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Abstract

This research delves into the approximate relationship between the energy function (E) and the Hubble function (H) within 
cosmological. Utilizing the Friedmann equation, it establishes a link between the universe's scale factor and the Hubble 
function. Through Taylor series approximation, the study derives an approximation of the energy function, under specific 
assumptions and approximations. Asymptotic analysis investigates the behavior of variables y and s, shedding light on function 
limits and behaviors. The study incorporates an interactive 3D scatter plot visualization to elucidate the relationship between 
cosmological parameters and physical systems, aiding in a comprehensive understanding of dynamics. Practical 
recommendations emphasize increasing data points for accuracy and validating with observational data, while theoretical 
suggestions advocate exploring higher-order terms and considering additional physical factors.
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INTRODUCTION

In the field of cosmology, understanding the 
correlation between the energy function (E) and 
the Hubble function (H) is a very important 
endeavor, as emphasized by (Liddle, 2015),
(Baryshev & Teerikorpi, 2011), and (Ellis, 
Maartens, & Callum, 2012). At the heart of this 
quest is the Friedmann equation, a cornerstone of 
cosmological theory, which explains this complex 
relationship, as highlighted by (Barrow, 2008),

(Layzer, 1991), and (Ferguson, 2004).
Investigating the approximate relationship 
between E and H, as explored by (Poulin, Smith, 
Karwal, & Kamionkowski,  2019).

The main objective of this study is to 
establish an approximate correlation between the 
energy function (E) and the Hubble function (H) in 
the realm of cosmology. This involves using the 
Friedmann equation together with the Taylor 
series approximation technique, as outlined by
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(Barrientos, Mendoza, & Padilla, 2021), to 
describe the relationship between E and H. 

This research will have several benefits 
and implications for the field of cosmology. 
Understanding the relationship between E and H 
will contribute to a deeper understanding of the 
evolution and expansion of the universe. This will 
help researchers to refine cosmological models 
and improve predictions about the fate of the 
universe. The findings from this study also have 
the potential to contribute to the advancement of 
astrophysics, cosmological simulations, and our 
understanding of dark energy and dark matter. 

Despite significant progress in 
cosmology, there is still a research gap in 
understanding the exact relationship between the 
energy function (E) and the Hubble function (H). 
This study aims to address this gap by providing 
an estimate of the relationship based on the 
Friedmann equation and Taylor series approach. 
The novelty of this study lies in the application of 
asymptotic analysis and visualization techniques 
to provide a new understanding of the behavior of 
functions with extreme parameter values, 
particularly in the context of cosmological models. 

This study is limited to deriving an 
approximate relationship between E and H using 
the Friedmann equation and Taylor series 
approximation. This analysis is based on certain 
assumptions and approximations, which may limit 
the accuracy of the results in regions far from z=0. 
This study focuses on the asymptotic behavior of 
the relationship between the variables y and s. It 
does not explore other variables or factors that 
may affect this relationship. Therefore, further 
investigation and refinement may be required to 
improve the accuracy and scope of the study. 

METHOD 

Relationship between the energy function (E) 
of cosmology and the Hubble function (H) 

To establish an approximate correlation 
between the energy function (E) in the 
cosmological domain and the Hubble function (H), 
one can start the process by referring to the 
Friedmann equation in cosmology (Martel & 
Shapiro, 1998; Peebles & Ratra, 2003; Singh & 
Solà Peracaula, 2021). This equation describes 
the relationship between the scale parameter of 
the universe (referred to as the scale factor) 
denoted by a(t), and the Hubble function (H) as 
documented in the study by  (Felten & Isaacman, 
1986; Jackson, 2015; Overduin & Cooperstock, 
1998): 
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where G is the gravitational constant, ( )t  is the 
energy density in the universe at time t, k is the 
spatial curvature parameter (k = -1, 0, 1 for 
negative, zero, and positive curvature 
respectively),   is the cosmological constant 
(dark energy associated with the cosmological 
constant), and a(t) is the time-dependent scale 
parameter of the universe. 

To get an approximative relationship 
between E and H, we will make some 
assumptions and approximations. Assume that at 
the present time (z = 0), the value of the Hubble 
function is 

0H , and the energy function is 
0E . 

Next, we will use the Taylor approximation to 
expand the Friedmann equation around z = 0 
(Chaudhary et al., 2023). We will prove the Taylor 
expansion of the function (E(z)) around the point 
(z=0). This Taylor expansion allows us to 
approximate the value of the function (E(z)) by an 
infinite series of its derivatives at the point (z=0). 
The expansion can be written as: 
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here, (E(0)) is the function value (E(z)) at (z=0), 

0/ |zdE dz
=  is the first derivative of (E(z)) at (z=0), 

( )2 2

01 / 2 / |zd E dz
=

  is the second derivative of 
(E(z)) at (z=0), and so on. Now we do the 
mathematical proof. First, we start with the 
definition of Taylor expansion: 
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evaluate the derivative at (z = 0) to get: 
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this is the first derivative of (E(z)) at (z=0). Then, 
we plot the second derivative (E(z)): 
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this is the second derivative of (E(z)) at (z = 0). 
This process can be continued for subsequent 
derivatives, and in general, we can state: 
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we can use these results to obtain the desired 
Taylor expansion. The more terms used in the 
Taylor series, the better the approximation around 
the point z = 0. First, we will evaluate the 
Friedmann equation at z = 0: 
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we know from Hubble's Law that ( ) ( ) / ( )H t a t a t=
, where ( ( ))a t  is the time derivative of the scale 
factor (a(t)). If we evaluate (H(t)) at (t=0), we get 
( (0) (0) / (0))H a a= . Evaluation on (t=0) provide 
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we have proved the given mathematical equation. 
We can consider the equation below: 
 

dark energy(0) (0) (0)m  = +  (7) 

The provided formula delineates the 
correlation between the total energy density at a 
specific location within the universe (0)  and the 
summation of the energy densities of conventional 
matter ( (0))m  and dark energy darkenergy( (0))  at 
that particular point. In physics, energy density is 
a measure of how much energy is contained 
within a certain volume, utilized in cosmology to 
elucidate the distribution of energy throughout the 
cosmos (Peebles & Ratra, 2003). ( (0))m  
represents the energy density of ordinary matter, 
such as stars, planets, gas, dust, and other matter 
composed of standard particles in particle physics 
(Fortov & Fortov, 2016). darkenergy( (0))  refers to the 
energy density originating from dark energy, 
believed to be the primary cause of the universe's 
accelerated expansion and uniformly distributed 
across cosmic space (Frieman et al., 2008). The 
formula asserts that at a given point in the 
universe, the total energy density ( (0))  is the 
aggregate of the energy density of conventional 
matter and the energy density of dark energy at 
that point. By substituting (a(0)) with the value of 
1 (since we are using the current scale factor as a 

reference), as the redshift (z) approaches 0, we 
can approximate the Friedmann equation: 
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In cosmological physics, we start with 

2( ( ))H z , which is the square of the Hubble 
parameter (H) as a function of cosmological 
altitude (z). This Hubble parameter provides 
information about the rate at which the universe is 
expanding (Moresco et al., 2012). At different 
points in the history of the universe, this rate of 
expansion can vary, which is reflected in the value 
of the 2( ( ))H z  that changes. We estimate 

2( ( ))H z  around (z=0), or in this context, near the 
present time, using a linear approach. This 
approach involves the introduction of linear 
growth in 2( ( ))H z  as a function of cosmological 
altitude, represented by the second term on the 
right-hand side of the equation. A basic constant 

2
0( )H  represents the average value of 2( ( ))H z  

around (z=0), while the lowered rate 2

0
/

z
dH dz

=
    

describes the rate of change 2( ( ))H z  near  (z=0). 
This formula presents a linear approximation to 
the development of the expansion rate of the 
universe around the current epoch (z=0), which 
allows us to better understand and model 
changes in the expansion rate. We can relate the 
energy and Hubble equations by first 
approximating Friedmann's equation to the (z=0): 
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In the formula, (E0) is a unitless parameter 
that denotes "current cosmic energy", describing 
the ratio between kinetic energy and potential 
energy in the universe at the present time 
(Shapiro & Sola, 2008). (H0), which is the current 
value of the Hubble constant, describes the 
current expansion rate of the universe, showing 
how objects in space are moving away from each 
other due to the expansion of space (Freedman, 
2003). By dividing (H0) by (H0), the formula 
concludes that the current cosmic energy, (E0), 
has a value equal to 1, indicating the balance 
between the kinetic and potential energy of the 
universe today. This reflects a basic concept in 
modern cosmology, known as the Lambda-CDM 
model, where dark energy ( )  and dark matter 
(CDM) play an important role in the evolution of 
the universe (Vankov & Vankov, 2023). By finding 
the first derivative of the Friedmann equation with 
respect to z when z = 0, we can understand more 
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about the dynamics of the expansion of the 
universe at this point in time: 
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When we take the second derivative of 

the Friedmann equation to get the equation for 
( )/dH dz , we can use the given equation. This 
equation describes the rate of change of the 
Hubble parameter (H) against redshift (z) at the 
point (z=0), which is represented by the first 
derivative of the Hubble parameter with respect to 
the redshift at that point. The second equation 
relates the second derivative of the Hubble 
parameter to the redshift at (z=0) with value ( )0H
, shows the relationship between the acceleration 
of the expansion of the universe and the current 
value of the Hubble parameter (Jackson, 2015). 
We must take into account the linear terms in our 
approximation. As (z) approaches 0, we can 
approximate the Friedmann equation accordingly: 
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next, we need to find the second derivative of the 
Friedmann equation with respect to z at z = 0: 
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The presence of a non-zero second 
derivative necessitates the inclusion of the 
quadratic term in our approximation, as 
emphasized by (Fatehi & Manzari, 2011). By 
consolidating all findings, we establish an 
approximate correlation between the energy 
function (E) and the Hubble function (H) within the 
cosmological: 
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Thus, in the approximate relationship 
between the energy function (E) and the Hubble 
function (H), we obtain ( ) 1E z  . 

Asymptotic Analysis 

First, we start with the given differential equation: 
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next, we separate variables by moving all terms 
containing y to one side and all terms containing s 
to the other side: 
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then, we integrate both sides of the equation with 
respect to their respective variables: 
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performing the integration, we get: 
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where 
1C  is the constant of integration. Next, we 

perform the integral on the left side: 
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after integrating, the left side becomes 3 se y− . So, 
we have: 
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solving for y, we get: 
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at this point, we have found the general solution 
to the given differential equation. The constant 

1C  
can be determined based on the initial or 
boundary conditions given in the specific problem. 

Exact Solution 

The following explanation describes the 
steps to obtain the correct solution to the equation. 
First, we have the following equation: 
 

2 2 5
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tH
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tH tH
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− −
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(21) 

the first step is to simplify the first term of the 
equation. By multiplying and dividing by tH, we 
can simplify the term to: 
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next, we will simplify the second term of the 
original equation: 
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by expanding this term, we obtain: 
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after simplifying the terms above, we can combine 
the equations to obtain: 
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next, we will simplify the denominator of the 
fraction in equation: 
 

2 2( ) ( 1)tH − −  (26) 

we can simplify the expression above using the 
algebraic identity: 
 

2 2( ) ( 1) ( 1)( 1)tH tH tH  − − = + − − +  (27) 

we will explain the steps to solve the quadratic 
equation that appears in the original equation. The 
expression inside the square root is as follows: 
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by identifying the coeffi Barrientos, E., Mendoza, 
S., & Padilla cients a, b, and c in the quadratic 
equation, we can rewrite the equation above as 
follows: 
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next, we will calculate the discriminant   of the 
quadratic equation: 
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if 0  , then the quadratic equation has two real 
roots, 


. If 0 = , then the quadratic equation 

has one double root. If 0  , then the quadratic 
equation has no real roots. The roots 


 can be 

calculated using the quadratic formula as follows: 
 

6 2 (1 )
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



− + −  
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we can obtain the correct solution to the equation. 

RESULT AND DISCUSSION 

Results 

Visualization and Approximation of the 
Energy-Function and Hubble-Function 
Relationship in Cosmology using Loess 
Interpolation 

The depiction illustrates a dashed line 
graph portraying the approximate correlation 
between E and H. A green curve, serving as a 
smooth interpolation, closely mimics the general 
trend of the approximation. Moreover, there exist 
individual data points marked in red, denoting the 
values of E(z) at specific z points. This plot 
encompasses a significant dataset, comprising 
1000 randomly generated points within the z 
range of -1 to 1. 
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Figure 1. Approximate relationship between E and H 

The graph depicts the relationship 
between the energy function (E) and the Hubble 
function (H) in a cosmological context. It presents 
research findings derived from a mathematical 
equation, with data points generated across a 
range of z values [-1, 1]. The dashed blue line 
approximates the E(z) relationship based on 
equation (1), while the smooth green curve 
outlines the overall trend using the loess method 
interpolation. Red points represent randomly 
generated data points of the E(z) function at 
specific z values, with the ability to adjust the 
number of data points using the variable 
"num_data_points." This approximation is based 
on three parameters: 

0E , 0/ |zdE dz = , and 
2 2

0/ |zd E dz = . By manipulating these variables, 
observable fluctuations in the approximation can 
be detected. Utilizing the loess technique for 
plotting results in a smoothly interpolated curve, 
allowing for adjustment of smoothness via span 
manipulation within the geom smooth function. 
This visual depiction clarifies the relationship 

between E and H in the vicinity of z=0, providing 
insights into the overall trend of the approximation. 

Symptotic Analysis of the Relationship 
Between Variables y and s 

The figure depicts the correlation 
between y and s in asymptotic analysis, with the 
x-axis representing s and the y-axis representing 
y. Three distinct lines, distinguished by colors, 
portray varying values of C1: 1 (blue), 2 (orange), 
and 3 (green). Asymptotic analysis is related to 
functions defined by the formula 

( )3 3

1
/2 2s sy e C e= − .  In physics, we frequently 

encounter functions that undergo substantial 
variations within specific intervals. Nonetheless, 
upon expanding our observation to a wider scope, 
these fluctuations may appear negligible due to 
asymptotic behavior. We notice that the 
magnitude of y is predominantly determined by 
the exponential expression 3( )se . As s tends 
towards positive infinity, this exponential 
component experiences rapid growth, leading the 
denominator 3(2 )se−  to approach zero. 
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Figure 2. Asymptotic graph (y vs. S) 

The experimental data illustrates how the 
variable y varies with changes in the variable s, 
while considering various values of C1. Upon 
closer examination, it becomes evident that the 
curves tend towards the y = 0 value as s 
increases, indicative of the limit s →+ . This 
highlights the asymptotic behavior of the function. 
In the realm of physics, asymptotic analysis 
serves as a valuable tool for approximating 
solutions in intricate scenarios or when dealing 
with extremely large or small parameters 
(Klyatskin, 2005). For instance, in the field of fluid 
dynamics, asymptotic analysis proves useful in 
simplifying complex fluid equations into more 
manageable forms, especially when dealing with 
high Reynolds numbers (Heidelberger, 2006). 

The figure of the plot resulting from 
asymptotic analysis above shows the relationship 

between the variables y and s approaching zero 
as s tends to infinity (+ ), in accordance with the 
asymptotic nature that arises from the function's 
formula (De Bruijn, 1981). This asymptotic 
analysis provides insights and useful 
approximations in situations where extreme 
parameter values can have significant effects on 
a physical system (Seung et al., 1992). 

Visualization and Analysis of the Relationship 
between tH, Variable, and w 

The interactive 3D scatter plot visually 
depicts the correlation among the physics 
variables tH,  , and w, derived from the given 
formula. Each plotted point corresponds to a 
unique set of tH,  , and w values, positioned at 
coordinates (tH,  , w), with color variation 
indicating the magnitude of w.

 

 
Figure 3. Exact solution visualization in 3D Scatter plot 

Users have the capability to alter the 
orientation of the graph through rotation, adjust 
the scale by zooming in or out, and engage with 
the variables interactively to explore their values. 

The findings derived from this graphical 
representation elucidate the influence of 
alterations in the values of ( )Ht  and (  ) on the 
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parameter (w) within a physics context. In this 
context, ( )Ht  and (  ) may denote specific 
parameters inherent to a physical system or 
phenomenon. This visualization aids in 
elucidating the interplay between these 
parameters and their effects on (w). Within a 
physics framework, this plot could arise from 
mathematical analysis applied to a model or 
physics equation. The variables ( )Ht and (  ) 
may pertain to cosmological parameters, physical 
systems, or other relevant factors, while (w) could 
represent a pertinent scalar quantity within the 
research domain. Researchers can discern trends 
and correlations among these variables from the 
plot. Certain regions of the graph may exhibit 
tendencies where the value of (w) converges 
towards specific values, or there could exist 
causal relationships between ( )Ht  and (  ) 
concerning variations in the value of (w). 

Quiz for understanding 
 

1. What does the Friedmann equation in 
cosmology represent? 
a. The relationship between dark energy 

and dark matter 
b. The relationship between the scale factor 

of the universe and the Hubble function 
c. The relationship between energy and 

mass in the universe 
d. The relationship between gravitational 

constant and cosmological constant 

2. How is the Taylor series approximation used 
to relate E and H in the context of cosmology? 
a. By expanding the equation around z = 0 

and keeping only the linear term 
b. By expanding the equation around z = 0 

and keeping only the quadratic term 
c. By expanding the equation around z = 0 

and keeping higher-order terms 
d. By expanding the equation around z = 0 

and keeping only the constant term 
 

3. What does the blue dashed line represent in 
the visualization of the approximate 
relationship between E and H? 
a. The exact relationship between E and H 
b. The Taylor series approximation of the 

relationship 
c. The smooth interpolation curve using the 

loess method 
d. The random data points of E(z) at specific 

z points 
 

4. How does the value of y change as s becomes 
larger (approaching  ) in asymptotic 
analysis? 
a. y approaches infinity 

b. y remains constant 
c. y approaches 1 
d. y approaches 0 

5. In what context is asymptotic analysis often 
used in physics? 
a. To approximate solutions in complex 

situations with extreme parameter values 
b. To describe the behavior of functions with 

linear relationships 
c. To analyze fluid dynamics at low 

Reynolds numbers 
d. To study the behavior of particles in a 

strong gravitational field 

6. What does the interactive 3D scatter plot 
visualize in the context of physics? 
a. The relationship between dark energy 

and dark matter 
b. The interaction between cosmological 

parameters and physical systems 
c. The relationship between the scale factor 

and the Hubble function 
d. The visualization of a mathematical 

analysis of a physics equation 
 

7. What does the color of each data point in the 
3D scatter plot represent? 
a. The value of H at the corresponding 

coordinates 
b. The value of tH at the corresponding 

coordinates 
c. The value of w at the corresponding 

coordinates 
d. The value of the cosmological constant at 

the corresponding coordinates 
 

8. How can users interact with the 3D scatter 
plot? 
a. By changing the values of tH and   

interactively 
b. By adjusting the span in the geom smooth 

function 
c. By rotating the plot and zooming in or out 
d. By changing the number of data points in 

the plot 
 

9. What information can researchers obtain from 
the 3D scatter plot visualization? 
a. The exact relationship between tH,   and 

w 
b. The causal relationships between tH and   

concerning changes in w 
c. The behavior of the cosmological 

constant with respect to tH and   
d. The relationship between dark matter and 

dark energy 
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10. What are the benefits of using asymptotic 
analysis and visualization techniques in the 
context of physics research? 
a. Provides exact solutions to complex 

equations 
b. Allows accurate predictions of physical 

phenomena 
c. Offers insights into the behavior of 

functions with extreme parameter values 
d. Enables a straightforward understanding 

of complex physics theories 

The Friedmann Equation in cosmology 
delineates the crucial relationship between the 
scale factor of the universe and the Hubble 
function, thereby offering a fundamental 
comprehension of cosmic evolution (Dodelson & 
Schmidt, 2020). This equation underscores the 
significance of comprehending the dynamics of 
universal expansion by elucidating its correlation 
with alterations in scale and the pace of 
expansion. Concurrently, Taylor series 
approximation serves to estimate the correlation 
between energy (E) and the Hubble function (H), 
facilitating a streamlined mathematical analysis 
particularly advantageous in cosmological 
contexts (Yang, Lu, Qian, & Cao, 2023). In 
asymptotic analysis, as the variable s escalates, 
the value of y asymptotically approaches zero, 
demonstrating the function's behavior in extreme 
physics scenarios. Employing visualization 
techniques, notably interactive 3D scatter plots, 
empowers researchers to vividly portray and 
grasp the interplay between cosmological 
parameters and physical systems. These 
visualizations yield insights into the behavior of 
cosmological constants by juxtaposing them with 
variables such as tH and z. Altogether, asymptotic 
analysis and visualization techniques furnish 
invaluable perspectives into the behavior of 
physical systems, notably in extreme 
circumstances, thereby advancing our 
comprehension of the universe and intricate 
physical phenomena. 

CONCLUSSION 

First, in the context of cosmology, the 
results visualize and approximate the relationship 
between the energy function (E) and the Hubble 
function (H) using Loess interpolation. The 
analysis shows that the graphical approximation 
highlights the correlation between E and H, with 
the interpolated smooth green curve reflecting the 
general trend of the approximation. Secondly, the 
asymptotic analysis highlights the behavior of the 
function in extreme situations of physics, with 
results showing that as the variable s increases 
towards infinity, the value of y approaches zero 
asymptotically. This illustrates the behavior of 

functions in extreme situations of physics, which 
are often difficult to understand intuitively, but can 
be approximated using asymptotic analysis. 
Thirdly, visualization in the form of interactive 3D 
scatter plots allows researchers to understand the 
interactions between physics parameters such as 
tH, , and w. These plots provide insight into how 
changes in the values of these parameters affect 
the parameter w, which is the relevant scalar 
quantity in the research domain. This research 
provides a deeper understanding of various 
aspects of physics and cosmology through 
mathematical analysis, asymptotic analysis, and 
visualization. 

To bolster the accuracy and reliability of 
the findings, researchers are encouraged to 
expand the quantity of data points utilized in the 
3D scatter plot visualization. By enlarging the 
dataset, a more thorough comprehension of the 
correlation between cosmological parameters and 
physical systems can be attained. It is advisable 
to validate the conclusions drawn from the Taylor 
series approximation and the visualization by 
cross-referencing them with observational data 
obtained from cosmological observations. This 
comparative analysis with real-world data serves 
to fortify the study's conclusions and enhance 
their credibility. To facilitate a more engaging and 
insightful exploration of the relationships under 
examination, efforts should be made to refine the 
user interaction capabilities of the 3D scatter plot. 
This entails integrating additional features that 
empower users to manipulate and customize 
various parameters of the plot. Such 
enhancements enable researchers to delve into 
different scenarios and extract deeper insights 
from the data. In exploring the theoretical 
framework, it is suggested to delve into the 
incorporation of higher-order terms within the 
Taylor series approximation. By scrutinizing the 
impact of integrating more terms into the 
expansion, researchers can ascertain whether 
augmenting the model with additional 
complexities significantly enhances the accuracy 
of its predictions. While asymptotic analysis offers 
valuable insights, it is imperative to extend the 
investigation beyond these limits. Examining the 
behavior of the model across various regimes 
beyond the asymptotic limits could unveil 
intriguing phenomena, thereby broadening the 
applicability of the findings. It is recommended to 
incorporate additional pertinent physical factors 
into the analysis. Factors such as the influence of 
dark energy or other cosmological constants 
should be considered to deepen the 
understanding of the intricate relationships 
between cosmological parameters and physical 
systems. Researchers are advised to conduct a 
meticulous examination of uncertainties and 
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errors inherent in the approximations and 
visualizations utilized in the study. A 
comprehensive analysis of uncertainty 
propagation and error bounds will facilitate a more 
precise evaluation of the model's limitations and 
robustness. 
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