Metode Peramalan Jaringan Saraf Tiruan Menggunakan Algoritma Backpropagatin (Studi Kasus Peramalan Curah Hujan Kota Palembang)
(1) Magister Fisika, Universitas Sriwijaya, Indonesia
(2) Prodi Teknik Elektro, Universitas Muhammadiyah Palembang, Indonesia
Abstract
Penelitian bertujuan untuk memprediksi curah hujan bulanan menggunakan jaringan syaraf tiruan (JST) dengan suatu fungsi pelatihan backpropagation. Penelitian ini menggunakan data curah hujan di Stasiun Klimatologi Kelas I Palembang dari tahun 2014 sampai tahun 2016. Analisis dilakukan terhadap tingkat korelasi antara output jaringan dengan data observasi dan dari nilai MSE yang dihasilkan jaringan. Hasil penelitian menunjukkan jaringan terbaik dengan jumlah neuron 12 pada lapisan input, pada lapisan tersembunyi terdapat 3 lapis terdiri dari 50-20-20 neuron, 1 neuron pada lapisan output, data latih tahun 2014 dengan target tahun 2015, data uji tahun 2015 dengan target tahun 2016. Adapun parameter JST lr=0,1, mc=0,9, epochs=1000, te=20, e=0,001 yang mempunyai korelasi terhadap data observasi sebesar 0,99276 dengan nilai MSE 0,00086145 (proses pelatihan). Sementara pada proses pengujian, korelasi terhadap data observasi sebesar 0,79544 dengan nilai MSE 0,25528. Jaringan ini kemudian digunakan untuk proses prediksi curah hujan tahun 2017.
The study aims to predict monthly rainfall using artificial neural network (ANN) with a backpropagation training function. This research uses rainfall data at Climatology Station Class I Palembang from 2014 until 2016. The analysis is done to determine correlation level between network output with observation data and from value of MSE produced by network. The results show the best network with the number of 12 neurons in the input layer, in the hidden layer there are 3 layers consisting of 50-20-20 neurons, 1 neuron in the output layer, training data of 2014 with a target of 2015, test data of 2015 with the target year 2016. The JST parameter lr = 0,1, mc = 0,9, epochs = 1000, te = 20, e = 0,001 have correlation to observation data equal to 0,99276 with value of MSE 0.00086145 (training process). While in the testing process, the correlation to observation data of 0.79544 with the value of MSE 0.25528. This network is then used for the rainfall prediction process in 2017.
Keywords
Full Text:
PDFReferences
Aldrian E & Susanto RD. 2003. Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. Int J Climatol 23: 1435-1452.
Chen F W & Liu CW. 2012. Estimation of the Spatial Rainfall Distribution Using Inverse Distance Weighting (IDW) in the Middle of Taiwan. Paddy Water Environ. 10(3): 209-222
Fausett L. 1994. Fundamental of Neural Network: Architecture, Algorithms, and Aplication, New Jersey: Prentice Hall. Hal: 221.
French MN, Krajewski WF, Cuykendall RR. 1992. Rainfall forecasting in space and time using a neural network. J Hydrol. 137: 1-31.
Garay VG, Irigoyen E, Artaza F. 2010. GENNET-Toolbox: An Evolving Genetic Algorithm for Neural Network Training. Edited by R.Goebel et al., HAIS International Conference, Part II, LNAI 6076. pp.368-375.
Kajornit J, Wong KW, Fung CC, Ong YS. 2014. An Integrated Intelligent Technique For Monthly Rainfall Time Series Prediction. IEEE International Conference on Fuzzy Systems, IEEE. 1632-1639.
Kustiyo A, Buono A, Apriyanti N. 2006. Optimasi Jaringan Syaraf Tiruan dengan Algoritma Genetika untuk Peramalan Curah Hujan. Jurnal Ilmiah Ilmu Komputer. 4(1).
May W. 2004. Variability and extremes of daily rainfall during the Indian summer monsoon in the period 1901-1989. Glob Planet Change 44: 83-105.
Mislan, Haviluddin, S.Hardwinarto, Sumaryono, & M. Aipassa. 2015. Rainfall Monthly Prediction Based on Artificial Neural Network: A Case Study in Tenggarong Station, East Kalimantan-Indonesia. Procedia Comput Sci 59:142-151
Narulita I. 2016. Distribusi spasial dan temporal curah hujan di das cerucuk, pulau belitung. Ris Geo Tam. 26(2): 141-154
Patel J & Parekh F. 2014. Forecasting Rainfall Using Adaptive NeuroFuzzy Inference System (ANFIS). Int J Appl Innov Eng Manag. 3(6): 262-269.
Prabawadhani DR, Harsono B, Seto TH, Prayogo MBR. 2016. Karakteristik temporal dan spasial curah hujan penyebab banjir di wilayah dki jakarta dan sekitarnya. Jurnal Sains dan Teknologi Modifikasi Cuaca. 17(1): 21-24
Richard M & Rao G. 2014. Artificial neural networks in temporal and spatial variability studies and prediction of rainfall. J Hydraul Eng. 20(1): 1-6
Saxena A, Verma N, Tripathi KC. 2014. Neuro-Genetic Hybrid Approach for Rainfall Forecasting. IJCSIT. 5(2): 1291-1295
Sharma A & Nijhawan G. 2015. Rainfall Prediction Using Neural Network. IJCST. 3(3): 65-69
Wilks DS. 1998. Multi-site generalization of a daily stochastic precipitation generation model. J Hydrol. 210: 178-191.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.