Optimasi Pertumbuhan Plantlet Krisan melalui Peningkatan Permeabilitas Tutup Botol dan Penurunan Sukrosa
(1) 
(2) 
(3) 
Abstract
Penelitian ini bertujuan untuk menentukan luas permeabilitas tutup botol kultur dan konsentrasi sukrosa dalam medium kultur yang optimal untuk pertumbuhan plantlet krisan (Chrysanthemum indicum L.). Peningkatan luas permeabilitas tutup dilakukan dengan pembuatan lubang seluas 0,2 cm2 pada tutup botol kultur yang kemudian dilapisi dengan membran mikropori berukuran 0,5 µm. Penelitian ini menggunakan rancangan acak lengkap faktorial dengan dua faktor, yaitu luas permeabilitas (0 ; 0,2 ; 0,4 dan 0,6 cm2) dan konsentrasi sukrosa (0;, 10; 20 dan 30 g/l) dalam media Murashige and Skoog (MS). Parameter yang diamati adalah waktu munculnya tunas, jumlah dan tinggi tunas, jumlah dan luas daun, serta jumlah dan panjang akar. Data dianalisis dengan Anava dua arah dan Duncan’s Multiple Range Test. Hasil penelitian menunjukkan bahwa luas permeabilitas tutup botol kultur, konsentrasi sukrosa, dan interaksinya mempercepat waktu munculnya tunas krisan. Konsentrasi sukrosa meningkatkan tinggi tunas, jumlah daun dan luas daun plantlet. Medium MS yang mengandung sukrosa 20 g/l dengan semua taraf permeabilitas dapat mengoptimalkan pertumbuhan plantlet krisan. Perlakuan tersebut menghasilkan tunas tertinggi, daun terluas, dan mampu mendorong munculnya tunas yang lebih cepat. Berdasarkan hasil tersebut disarankan menumbuhkan krisan secara in vitro dalam media MS mengandung sukrosa 20 g/l dengan atau tanpa peningkatan permeabilitas tutup botol kultur.
This study aims to determine the permeability area of the culture vessel cap and the optimum sucrose concentration in the culture medium on the growth of chrysanthemum (Chrysanthemum indicum L.) plantlet. Increased permeability area of the cap is made by making a 0,2 cm2 hole in the culture vessel cap and then coated with a 0,5 μm microporous membrane. This research was carried out using completely randomized factorial design with two factors, permeability (0; 0,2; 0,4 and 0,6 cm2) and sucrose concentration (0; 10; 20, and 30 g/l) in Murashige and Skoog (MS) media. The parameters observed were the time of bud appearance, number and height of shoot, number and area of leaves, and number and length of roots. Data were analyzed with two-way Anova and Duncan's Multiple Range Test. The results showed that the permeability area of culture vessel cap, sucrose concentration and interaction accelerated the time of chrysanthemum buds emergence. The concentration of sucrose increases the shoot height, leaf number and plantlet leaf area. Medium MS containing sucrose 20 g/l with all permeability area can optimize the growth of chrysanthemum plantlet. The treatment produces the highest shoots, the largest leaves and is able to encourage the emergence of faster shoots. Based on these results it is advisable to grow chrysanthemums in vitro in MS medium containing sucrose 20 g/l with or without increased permeability of culture vessel cap.
Keywords
Full Text:
PDFReferences
Andri KB. 2013. Analisis rantai pasok dan rantai nilai bunga krisan di daerah sentra pengembangan Jawa Timur. SEPA 10(1): 1-10
Bey Y, Syafii W, & Sutrisna. 2006. Pengaruh pemberian giberelin (GA3) dan air kelapa terhadap perkecambahan bahan biji anggrek bulan (Phalaenopsis amabilis BL.) secara in vitro. J Biogenesis 2(2): 41-46
Chaum S, Chanseetis C, Chintakovid W, Pichakum A & Supaibulwatana K. 2011. Promoting root induction and growth of in vitro macadamia (Macadamia tetraphylla L. ‘Keaau’) plantlets using CO2-enriched photoautotrophic conditions. J Plant Biotechno. 106: 435
Figueroa CM & Lunn JE. 2016. A tale of two sugars: trehalose 6-phosphate and sucrose. Plant Physiol. 172: 727
Gaudin V, Lunness PA, Fobert PR, Towers M, Riou-Khamlichi C, Murray JA, Coen E, & Doonan JH. 2000. The expression of D-cyclin genes defines distinct developmental zones in snapdragon apical meristems and is locally regulated by the Cycloidea gene. Plant Physiol. 122(2000): 1137-1148
Gouk SS, Yong JWH, & Hew CS. 1997. Effects of super-elevated CO2 on the growth and carboxylating enzymes in an epiphytic CAM orchid plantlet. J Plant Physiol. 151:129-136
Hazarika BN. 2003. Acclimatization of tissue-cultured plants. Curr Sci. 85: 1704-1712
Hazarika BN. 2006. Morphophysiological disorders in in vitro culture of plants. Sci Horti. 108:105-120
Inayah T. 2015. Pengaruh konsentrasi sukrosa pada induksi embrio somatik dua kultivar kacang tanah (Arachis hypogaea L.) secara in vitro. J Agribisnis 9(1): 61-70
Kozai T & Kubota C. 2005. Concepts, definitions, ventilation methods, advantages and disadvantages. Dalam Kozai T, Afreen F, Zobayed SMA (Eds.). Photoautotrophic (sugar-free medium) Micropropagation as a New Micropropagation and Transplant Production System. Dordrecht, Netherlands: Springer. 19-30
Kubota C, Kakizaki N, Kozai T, Kasahara K, & Nemoto J. 2001. Growth and net photosynthetic rate of tomato plantlets during photoautotrophic and photomixotrophic micropropagation. Hort Sci. 36:49-52
Kunz S, Pesquet E, & Kleczkowski LA. 2014. Functional dissection of sugar signals affecting gene expression in Arabidopsis thaliana. PLoS ONE 9(6): e100312.
Latifah R, Suhermiatin T, & Ermawati N. 2017. Optimasi pertumbuhan plantlet Cattleya melalui kombinasi kekuatan media Murashige-Skoog dan bahan organik. J App Agricul Sci. 1(1): 59-68
Lucchesini M, Mensuali-Sodi A, Massai R, & Gucci R. 2001. Development of autotrophy and tolerance to acclimatization of Myrtus communis transplants cultured in vitro under different aeration. Biol Plant 44: 167-174
Norikane A, Takamura T, Morokuma M, & Tanaka M. 2010. In vitro growth and single leaf photosynthetic response of Cymbidium plantlets to super-elevated CO2 under cold cathode fluorescent lamps. Plant Cell Rpt. 29: 273-283
Norikane A, da Silva JAT, & Tanaka M. 2013. Growth of in vitro Oncidesa plantlets cultured under cold cathode fluorescent lamps with super-elevated CO2 enrichment. AoB Plants J. 5: 044-053
Nurmalinda & Hayati. 2014. Preferensi konsumen terhadap krisan bunga potong dan pot (Consumer preferences chrysanthemum cut flowers and pot). J Hort. 24(4): 363-372
Rahayu ES. 2015. Kultur Fotoautotrofik Solusi Mikropropagasi Tumbuhan Berkayu. Semarang: CV. Swadaya Manunggal
Rai SP, Wiendi NMA, & Krisantini. 2015. Optimasi produksi bibit tanaman kentang (Solanum tuberosum) kultivar granola dengan teknik fotoautotrofik. Bul Agrohorti 3(1): 28-38
Ramesh Y & Ramassamy V. 2014. Effect of gelling agents in in vitro multiplication of banana var. Poovan. Int J Adv Biol Res. 4(3): 308-311
Raven PH, Evert RF, & Eichhorn SE. 2012. Biology of Plants Eighth Edition. Worth Publishers, Inc., NY
Riou-Khamlichi C, Menges M, Healy JM, & Murray JA. 2000. Sugar control of the plant cell cycle: differential regulation of Arabidopsis D-type cyclin gene expression. Mol Cell Biol. 20: 4513-4521
Roostika I, Purnamaningsih R, & Noviati AV. 2017. Pengaruh sumber karbon dan kondisi inkubasi terhadap pertumbuhan kultur in vitro purwoceng (Pimpinella pruatjan Molk.). J AgroBiogen 4(2):65-69
Ruan Y. 2012. Signaling role of sucrose metabolism in development. Mol Plant 5:763-765
Silva AB, Lima PP, Oliveira LES, & Moreira AL. 2014. In vitro growth and leaf anatomy of Cattleya walkeriana (Gardner, 1839) grown in natural ventilation system. Rev Ceres Viçosa 61(6): 883-890
Sitorus EN, Hastuti ED, & Setiari N. 2011. Induksi kalus binahong (Basella rubra L.) secara in vitro pada media Murashige & Skoog dengan konsentrasi sukrosa yang berbeda. Bioma 13(1): 1-7
Wu HC & Lin CC. 2013. Carbon dioxide enrichment during photoautotrophic micropropagation of Protea cynaroides L. plantlets improves in vitro growth, net photosynthetic rate, and acclimatization. Hort Sci. 48(10): 1293-1297
Zhang M, Zhao D, Ma Z, Li X, & Xiao Y. 2009. Growth and photosynthethetic capability of Momordica grosvenori plantlets grown photoautotrophically in response to light intensity. Hort Sci. 44: 757-763
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.