RESPON PEMBENTUKAN KALUS KORO BENGUK (MUCUNA PRURIENS L.) PADA BERBAGAI KONSENTRASI 2,4-D DAN BAP

R. Ariani(1), Y. U. Anggraito(2), E. S. Rahayu(3),


(1) Jurusan Biologi, FMIPA, Universitas Negeri Semarang, Indonesia
(2) Jurusan Biologi, FMIPA, Universitas Negeri Semarang, Indonesia
(3) Jurusan Biologi, FMIPA, Universitas Negeri Semarang, Indonesia

Abstract

Penelitian ini bertujuan untuk menentukan konsentrasi 2,4-dichlorophenoxy acetic acid (2,4-D) dan benzylamino purin (BAP) optimal dalam pembentukan kalus dari eksplan setengah biji koro benguk (Mucuna pruriens L.). Rancangan penelitian yang digunakan ialah rancangan acak lengkap dengan dua faktor, yaitu konsentrasi 2,4-D (0,5 ppm, 1 ppm, 1,5 ppm, 2 ppm) dan BAP (1 ppm, 2 ppm, 3 ppm) untuk induksi kalus. Hasil induksi dipindahkan pada media MS0, kemudian dilanjutkan pada media MS yang ditambah BAP, IBA, GA. Parameter yang diamati adalah waktu terbentuk kalus, persentase eksplan berkalus, berat kalus per eksplan, warna dan tekstur kalus. Pada tahap induksi kalus, BAP 3 mg/l menyebabkan pertumbuhan kalus terberat dibandingkan konsentrasi lainnya. Sementara pada tahap diferensiasi, konsentrasi BAP 3 ppm dan 2,4-D 1 ppm merupakan konsentrasi yang mengakibatkan persentase kalus sehat tertinggi. Perlakuan 2,4-D 1 ppm dan BAP 3 ppm menghasilkan kalus putih transparan, kompak, dan berat kalus tertinggi (0,49 gram). Konsentrasi tersebut merupakan konsentrasi yang disarankan untuk menumbuhkan kalus koro benguk

This research aimed to determine the optimal concentration of 2,4-D and BAP in callus formation from an explant of half seed Mucuna pruriens. The research design was used completely randomized design with two factors: the concentration of 2,4-D (0.5 ppm, 1 ppm, 1.5 ppm, 2 ppm)  and BAP (1 ppm, 2 ppm, and 3 ppm) for callus inductions. The induction result is moved to MS0 medium, then continued to MS medium which was added by BAP, IBA, GA. The measured parameters were: callus formation time, the percentage of callus explants, the weight of callus for each explants, color and texture of callus. During induction phase BAP 3 ppm caused the heaviest callus growth than others, meanwhile in differentiation phase BAP 3 ppm and 2,4-D 1 ppm caused the highest percentage of healthy callus. Treatment of 2,4-D 1 ppm and BAP 3 ppm produced white and compact transparent callus with weight 0.49 grams. This concentration was recommended to grow the M. pruriens callus.


Keywords

BAP; 2,4-D; kalus; koro benguk

Full Text:

PDF

References

Bhojwani SS & Razdan MK. 1996. Plant Tissue Culture: Theory and Practice. A Revised Edition. Amsterdam: Elsevier. Hal: 779

Chikagwa-Malunga SK, Ade S, Ogan AT, Sollenberger LE, Badinga LK, Szabo NJ & Littell RC. 2009. Nutritional characterization of Mucuna pruriens. Effect of maturity on the nutritional quality of botanical fractions and the whole plant. Anim. Feed Sci. Technol. 148(1): 34-50.

D'agostino & Kieber JJ 1999. Moleculer mechanism of cytokinin action. Curr Opin Plant Biol. 2(5):359-364.

Davies PJ. 2004. Plant Hormones: Biosynthesis, Signal Transduction, Action. Dordrecht: Kluwer Academic Publisher. Hal: 776

Finer JJ, Santarem ER & Pelissier B. 1997. Effect of explant orientation, pH, solidifying agent and wounding oninitiation of soybean somatic embryos. In Vitro Cell Dev Biol Plant. 33: 13-19.

Gaba VP. 2005. Plant Growth Regulators in Plant Tissue Culture and Development. 87-99. In: RN Trigiano and DJ Gray (Eds.). Plant Development and Biotecnology. CRC Press. United States of America.

George EF & Sherrington PD. 1984. Propagation by Tissue Culture. London: Exegetics Ltd

Gomez KA & Gomez AA. 1995. Prosedur Statistik untuk Penelitian Pertanian Ed.2. Terjemahan Endang S & Justika SB. Jakarta: UI Press.

Gray DJ. 2005. Propagation from nonmeristematic tissue: nonzygotic embryogenesis, 187-200. In: RN Trigiano and DJ Gray (Eds.). Plant Development and Biotecnology. CRC Press. United States of America.

Hagen G, Guilfoyle TJ & Gray WM. 2004. Auxin signal transduction. In: Davies PJ (Eds.) Plant Hormones, Biosynthesis, Signal Transduction, Action. Dordrecht. Kluwer Academic Publisher.

Harisaranraj R, Babu SS & Suresh K. Callus induction and plant regeneration of Vigna mungo (L.) Hepper via Half Seed Explant. Ethnobotanical Leaflets. 12: 57-85

Marthani QKA. 2016. Kalogenesis Eksplan Setengah Biji Koro Benguk Secara in vitro Menggunakan BAP dan NAA. Skripsi. Semarang: FMIPA Unnes

Mohan VR & Kalidass C. 2011. Nutritional and antinutritional composition of itching bean (Mucuna pruriens (L.) DC var. Pruriens): an underutilitized tribal pulse in Western Ghats, Tamil Nadu. J Trop Subtrop Agroecosystems. 14: 279-293.

Nolan KE & Rose RJ. 2010. Plant regeneration-somatic embriogenesis. 39-59. In: Davey MR & Anthony P (Eds). Plant Cell Culture: Essential Methods. UK: Wiley-Blackwell Publisher. Hal 345.

Permadi AB, Santoso IB & Kamsinah. 2014. Upaya Memacu Pembentukan Kalus dari Eksplan Kacang Tanah (Arachis hypogaea) dengan 2,4-D dan Kinetin. Skripsi. Purwokerto: Fakultas Biologi UNSOED

Pierik RLM. 1987. In Vitro Culture Higher Plant. Dordrecht: Kluwer Academic Publisher. Hal: 346

Purwaningsih D. 2008. Teknologi Pembuatan Susu Dari Tempe Benguk. FMIPA: UNY.

Radhakrishnan R & Ranjitakumari BD. 2007. Callus induction and plant regeneration of Indian soybean (Glycine max (L.) Merr. cv. CO3) via half seed explant culture. J Agric Technol. 3(2): 287-297.

Taiz L & Zeiger E. 2010. Plant physiology 3rd edition. Massachusetts: Sinauer Associates. Hal: 623

Vadivel V & Pugalenthi M. 2008. Removal of antinutritional and improvement in the protein digestibility of velvet bean seeds. J Food Sci Technol. 45: 242-246.

Zulkarnain. 2009. Kultur Jaringan Tanaman. Jakarta: Bumi Aksara

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.