ANALISIS MODEL PREDATOR-PREY ECENG GONDOK DENGAN IKAN GRASS CARP DAN PEMANENAN

Dwi Fahmi Ilmiawan(1), Muhammad Kharis(2), Supriyono Supriyono(3),


(1) Universitas Negeri Semarang
(2) Universitas Negeri Semarang
(3) Universitas Negeri Semarang

Abstract

Eceng gondok merupakan tanaman invasif yang perlu dikontrol. Pengontrolan dapat dilakukan dengan menggunakan ikan Grass carp dan pemanenan. Interaksi pada pengontrolan tersebut dinamakan model predator-prey dengan pemanenan. Artikel ini membahas tentang sistem dinamik model predator-prey pada populasi eceng gondok dengan adanya ikan Grass carp dan pemanenan. Model ini menggunakan fungsi respon Holling tipe III, karena sesuai dengan ikan Grass carp yang cenderung mencari mangsa lain ketika eceng gondok mulai berkurang. Secara analitik, terdapat tiga titik ekuilibrium yakni ð¸0, ð¸1, dan ð¸2 dengan beberapa syarat batas. Kestabilan dari ketiga titik ekuilibrium dalam sembilan kasus yang berbeda merupakan stable node point, stable spiral point, center point, unstable saddle point, unstable node point, dan unstable spiral point. Hasil simulasi numerik menunjukkan sifat yang sama untuk sembilan kasus kestabilan tersebut. Jadi, solusi yang dapat dilakukan untuk mengontrol populasi eceng gondok yakni dengan memusnahkan kedua populasi, memusnahkan populasi ikan Grass carp, dan melestarikan kedua populasi.

 

Water hyacinth is an invasive plant that needs to be controlled. Control can be performed using Grass carp fish and harvesting. Interaction in the control process called predator-prey model with harvesting. This article discussed about the system dynamic of predator-prey model on water hyacinth population with Grass carp fish and harvesting. This model uses Holling response function of type III, because according to the Grass carp fish that tend to seek other prey when water hyacinth began to decrease. Analytically, there are three equilibrium points namely ð¸0, ð¸1, and ð¸2 with some boundary conditions. The stability of the three equilibrium points in nine different cases are stable node point, stable spiral point, center point, unstable saddle point, unstable node point, and unstable spiral point. Numerical simulation results showed the same properties for the stability of the nine cases. So, the solution that can be done to control the water hyacinth population are the eradicate both populations, eradicate of Grass carp fish population, and conserve both populations.

Keywords

Water hyacinth; Grass carp fish; predator-prey model; harvesting; the equilibrium point

Full Text:

PDF

References

Agarwal, M. & Pathak, R. 2012. Persistence and Optimal Harvesting of Prey-Predator Model with Holling Type III Functional Response. International Journal of Engineering, Science and Technology, 4(3): 78-96.

Anton, H. 1987. Aljabar Linear Elementer. Jakarta: Erlangga.

Babo, D., Sampekalo, J., & Pangkey, H. 2013. Pengaruh Beberapa Jenis Pakan Hijauan terhadap Pertumbuhan Ikan Grass carp Stenopharyngodon Idella. Budidaya Perairan, 1(3): 1-6.

Barnes, B. & Fulford, G.R. 2002. Mathematical Modelling with Case Studies (a Differential Equation Approach using Maple). London: Taylor & Francis.

Boyce, W.E. & DiPrima, R.C. 2000. Elementary Differential Equations and Boundary Value Problems. New York: Department of Mathematical Sciences Rensselaer Polytechnic Institute.

Buchanan, A.L. 2013. Damage by Neochetina Weevils (Coleoptera: Curculionidae) Induces Resistance in Eichhornia Crassipes (Commelinales: Pontederiaceae). Florida Entomologist, 96(2): 458-462.

Gopal, B. 1987. Water Hyacinth. Elsevier.

Gutiérrez, E.L., Ruiz, E.F., Uribe, E.G., & Martínez, J.M. 2001. Biomass and Productivity of Water Hyacinthand their Application in Control Programs. ACIAR Proceeding 102.

Hasan, S.H., Ranjan, D., & Talat, M. 2010. Water Hycinth Biomass (WHB) for the Biosorption of Hexavalent Chromium: Optimization of Process Parameters. BioResources, 5(2): 563-575.

Hunsicker, M.E., Ciannelli, L., Bailey, K.M., Buckel, J.A., White, J.W., Link, J.S., Essington, T.E., Gaichas, S., Anderson, T.W., Brodeur, R.D. & Chan, K.S., 2011. Functional responses and scaling in predator–prey interactions of marine fishes: contemporary issues and emerging concepts. Ecology Letters, 14(12), pp.1288-1299.

Jiang, Q & Wang, J. 2013. Qualiitative Analysis of a Harvested Predator-Prey System with Holling Type III Functional Response. Advances in Difference Equations a Springer Open Journal: 249-258.

Penfound, W.T. & Earle, T.T. 1948. Biology of the Water Hyacinth. Ecological Monographs. 18: 447–472.

Perko, L. 1991. Differential Equation and Dynamical System. New York: Springer-Verlag Berlin Heidelberg.

Purnamasari, D., Faisal, & Noor, A. J. 2009. Kestabilan Sistem Predator-Prey Leslie. Jurnal Matematika Murni dan Terapan, 3(2): 51-59.

Rifa’i, M. & Subchan. 2015. Analisa Kestabilan dan Kendali Optimal pada Model Pemanenan Prey Predator dengan Fungsi Repon Tipe III. Prosiding Seminar Nasional Pendidikan Matematika. Surakarta: Universitas Muhammadiyah Surakarta.

Soeprobowati, T.R. 2012. Mitigasi Danau Eutrofik: Studi Kasus Danau Rawapening. Prosiding Seminar Nasional Limnologi IV.

Wilson, J.R., Rees, M., Holst, N., Thomas, M.B., & Hill, G. 2001. Water Hyacinth Population Dynamics. ACIAR Proceeding 102.

Zhang, X., Xu, R., & Gan, Q. 2011. Periodic Solution in a Delayed Predator-Prey Model with Holling Type III Functional Response and Harvesting Term. World Journal of Modelling and Simulation, 7(1): 70-80.

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.