Simulasi distribusi shear stress pada dasar tangki sistem pengadukan berbasis Computational Fluid Dynamics (CFD)

Bayu Triwibowo(1), Megawati Megawati(2), Dessy Ratna Puspita(3), Dwiana Asmara Putri(4),


(1) Jurusan Teknik Kimia Universitas Negeri Semarang
(2) Jurusan Teknik Kimia, Fakultas Teknik, Universitas Negeri Semarang
(3) Jurusan Teknik Kimia, Fakultas Teknik, Universitas Negeri Semarang
(4) Jurusan Teknik Kimia, Fakultas Teknik, Universitas Negeri Semarang

Abstract

Proses pengadukan dengan menggunakan tangki berpengaduk (mechanically stirred vessel) telah banyak digunakan pada berbagai macam proses di industri kimia. Tujuan dari proses pengadukan ini bermacam-macam, mulai dari pencampuran material yang berbeda atau membuat suspensi solid sampai pada optimasi proses transfer massa dan energi. Proses pengadukan pada sistem padat-cair dapat memicu erosi pada apparatus tangki berpengaduk. Mesin dan peralatan yang beroperasi dengan sistem aliran padat cair dapat rusak karena erosi yang memicu rendahnya efisiensi operasi dan berkurangnya masa pakai alat dengan biaya pemeliharaan yang tinggi. Untuk sistem multifase dimana teknologi eksperimen secara visualisasi memiliki beberapa batasan, metode CFD memberikan beberapa keuntungan untuk menganalisis fenomena MI secara lebih komprehensif. Penelitian CFD banyak berkonsentrasi pada pendekatan berbasis LES dan SM untuk memodelkan variasi pola alir berfrekuensi rendah yang lebih baik dibandingkan eksperimen karena juga mampu menampilkan seluruh vektor kecepatan pada jangka waktu tertentu. Lebih jauh lagi, variabel lokal seperti kecepatan dan konsentrasi solid dapat ditampilkan visualisasinya per time step.

Full Text:

PDF

References

Ameur, H. 2016. Agitation of Yield Stress Fluids in Different Vessel Shapes. Engineering Science and Technology, an International Journal 19 (2016) 189–196.

Armenante, P.M. and E.U. Nagamine. 1998. Effect of Low Off-Bottom Impeller Clearance on the Minimum Agitation Speed for Complete Suspension of Solids in Stirred Tanks. Chemical Engineering Science, Vol.53, No.9, pp. 1757-1775, 1998.

Azimian, M and H. Bart. 2013. CFD Simulation and Experimental Analysis of Erosion in a Slurry Tank Test Rig. EPJ Web of Conferences 45, 01009 (2013). DOI : 10.1051/epjconf/20134501009.

Bakker, Andre. 2013. Modeling Of Turbulence In Stirred Vessels Using LargeEddy Simulation. Published in the Online CFM Book at http://www.bakker.org/cfm.

Biswas, P.K., S.C. Dev, K.M. Godiwalla, C.S. Sivaramakrishnan. 1999. Effect of Some Design Parameters on the Suspension Characteristics of a Mechanically Agitated Sand–Water Slurry System. Mater. Des. 20, 253-265.

Chen, X. H., B. S. McLaury and S. A. Shirazi. 2006. Numerical and Experimental Investigation of the Relative Erosion Severity between Plugged Tees and Elbows in Dilute Gas/Solid Two-Phase Flow. Wear, 261, 715-729.

Fort, I., P. Hasal, A. Apglianti, and F. Magelli. 2009. Axial Force at the Vessel Bottom Induced by Axial Impellers. 13th European Conference on Mixing, London, 14-17 April 2009.

Garcia- M Cortada, V. Dore, L. Mazzei, P. Angeli. 2017. Experimental and CFD Studies of Power Consumption in the Agitation of Highly Viscous Shear Thinning Fluids. Journal of Chemical Engineering Research and Design 119 (2017) 171-182.

Graham, L.J.W., D. Lester, J. Wu. 2009. Slurry Erosion in Complex Flows: Experiment and CFD. Seventh International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia 9-11 December 2009.

Matsuda, N., Y. Tada, S. Hiraoka, S. Qian, and H.Takeda. 2004. The Effect of Off-Bottom Clearance on Macro Instabilities in a Stirred Vessel. Journal of Chemical Engineering of Japan, Vol. 37, No. 10, pp. 1215-1223, 2004.

Oshinowo, L.M. and A. Bakker. 2002. CFD Modeling of Solids Suspensions in Stirred Tanks. Symposium on Computational Modeling of Metals, Minerals and Materials, TMS Annual Meeting, February 17-21, 2002, Seattle, WA.

Parslow, G. I., D. J. Stephenson, J. E. Strutt and S. Tetlow. 1999. Investigation of Solid Particle Erosion in Components of Complex Geometry. Wear, 233-235, 737-745.

Sharma, R.N. and A.A. Shaikh. 2003. Solids Suspension in Stirred Tanks with Pitched Blade Turbines. Chem. Eng. Sci. 58, 2123-2140.

Skocilas, J., I. Fort, T. Jirout. 2013. A Study of CFD Simulations of the Flow Pattern in an Agitated System with a Pitched Blade Worn Turbine. Chemical and Process Engineering 2013, 34 (1), 39-49. DOI: 10.2478/cpe-2013-0004.

Weetman, R. J. 1998. Computer Simulation Helps Increase Life of Impeller in Alumina Hydrate Precipitation from 2 to 8 Years. J Mater Eng Perform, 7, 491-494.

Zadghaffari R., J.S. Moghaddas, M. Ahmadlouydarab, J. Revstedt. 2008. A Mixing Study in a Double-Rushton Stirred Tank. Fourth International Conference on Advanced COmputational Methods in ENgineering (ACOMEN 2008).

Refbacks

  • There are currently no refbacks.




Alamat Penerbit: Gedung Dekanat, Fakultas Teknik, Universitas Negeri Semarang, Kampus Sekaran, Gunungpati, Semarang, Jawa Tengah, Indonesia, 50229. Telp./Fax.: (024) 8508101. Email: [email protected]

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

View My Stats