APLIKASI TEHNOLOGI SISTEM INFORMASI GEOGRAFIS UNTUK MENINGKATKAN SISTEM SURVEILANS PENYAKIT MENULAR DI KABUPATEN BANYUMAS
(1) Jurusan Kesehatan Masyarakat Fakultas Ilmu-Ilmu Kesehatan Universitas Jenderal Soedirman
(2) 
(3) 
Abstract
Â
 Kemampuan analisis dan penyajian data dari petugas surveilans merupakan hal yang sangat penting untuk memaksimalkan tugasnya. Kebanyakan petugas surveilans masih menggunakan analisis data sederhana seperti excell untuk analisis data. Padahal dengan tehnologi sistem informasi geografis, petugas surveilans dapat menganalisis dan menyajikan data penyakit di lapangan dalam bentuk yang lebih menarik dan variatif seperti peta. Oleh karena itu, dalam kegiatan pengabdian ini, dilakukan pelatihan Geographic Information System (GIS) dengan software ArcGIS 10.2. Pelatihan diisi oleh trainer profesional selama 1 hari dengan 33 orang peserta yakni petugas surveilans se Kabupaten Banyumas. Materi yang diberikan seperti penggunaan software untuk membuat peta, pemanfaatan HP android untuk membuat titik koordinat. Peserta mempraktikan sendiri penggunaan software di laptop laptop masing masing dengan harapan segera dapat diterapkan untuk pekerjaannya sebagai petugas surveilans. Saran ke depan, petugas surveilans harus memanfaatkan tehnologi seperti GIS untuk menambah kompetensinya untuk meningkatan kualitas sistem surveilans. Â
Â
Keywords
Full Text:
PDFReferences
Adeola, A. M., Botai, J. O., Olwoch, J. M., Rautenbach, H. C. J. d. W., Kalumba, A. M., Tsela, P. L., . . . Ssentongo, A. (2015). Application of geographical information system and remote sensing in malaria research and control in South Africa: a review. Southern African Journal of Infectious Diseases, 30(4), 114-121. doi: 10.1080/23120053.2015.1106765
Boulos, M. N. K., Roudsari, A. V., & Carson, E. R. (2002). A simple method for serving Web hypermaps with dynamic database drill-down. International Journal of Health Geographics, 1, 1-1. doi: 10.1186/1476-072X-1-1
Choi, J., Cho, Y., Shim, E., & Woo, H. (2016). Web-based infectious disease surveillance systems and public health perspectives: a systematic review. BMC Public Health, 16(1), 1238. doi: 10.1186/s12889-016-3893-0
Clarke, K. C., McLafferty, S. L., & Tempalski, B. J. (1996). On epidemiology and geographic information systems: a review and discussion of future directions. Emerging Infectious Diseases, 2(2), 85-92.
Costa, J. V., Donalisio, M. R., & Silveira, L. V. d. A. (2013). Spatial distribution of dengue incidence and socio-environmental conditions in Campinas, São Paulo State, Brazil, 2007. Cad Saude Publica, 29, 1522-1532.
Duncombe, J., Clements, A., Hu, W., Weinstein, P., Ritchie, S., & Espino, F. E. (2012). Geographical Information Systems for Dengue Surveillance. The American Journal of Tropical Medicine and Hygiene, 86(5), 753-755. doi: 10.4269/ajtmh.2012.11-0650
Gharbi, M., Quenel, P., Gustave, J., Cassadou, S., La Ruche, G., Girdary, L., & Marrama, L. (2011). Time series analysis of dengue incidence in Guadeloupe, French West Indies: forecasting models using climate variables as predictors. BMC Infect Dis, 11, 166. doi: 10.1186/1471-2334-11-166
Goodchild, M., & Haining, R. (2015). GIS and Spatial Data Analysis : Converging Perspectives. Retrieved 18 August 2015, 2015, from http://www.geog.ucsb.edu/~good/papers/387.pdf
Hernandez-Avila, J. E., Rodriguez, M. H., Santos-Luna, R., Sanchez-Castaneda, V., Roman-Perez, S., Rios-Salgado, V. H., & Salas-Sarmiento, J. A. (2013). Nation-wide, web-based, geographic information system for the integrated surveillance and control of dengue fever in Mexico. PLOS ONE, 8(8), e70231. doi: 10.1371/journal.pone.0070231
Hii, Y. L., Rocklov, J., Ng, N., Tang, C. S., Pang, F. Y., & Sauerborn, R. (2009). Climate variability and increase in intensity and magnitude of dengue incidence in Singapore. Glob Health Action, 2. doi: 10.3402/gha.v2i0.2036
Hii, Y. L., Rocklov, J., Wall, S., Ng, L. C., Tang, C. S., & Ng, N. (2012). Optimal lead time for dengue forecast. PLoS Negl Trop Dis, 6(10), e1848. doi: 10.1371/journal.pntd.0001848
Hohl, A., Delmelle, E., Tang, W., & Casas, I. (2016). Accelerating the discovery of space-time patterns of infectious diseases using parallel computing. Spatial and Spatio-temporal Epidemiology, 19(Supplement C), 10-20. doi: https://doi.org/10.1016/j.sste.2016.05.002
Ibarra, S. A. M., Munoz, A. G., Ryan, S. J., Ayala, E. B., Borbor-Cordova, M. J., Finkelstein, J. L., . . . Rivero, K. (2014). Spatiotemporal clustering, climate periodicity, and social-ecological risk factors for dengue during an outbreak in Machala, Ecuador, in 2010. BMC Infect Dis, 14, 610. doi: 10.1186/s12879-014-0610-4
Kirby, R. S., Delmelle, E., & Eberth, J. M. (2017). Advances in spatial epidemiology and geographic information systems. Annals of Epidemiology, 27(1), 1-9. doi: https://doi.org/10.1016/j.annepidem.2016.12.001
Mondini, A., & Chiaravalloti-Neto, F. (2008). Spatial correlation of incidence of dengue with socioeconomic, demographic and environmental variables in a Brazilian city. Sci Total Environ, 393(2-3), 241-248. doi: 10.1016/j.scitotenv.2008.01.010
Morin, C. W., Comrie, A. C., & Ernst, K. (2013). Climate and dengue transmission: evidence and implications. Environ Health Perspect, 121(11-12), 1264-1272. doi: 10.1289/ehp.1306556
Musa, G. J., Chiang, P.-H., Sylk, T., Bavley, R., Keating, W., Lakew, B., . . . Hoven, C. W. (2013). Use of GIS Mapping as a Public Health Tool—From Cholera to Cancer. Health Services Insights, 6, 111-116. doi: 10.4137/HSI.S10471
Norstrom, M. (2001). Geographical Information System (GIS) as a tool in surveillance and monitoring of animal diseases. Acta Vet Scand Suppl, 94, 79-85.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License