  2 |Δ𝑃𝑃𝑅𝑅𝑄𝑄|. 
Since |𝑄𝑄𝑉𝑉| = 2|𝑄𝑄𝑀𝑀|, then |Δ𝑃𝑃𝑄𝑄𝑉𝑉|  =  2 |Δ𝑃𝑃𝑄𝑄𝑀𝑀|  =  4 |Δ𝑃𝑃𝑅𝑅𝑄𝑄| and |Δ𝑃𝑃𝑄𝑄𝑞𝑞|  =  8 |Δ𝑃𝑃𝑅𝑅𝑄𝑄|. ∎ 

 
Since the ratio of the area of inscribed triangles in the 𝑖𝑖 process to the inscribed triangles in the (𝑖𝑖 + 1) 

process for each 𝑖𝑖 = 1,2,3, … , has been known, thus the area of the inscribed triangles in each process can 
be found out if the inscribed triangles in the 𝑖𝑖 = 1 process are known. 
 

Theorem 8. Given parabolic segment 𝑄𝑄𝑃𝑃𝑞𝑞. Let 𝑎𝑎1 is the area of Δ𝑄𝑄𝑃𝑃𝑞𝑞. If  𝑎𝑎𝑛𝑛 =  �1
4
�
𝑛𝑛−1

𝑎𝑎1 for 𝑖𝑖 =
1,2,3, .., then  

𝑎𝑎1  +  𝑎𝑎2  +  𝑎𝑎3 + . . . + 𝑎𝑎𝑁𝑁 <  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑡𝑡 𝑎𝑎𝑟𝑟𝑠𝑠𝑎𝑎 𝑄𝑄𝑃𝑃𝑞𝑞 
For each number 𝑁𝑁 
 

Proof : Let 𝑎𝑎1 = |Δ𝑄𝑄𝑃𝑃𝑞𝑞|. From  
Theorem 7 |Δ𝑃𝑃𝑄𝑄𝑞𝑞|  =  8 |Δ𝑃𝑃𝑅𝑅𝑄𝑄|  =  8 |Δ𝑃𝑃𝑞𝑞𝑟𝑟| is obtained, then |Δ𝑃𝑃𝑄𝑄𝑞𝑞| =  4 (|Δ𝑃𝑃𝑅𝑅𝑄𝑄| + |Δ𝑃𝑃𝑞𝑞𝑟𝑟|) . If 

|Δ𝑃𝑃𝑅𝑅𝑄𝑄| = 𝑎𝑎1, then 

|𝛥𝛥𝑃𝑃𝑅𝑅𝑄𝑄| + |𝛥𝛥𝑃𝑃𝑟𝑟𝑞𝑞| = 1
4
𝑎𝑎1 = 1

4

2−1
 𝑎𝑎1 =  𝑎𝑎2. (24) 

Based on Lemma 3, if the points 𝑆𝑆, 𝑠𝑠,𝑇𝑇 and 𝑡𝑡 are choosen in accordance with the conditions in  
Theorem 7, then |Δ𝑅𝑅𝑆𝑆𝑄𝑄| + |Δ𝑅𝑅𝑠𝑠𝑃𝑃| + |Δ𝑃𝑃𝑡𝑡𝑟𝑟| + |Δ𝑟𝑟𝑡𝑡𝑞𝑞| = 1

4
|Δ𝑃𝑃𝑅𝑅𝑄𝑄| + 1

4
|Δ𝑃𝑃𝑟𝑟𝑞𝑞| . From the equation (24)  
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|Δ𝑅𝑅𝑆𝑆𝑄𝑄| + |Δ𝑅𝑅𝑠𝑠𝑃𝑃| + |Δ𝑃𝑃𝑇𝑇𝑟𝑟| + |Δ𝑟𝑟𝑡𝑡𝑞𝑞| =
1
4
�

1
4
𝑎𝑎1� =

1
4

3−1

 𝑎𝑎1  =  𝑎𝑎3 
is obtained. 

Furthermore , if the procedure is done repeatedly until the-𝑁𝑁 process, then the sum of the triangle areas 
in each process forms the sequence  𝑎𝑎1,𝑎𝑎2,𝑎𝑎3,𝑎𝑎4, . . . ,𝑎𝑎𝑁𝑁. 

Hence, 𝑎𝑎1 + 𝑎𝑎2 + 𝑎𝑎3 + 𝑎𝑎4+. . . +𝑎𝑎𝑁𝑁 is the sum of all the triangles’ area inscribe the parabolic segment 
up to the 𝑁𝑁 process. As the inscribing triangle process stop at the-𝑁𝑁 process, there is a remaining area that 
is not inscribed by triangle. Consequently 𝑎𝑎1 + 𝑎𝑎2 + 𝑎𝑎3 + 𝑎𝑎4+. . . +𝑎𝑎𝑁𝑁 is less than the area of the parabolic 
segment. ∎  

 
It has been explained in Theorem 8 that if a parabola is inscribed with triangles in a finite process, the 

inscribed triangles left space of the parabolic segment. Therefore, knowledge of the infinite series of the 
area of the inscribed triangles is not enough to determine the area of the parabolic segment. It requires 
understanding the concept of infinite sum of the triangles inscribing the parabolic segment. 

 
Theorem 9. Let 𝑎𝑎1 is an arbitrary magnitude. If the sequence 𝑎𝑎1,𝑎𝑎2,𝑎𝑎3, . .. satisfied 𝑎𝑎𝑛𝑛 = 1

4

𝑛𝑛−1
 𝑎𝑎1 for 

𝑖𝑖 = 1,2,3, . .., then for every number 𝑁𝑁 holds 
𝑎𝑎1 + 𝑎𝑎2 + 𝑎𝑎3+ . . . +𝑎𝑎𝑁𝑁 + 1

3
𝑎𝑎𝑁𝑁 = 4

3
 𝑎𝑎1. 

Proof : Let  
𝑏𝑏2 = 1

3
 𝑎𝑎2,𝑏𝑏3 = 1

3
 𝑎𝑎3, 𝑏𝑏4 = 1

3
𝑎𝑎4, . . . 𝑏𝑏𝑁𝑁 = 1

3
𝑎𝑎𝑁𝑁, 

Then 
(𝑎𝑎2 + 𝑎𝑎3 + 𝑎𝑎4+. . . +𝑎𝑎𝑁𝑁) + (𝑏𝑏2 + 𝑏𝑏3 + 𝑏𝑏4+. . . +𝑏𝑏𝑁𝑁) = 4

3
 (𝑎𝑎2 + 𝑎𝑎3 + 𝑎𝑎4+. . . +𝑎𝑎𝑁𝑁). 

Since  𝑎𝑎1 =  4𝑎𝑎2,𝑎𝑎2 = 4𝑎𝑎3,𝑎𝑎3 = 4𝑎𝑎4, . . .𝑎𝑎𝑁𝑁−1 =  4𝑎𝑎𝑁𝑁, thus, 
(𝑎𝑎2 + 𝑎𝑎3 + 𝑎𝑎4+. . . +𝑎𝑎𝑁𝑁) + (𝑏𝑏2 + 𝑏𝑏3 + 𝑏𝑏4+. . . +𝑏𝑏𝑁𝑁) = 1

3
 (𝑎𝑎1 + 𝑎𝑎2 + 𝑎𝑎3 + 𝑎𝑎4+. . . +𝑎𝑎𝑁𝑁−1). 

 
Yet, sine (𝑏𝑏2 + 𝑏𝑏3 + 𝑏𝑏4+. . . +𝑏𝑏𝑁𝑁−1) = 1

3
 (𝑎𝑎2 + 𝑎𝑎3 + 𝑎𝑎4+. . . +𝑎𝑎𝑁𝑁−1), then 

(𝑎𝑎2 + 𝑎𝑎3 + 𝑎𝑎4+. . . +𝑎𝑎𝑁𝑁) + 𝑏𝑏𝑁𝑁  = 1
3

 𝑎𝑎1. (25) 

By adding both segments of (25) with 𝑎𝑎1, then 
 

(𝑎𝑎1 + 𝑎𝑎2 + 𝑎𝑎3 + 𝑎𝑎4+. . . +𝑎𝑎𝑁𝑁) + 1
3
𝑎𝑎𝑁𝑁  = 4

3
𝑎𝑎1. ∎ 

 
Theorem 10. If given a parabolic segment 𝑄𝑄𝑃𝑃𝑞𝑞,then its area is equal to four -thirds of the area 𝛥𝛥𝑄𝑄𝑃𝑃𝑞𝑞. 
 
Proof : Let 𝑆𝑆 is the area of parabolic segment  𝑄𝑄𝑃𝑃𝑞𝑞 and 𝐾𝐾 = 4

3
|Δ𝑃𝑃𝑄𝑄𝑞𝑞|. It will be shown 𝑆𝑆 =  𝐾𝐾. Let 

𝑎𝑎1  = |Δ𝑄𝑄𝑃𝑃𝑞𝑞|, 𝑎𝑎2 =  |Δ𝑃𝑃𝑅𝑅𝑄𝑄| + |Δ𝑃𝑃𝑟𝑟𝑞𝑞|, 𝑎𝑎3 = |Δ𝑅𝑅𝑆𝑆𝑄𝑄| + |Δ𝑅𝑅𝑠𝑠𝑃𝑃| + |Δ𝑃𝑃𝑇𝑇𝑟𝑟| + |Δ𝑟𝑟𝑡𝑡𝑞𝑞|, ...Then, the 
sequence  𝑎𝑎2 = 1

4
𝑎𝑎1,𝑎𝑎3 = 1

4
𝑎𝑎2,𝑎𝑎4 = 1

4
𝑎𝑎3, . . . ,𝑎𝑎𝑁𝑁 = 1

4
𝑎𝑎𝑁𝑁−1 for each number 𝑁𝑁 of the sum of the area of the 

triangles inscribing the segment in the sequence of the process can be formed.  Let 𝑇𝑇𝑁𝑁 = 𝑎𝑎1 + 𝑎𝑎2 + 𝑎𝑎3 +
𝑎𝑎4+. . . +𝑎𝑎𝑁𝑁. 

• Suppose 𝑆𝑆 < 𝐾𝐾. 
Since 𝑎𝑎2 = 1

4
𝑎𝑎1,𝑎𝑎3 = 1

4
𝑎𝑎2,𝑎𝑎4 = 1

4
𝑎𝑎3, . .., the sequence  𝑎𝑎1,𝑎𝑎2,𝑎𝑎3, . .. satisfies the condition of the 

Eudoxus principle in Theorem 1. Select 𝜀𝜀 = 𝐾𝐾 − 𝑆𝑆. In accordance with the Eudoxus principle, 
there is a number 𝑁𝑁 such that 𝑎𝑎𝑁𝑁 < 𝜀𝜀 = 𝐾𝐾 − 𝑆𝑆. It is then found that 

𝑆𝑆 < 𝑇𝑇𝑁𝑁–
2
3
𝑎𝑎𝑁𝑁. 

for an 𝑁𝑁. Therefore  there is an 𝑁𝑁 that satisfies 𝑆𝑆 < 𝑇𝑇𝑁𝑁. This does not comply with Theorem 8. 
Thus the assumption of 𝑆𝑆 <  𝐾𝐾 is incorrect 

 
• Suppose 𝑆𝑆 > 𝐾𝐾 

Consider that 𝑆𝑆 − 𝑇𝑇𝑛𝑛 < 𝑎𝑎𝑛𝑛 for every 𝑖𝑖 = 1,2,3, . .. Choose 𝜀𝜀 = 𝑆𝑆 − 𝐾𝐾. Consequently there is a 
number 𝑁𝑁 such that 
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𝑆𝑆 − 𝑇𝑇𝑁𝑁 < 𝑎𝑎𝑁𝑁 < 𝜀𝜀 = 𝑆𝑆 − 𝐾𝐾. 
This implies that 𝐾𝐾 < 𝑇𝑇𝑁𝑁. From Theorem 6 it is found that 𝑇𝑇𝑁𝑁 + 1

3
𝑎𝑎𝑁𝑁  =  𝐾𝐾. It means  𝑇𝑇𝑁𝑁 < 𝐾𝐾. 

This makes the assumption 𝑆𝑆 >  𝐾𝐾 inappropriate. 
 

Thus 𝑆𝑆 = 𝐾𝐾. ∎ 

3.3.  Discussion 
This article notes that the Eudoxus principle explains the limits of geometric series and in determining 

the area of parabolic segments by Archimedes using the limits of geometric series. There are no formal 
concepts of limits and integral concepts in the discussion of these concepts. But through the problem 
solving, it was realized that the concept of limit was needed in the problem they solved. 

The formal concept is not good conveyed too early, but it is introduced by referring to  the understanding 
of concepts that students have acquired in intuition-based contexts previously. This is done as a means of 
generalization and simplification (Katz, 1998b). 

Let 𝜀𝜀 be a magnitude. As 𝜀𝜀 > 0, then it has been discovered that the sequence referred to in  Eudoxus’ 
principle approaches the number 0 for the-𝑖𝑖 term toward infinity. The Eudoxus principle can also be used 
in solving the area of a circle problem; furthermore, it can also be used in solving the area of the shape 
bounded by a curve problem. The example of solving conveyed by Eudoxus is good to be presented at the 
beginning of understanding the formal concepts of limits and integral concepts. 

A learning approach inspired by history to introduce mathematical concepts or methods can be followed 
(Gulikers & Blom, 2001). The stages that can be used to introduce mathematical integral concepts or 
procedures is according to Somaglia (1998). This article recommen three stages to teach the Eudoxus 
principle to solve a ratio area of two circles. 

The teacher should discuss the concept of a circle area which is more familiar to the students in the first 
stage. Compare the procedure for determining  the area of a square and the area of a circle. This stage is 
conducted at an informal level. The teacher can use colloquial language and graphical representations of a 
circle and a square whose diameter and diagonal have the same length to stimulate students’ intuitive ideas 
on certain concepts. 

Afterwards, the teacher presents the Eudoxus principle (Theorem 1) This theorem conveys the idea of 
the remaining circle area inscribed by a regular polygon. The Eudoxus principle is very appropriate for 
preparing students to understand the limit concept. Students have recognized the concept of a sequence and 
sequence convergence intuitively. They can therefore intuitively understand the sequence convergence 
referred to by Eudoxus. This stage is to utilize the student's intuition that has been stimulated in the previous 
stage to outline the main characteristics of the concept. 

The last stage is to make a transition to a more formal approach. The formal approach is generally 
difficult for high school students. In general, they see that the function of proof is just to verify a theorem, 
while verification is not the point. As a result, students do not understand the meaning of  proof. To 
introduce the mathematical formalization of this concept, teachers provide several appropriate contexts in 
which students can work informally on activities related to proofs. The exercise leads the students to prove 
that the sequence of remainders of a circular region inscribed by a regular polygon is as follows. 

 
1. Take any magnitude of the radius a circle 𝒞𝒞. Let 𝑀𝑀0 is the area of 𝒞𝒞. 
2. Inscribe 𝒞𝒞 with a square 𝒫𝒫1 with the area 𝑎𝑎(𝒫𝒫1). Let’s find 𝑀𝑀1 = 𝑀𝑀0 − 𝑎𝑎(𝒫𝒫1) ! 
3. Compare 𝑀𝑀1 and 𝑀𝑀0. Which one is greater? 
4. Inscribe each remaining area with an isosceles triangle. If 𝑎𝑎(𝒫𝒫2) is the sum of 𝑎𝑎(𝒫𝒫1) and the 

isosceles triangles, find 𝑀𝑀2 = 𝑀𝑀0 − 𝑎𝑎(𝒫𝒫2) and compare 𝑀𝑀2 and 𝑀𝑀1. Which one is greater? 
5. Repeat the procedure of point 5 for each remaining area and find 𝑀𝑀𝑘𝑘 = 𝑀𝑀0 − 𝑎𝑎(𝒫𝒫𝑘𝑘) for 𝑘𝑘 =

3,4,5, . .. 
6. Do the magnitudes  𝑀𝑀1,𝑀𝑀2,𝑀𝑀3,𝑀𝑀4.. satisfy the Eudoxus principle? Why? 
7. Take any magnitude ε < M0. Is there a remaining area where area M𝑘𝑘 satisfy M𝑘𝑘 < ε ?  
 
Mathematical proof can have several functions, including verification, explanation, systematization, 

discovery and communication (Rocha, 2019). In formal proof, there is no activities such as using an 
example of magnitude or calculating the magnitudes. Since the exercise is to transition the informal proof 
to formal proof, the explanation function is the most relevant one to deserves special attention. So, it is not 
a problem if the students still should use a particular magnitude to verify their statements. However, it 
cannot be denied that the teacher’s guidance about the quantifier is still needed. 
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To prove that the limit concept is used for the integral problem (Theorem 3), the following exercise can 
be used. 

 
1. Take 2 arbitrary circle 𝒞𝒞1 and 𝒞𝒞2 with radius 𝑟𝑟1 and 𝑟𝑟2.  
2. Let 𝑆𝑆 be the area win hich the area magnitude is 𝑆𝑆 = 𝑟𝑟2

𝑟𝑟1
𝑎𝑎(𝒞𝒞1). Find 𝑆𝑆! 

3. Imagine 𝑆𝑆 is less than 𝑎𝑎(𝒞𝒞2). Take any ε which satisfies 0 < ε < 𝑎𝑎(𝒞𝒞2) − 𝑆𝑆 ? Why it can be done?  
4. Inscribe 𝒞𝒞2 with a regular polygon 𝒫𝒫2 . Can you choose 𝒫𝒫2 with the area 𝑎𝑎(𝒫𝒫2) which satisfy 

𝑎𝑎(𝐶𝐶2) − 𝑎𝑎(𝒫𝒫2) < ε? Explain your answer. 
5. If you could create 𝒫𝒫2 that satisfy 𝑎𝑎(𝐶𝐶2) − 𝑎𝑎(𝒫𝒫2) < ε. Compare 𝑎𝑎(𝒫𝒫2) and 𝑎𝑎(𝒞𝒞2) (please look 

again to point 3).  
6. Note that 𝑎𝑎(𝐶𝐶1) > 𝑎𝑎(𝒫𝒫1) with 𝒫𝒫1 is a regular polygon with the radius is 𝑟𝑟1 and has the number of 

sides is the same as 𝒫𝒫2. Recall that 𝑎𝑎(𝒫𝒫1)
𝑎𝑎(𝒫𝒫2)

= 𝑟𝑟12

𝑟𝑟22
. If 𝑆𝑆 = 𝑟𝑟2

𝑟𝑟1
𝑎𝑎(𝒞𝒞2), is the magnitude of 𝑆𝑆 is less than 

𝑎𝑎(𝒞𝒞2)? 
7. Compare your work on point 3 and 6. What can you conclude? 
 
Next, the teacher also provides similar exercises but with condition 𝑆𝑆 is greater than 𝑎𝑎(𝒞𝒞2) to other 

students. With this way of exercising, students will be engaged in tasks in which they can experiment with 
different proof functions. 

Archimedes' problem solving of parabolic segment area also did not use the integral concept that had 
been discovered and was part of  the material learned in high school. Rather than choosing a square or 
trapezoid to inscribe the parabolic segment, Archimedes prefers to use an inscribed triangle to approximate 
the area of the parabolic segment. This also motivates students to think creatively. Furthermore, students' 
intuitive understanding of the monotonous descending series formed from the magnitude of the areas of the 
inscribed triangles can also direct students that the infinite series referred to by Archimedes will lead to a 
certain value. 

Since the parabola figure is not familiar to students. The teacher could use a graphical representations 
of a parabolic segment in which the magnitude length of diameter and parabola base are given to stimulate 
pupils' intuitive ideas on certain concepts. Afterward, the teacher presents Theorem 4. This theorem 
conveys the idea of the ratio of the inscribing area by triangles. This is very appropriate to deliver to students 
to understand how the area of the parabola segment can be solved by summing the inscribing triangle. 
Students have recognized the concept of partial summation concept. This stage is to exploit the student's 
intuition that has been stimulated in the previous stage to outline the main characteristics of the series 
concept. The teacher should guide the students on how to construct the diameter or an arbitrary parabola 
segment and the inscribing triangle based on Definition 11 and Lemma 3. 

To prove Theorem 10, the following exercise can be used.  
 

1. Create an arbitrary parabola segment figure with the diameter line. 
2. Choose a number 𝑁𝑁. Construct 𝑁𝑁 inscribing some triangles with area 𝑎𝑎1,𝑎𝑎2,𝑎𝑎3, …𝑎𝑎𝑁𝑁. Calculate 

𝑇𝑇𝑁𝑁 = 𝑎𝑎1  +  𝑎𝑎2  +  𝑎𝑎3  +  … + 𝑎𝑎𝑁𝑁. 
3. Is the area of the parabola segment (𝑆𝑆) greater than the inscribing triangles constructed? Why? 
4. Calculate 𝐾𝐾 = 𝑎𝑎1  +  𝑎𝑎2  +  𝑎𝑎3  +  … + 𝑎𝑎𝑁𝑁 + 1

3
𝑎𝑎𝑁𝑁. What is the ratio 𝐾𝐾 to the 𝑎𝑎1? 

5. Choose any ε > 𝑎𝑎𝑁𝑁. Suppose 𝑆𝑆 = 𝐾𝐾- ε. It means 𝑆𝑆 < 𝐾𝐾.  Is 𝑇𝑇𝑁𝑁 greater than 𝑆𝑆? Explain! 
6. Does the result on point 5 comply with point 3? 
7. Choose any ε > 𝑎𝑎𝑁𝑁. Suppose 𝑆𝑆 = 𝐾𝐾 +  ε. It means 𝑆𝑆 > 𝐾𝐾.  Is 𝑇𝑇𝑁𝑁 greater than 𝐾𝐾? Clarify the 

comparison with point 2 and 4 results. 
 
The exercise should be done together with the teacher guidance. Especially when students do the 

contradiction proof.  
The proof is done without a formal limit definition. This will bridge students' thinking on the importance 

of limit and integral concepts to be used generally if the cases encountered are different. 
The explanation level in this article is slightly higher than those done at the high school. To be more 

easily understood, the reccomendation for the teachers are : 
1. Emphasize to students the background of the problem-solving done by Eudoxus and Archimedes; 
2. The limit existence discussion is not done first in the delivery of the problem solving. Instead, it was 

explained by the teacher after the students intuitively understand the case delivered; 
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3. It is recommended that teachers provide another case similar to the problems discussed in this article 
after explaining it;  

4. The teacher can also deliver about the 𝜋𝜋 number related to the circle problem which is done by 
Eudoxus. 

 

4.  Conclusion 

Eudoxus' principle played a major role in the discovery of the circle area formula. Even though the 
modern Eudoxus' principle can be generalized using the concept of limit, it is the simple idea of Eudoxus' 
principle that gives students an understanding of limit that helps the integral formulation 

Besides the Eudoxus principle, the exhaustion method used by Archimedes also succeeded in providing 
an alternate calculation of parabolic segment area. The propositions made and proof by Eudoxus and 
Archimedes are simpler than the formal definition of limit in mathematics. This bridges the previous 
knowledge that students already have to understand the formal definition of limits. 

The cases of solving passed on by Eudoxus and Archimedes are good to be presented at the starting of 
understanding the formal concepts of limits and integral concepts. This article provide three stages on how 
to deliver the content based on somaglia's practical example. In the first stage, the teacher should use circle 
and parabola segment representation which students are familiar with. Next, the teacher stimulates pupils' 
intuitive ideas by presenting the core theorem to the students. The theorem should be delivered so students 
would get the prior understanding about Eudoxus’ problem-solving are Theorem 1 and Theorem 3. 
Theorem 10 is needed to stimulate the students’ ideas about Archimedes’ problem-solving. The last step is 
transitioning students’ intuitive ideas to a more formal approach using the proof. To introduce the 
mathematical formalization of this concept, the teachers should use the exercise that directs the students to 
work informally on activities related to proofs. 

The solution process carried out by Eudoxus and Archimedes not only involved calculating procedures, 
but also involved understanding concepts. Using the technical knowledge provided by Archimedes before 
being introduced to the concept of integral, students are expected to get a good connection between 
Archimedes' method and the modern basic concept of integral. 
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