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Abstract. In silico is the more comprehensive and applicable approach in supporting, both conservation and breeding programs of 

germplasm. The study aimed to analyze and determine the genetic diversity and relationships of 24 species of Phalaenopsis using two 

DNA barcoding markers, namely the rbcL and trnL-F, by in silico approach. All sequences of these markers were collected randomly 

from the NCBI website and analyzed using several softwares and methods, such as ClustalW and MultAlin for multiple sequence 

alignments and MEGA-X to determine its genetic diversity and relationships. Specifically, the genetic diversity was determined using a 

nucleotide diversity index and their relationships by the Maximum Likelihood method. The results showed that Phalaenopsis has a low 

genetic diversity of 0.24, 0.32, and 0.19, respectively. The phylogenetic analysis revealed that this orchid separated into five (for 

the rbcL), six (trnL-F), and seven clades (a combined one), where the closest relationship is shown by P. amboinensis vs. P. 

venosa, whereas the farthest by P. gibbosa vs. P. doweryensis, P. stuartiana vs. P. micholitzii, and P. celebensis vs. P. pulchra. The 

results have novel information on the diversity and relationships of Phalaenopsis on the in silico approach. Thus, our findings might be 

used in supporting the conservation and breeding program of Phalaenopsis, both locally and globally. 
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INTRODUCTION  

Phalaenopsis, commonly known as moth orchid 

(Tsai et al., 2012), is the most popular orchid genus in 

the world (Chen et al., 2013b; Deng et al., 2015; Hsu 

et al., 2018). The popularity of this orchid is mainly 

related to the characteristics of the flowers it has, both 

shape, color, scent, and a long-lasting blossom (Hsu 

et al., 2011). Besides, Phalaenopsis is fast-growing 

and flowering, has a relatively short juvenile period, 

and easy to control at the flowering stage (Chen & 

Lin, 2012). Firgiyanto et al. (2016) reported 

that Phalaenopsis also has resistance and the ability 

to flower under unfavorable conditions. 

Globally, Phalaenopsis consists of about 66 

endemic species that are scattered mainly in the 

western and southeastern Asian regions (Hinsley et 

al., 2018;  Liu et al., 2016), covering Sri Lanka, India, 

Himalayas, China, Tibet, Philippines, Andaman 

Islands, Taiwan, Indonesia, and Papua New Guinea 

(Chen et al., 2013b; Deng et al., 2015; Rahayu et al., 

2015), including northern Australia (Tsai et al., 2010; 

Tsai, 2011). According to Deng et al. (2015) and Tsai 

et al. (2010), the highest Phalaenopsis diversity was 

found in Indonesia and Philippines. Especially in 

Indonesia, there are more than 20 species 

of Phalaenopsis scattered in several large islands, 

including Sumatra, Java, Kalimantan, Nusa Tenggara, 

Sulawesi, Maluku, and Papua (Fatimah & Sukma, 

2011; Rahayu et al., 2015).  

Unfortunately, most of the Phalaenopsis species 

are currently very difficult to find in the wild, even 

among them are in the threatened category (Zhang et 

al., 2018). Deforestation, habitat destruction, 

overexploitation, and illegal trading, as well as other 

environmental impacts, are the major causes of the 

decline in the Phalaenopsis population in the wild 

(Fatimah & Sukma, 2011; Luo et al., 2014; Zahara & 

Win, 2019). Hence, the preservation, breeding, and 

analysis of genetic diversity of Phalaenopsis orchids 

are very urgent to employ. 

For decades, analysis of genetic diversity, 

including orchids, has been carried out 

conventionally, using morphological markers (Kwon 

et al., 2017). However, these markers are greatly 

influenced by environmental factors and plant growth 

phases, so they are time-consuming (Kwon et al., 

2017; Nadeem et al., 2018). Several molecular 

markers have used to study the genetic diversity of 

Phalaenopsis, namely RAPD (Goh et al., 2005; 

Niknejad et al., 2009), AFLP (Chang et al., 2009), 

and SSR (Chung et al., 2017; Fatimah & Sukma, 
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2011; Tsai et al., 2015b). However, these markers 

also have weaknesses, such as very subjective, and 

the results of the analysis are less accurate (Lee et al., 

2017). 

Currently, chloroplast DNA (cpDNA), known as 

DNA barcoding markers can be used to determine the 

genetic diversity and relationship of germplasm, 

including orchids (Jheng et al., 2012; Tsai et al., 

2012). These markers have advantages over some of 

the previously mentioned, such as faster and more 

accurate in determining the genetic diversity of 

germplasm (Lee et al., 2017; Li et al., 2015; Singh et 

al., 2017). The Consortium for the Barcode of Life's 

or CBOL (2009) have recommended several DNA 

barcoding markers, two of these are the rbcL and 

trnL-F. 

The rbcL is a coding region of cpDNA that has a 

low rate of polymorphism or mutation. However, this 

marker have generated a high quality output of 

sequence and a high universality of primer, then easy 

to aligned across various plant taxa (Dong et al., 

2014). Furthermore, the trnL-F is a non-coding 

region of cpDNA with a number of structural 

mutations found, especially the insertions-deletions 

(indels). Hence, it can be used as  a reliable genetic 

marker in population genetics and plant systematics 

(Chen et al., 2013a). This marker has also a conserve 

region that provides the opportunity to create 

universal primers for various plant taxa (Taberlet et 

al., 1991). The combination of these two (rbcL and 

trnL-F) markers have successfully applied for 

identification of NW-European fern (de Groot et al., 

2011). 

This study aimed to analyze the genetic diversity 

and relationship of 24 species of Phalaenopsis, based 

on the rbcL and trnL-F markers, by in 

silico approach. It means we have collected and used 

those markers from the GenBank or the National 

Center for Biotechnology Information (NCBI). 

According to Mascher et al. (2019), this institution 

provides a comprehensive database of nucleotide 

sequences or gene descriptions that are freely 

accessed. Hence, such a study does not require high 

costs and is applicable to support germplasm 

conservation, breeding, and cultivation programs 

(Mursyidin & Makruf, 2020). In other words, our 

findings may be usable as a reference in supporting 

the conservation and breeding programs 

of Phalaenopsis, both locally and globally.  

METHODS 

Data collection 

The rbcL and trnL-F sequences of 

24 Phalaenopsis species were collected randomly 

from the GenBank or NCBI website 

(https://www.ncbi.nlm.nih.gov). All sequences of 

both regions (Table 1) were then saved into FASTA 

or Notepad (text) format. 

 

Table 1. The rbcL dan trnL-F sequences of 24 species of Phalaenopsis used in the study 

Species 
GenBank Accession  Number Nucleotide Length (bp) 

rbcL trnL-F rbcL trnL-F Combined 

P. amabilis AY389440.1 AY273653.1 706 1126 1834 

P. amboinensis AY389422.1 AY265743.1 698 585 1283 

P. Aphrodite AY389441.1 AY273652.1 706 1117 1825 

P. borneensis AY389386.1 AY265747.1 687 584 1271 

P. braceana AY389405.1 KJ733669.1 688 1047 1737 

P. celebensis AY389432.1 AY265799.1 698 590 1288 

P. chibae AY389412.1 AY273667.1 718 1078 1798 

P. cornu-cervi AY389408.1 AY273664.1 687 1113 1802 

P. doweryensis AY389395.1 AY273627.1 687 1094 1781 

P. equestris AY389430.1 AY273651.1 704 1094 1798 

P. fuscata AY389388.1 AY273647.1 669 1098 1767 

P. gibbose AY389427.1 AY273680.1 692 1113 1807 

P. gigantea AY389394.1 AY273625.1 677 1114 1791 

P. inscriptiosinensis AY389423.1 AY273673.1 699 1111 1812 

P. lowii AY389439.1 KJ733671.1 681 1059 1742 

P. micholitzii AY389438.1 AY265771.1 696 588 1284 

P. parishii AY389402.1 AY265774.1 682 571 1255 

P. philippinensis AY389411.1 AY273656.1 705 1125 1832 

P. pulchra AY389399.1 AY273639.1 699 1096 1795 

P. stuartiana AY389403.1 AY273654.1 705 1121 1828 

P. sumatrana FJ460418.1 AY273677.1 700 1121 1823 

P. venosa AY389406.1 AY273642.1 698 1107 1807 

P. violacea AY389397.1 AY265796.1 707 569 1278 

P. wilsonii AY389385.1 AY265787.1 688 568 1258 
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Multiple sequence alignment 

All sequence datasets of the rbcL and trnL-F of 

Phalaenopsis were aligned using ClustalW (Kumar et 

al., 2018) and MultAlin (Mitchell, 1993). The 

multiple alignments analyses were also conducted for 

a combined sequence. At this stage, the conserve 

region and/or polymorphic sites can be observed in 

both sequences. 

 

Analysis of genetic diversity and their 

relationships 

The level of genetic diversity of 24 species of 

Phalaenopsis was determined by the nucleotide 

diversity index (π) with the categories: 0.1 to 0.4 is 

low, 0.5 to 0.7 is medium, and 0.8-2.00 is high (Nei 

& Li, 1979). The phylogenetic relationship of 

germplasm was analyzed using the Maximum 

Likelihood method and evaluated by a bootstrap 

analysis for 1,000 replicates (Lemey et al., 2009). All 

analyses were conducted using the assistance of 

MEGA-X software (Kumar et al., 2018). Other 

parameters, such as the number of polymorphic sites 

(S), transition/transversion bias value (R), and 

Tajima’s neutrality test (D) were also determined 

using this software (Kumar et al., 2018). 

RESULTS AND DISCUSSION 

Genetic diversity and mutational events 

Phalaenopsis has unique characteristics of the 

rbcL (Figure 1) and trnL-F (Figure 2) sequences. In 

general, both markers are equipped by a conserve 

region and some mutational evens, both substitutions 

and insertions-deletions (indels). Following Figure 1 

and 2, a conserve region of both genes showing in 

bases with red color, whereas some mutational 

events, such as substitutions and insertions-deletions 

or indels, showing in green and orange rectangle, 

respectively. At a glance, following these two figures, 

the mutational events of trnL-F are relatively higher 

than the rbcL. Further information about the sequence 

characteristics of these two regions, including their 

mutational events and their specific loci are shown in 

Table 2. 

Based on the Table 2, the Phalaenopsis has 

different of nucleotide length, both for the rbcL and 

trnL-F. In this case, the rbcL has a range of 

nucleotides of 669-718 bp, whereas the trnL-F has 

568-1126 bp. According to CBOL (2009), the rbcL 

has a complete sequence, including approximately 

1400 nucleotides coding for the large subunit protein, 

but the length varies slightly among flowering plants 

(Angiosperm). Singh and Banerjee (2018) reported 

that this region has an intergenic spacer with 600-800 

nucleotides. Similarly, an entire sequence region of 

the trnL-F has also reported approximately of 1400 

bp (Quandt et al., 2004). 

Furthermore, there are a different number of 

polymorphic sites (S) and transition/transversion bias 

values (R) on the rbcL and trnL-F regions of 

Phalaenopsis. In general, the rbcL has a higher 

number of polymorphic sites (62 loci) than the trnL-F 

(59 loci). However, the rbcL has a relatively lower in 

transition/transversion bias values (0.40) than the 

trnL-F (0.42) (Table 2). According to Stoltzfus and 

Norris (2015), this bias can be described as a ratio of 

differences, which makes the probable effect a 

complex function of the degree of sequence 

divergence.

 

Table 2. Genetic information of the rbcL, trnL-F, and combined sequences of Phalaenopsis, including their 

nucleotide diversity
*
 

Parameter 
Sequence 

rbcL trnL-F Combined 

Range of sequence length (bp) 669-718 568-1126 1255-1834 

Number of polymorphic sites (S) 62 59 117 

Transition/transversion bias value (R) 0.40 0.42 0.47 

Nucleotide diversity (π) 0.24 0.32 0.19 

Tajima’s neutrality test (D) -1.173337 -2.765724 -1.446696 

*Based on Kimura two-parameter model (Kumar et al., 2018) 
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Figure 1. The characteristic of rbcL sequences of Phalaenopsis showing a conserved region (red color) and 

some mutational events, such as substitutions (green rectangle) and insertions-deletions or indels (orange 

rectangle)  
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Figure 2. The characteristic sequence of trnL-F of Phalaenopsis showing a conserved region (red color) and 

some mutational events, such as substitutions (green rectangle) and insertions-deletions or indels (orange 

rectangle)  

 

In this study, all mutations event, mainly 

substitutions (transition and transversion), also indels 

(insertion and deletion) are found in the region of the 

rbcL and trnL-F of Phalaenopsis. According to 

Aloqalaa et al. (2019), transitions are more often 

found in sequences than transversions. In other 

words, a pattern where nucleotide transitions are 

found several folds over transversions is common in 

molecular evolution (Stoltzfus & Norris, 2015). 

Conceptually, mutations, both substitutions and 

indels, are therefore tend to cause changes in the 

biochemical properties of amino acids or the protein 

products (Keller et al., 2007). According to Flint-

Garcia (2013), mutations are permanent changes that 

are inherited in the genes or nucleotide sequences 
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(genome) of an organism, and it can affect a single 

nucleotide (point mutation) or some that are close to 

each other (segmental mutation). The Tajima’s 

neutrality test revealed that Phalaenopsis has an 

overage of low-frequency polymorphisms relative to 

expectancy, indicating population size expansion 

(e.g., after a bottleneck or a selective sweep) and/or 

purifying selection, because all sequences have 

negatives of D value (D<0) (Tajima, 1989).  

Following Govindaraj et al. (2015), mutations are 

an initial step in establishing the primary population 

for natural selection and an integral part of evolution 

and genetic diversity. In other words, this 

phenomenon is the main factor giving rise to genetic 

diversity (Frankham et al., 2004). Hence, mutation 

and genetic diversity are two interrelated things. In 

this case, based on the Nei’s (1979) category, 

Phalaenopsis shows a low level of genetic diversity, 

both for the rbcL (0.24) and trnL-F (0.32), as well as 

a combined sequence (0.19) (Table 2). According to 

Acquaah (2012), information on this diversity is 

valuable for future breeding and conservation 

programs, particularly in developing new superior 

cultivars. 

 

Phylogenetic relationships 

The maximum likelihood analysis shows 

that Phalaenopsis has a complicated relationship. 

This complexity can be seen from the clades 

generated by each sequence used. Based on the rbcL 

region, this orchid was separated into five main 

clades (Figure 3), where the very closely relationship 

shown by three pairs of Phalaenopsis, namely P. 

philippinensis vs. P. stuartiana; P. amboinensis vs. P. 

venosa; P. sumatrana vs. P. inscriptiosinensis with a 

similarity coefficient of 99.71. Whereas a very far 

related shown by P. gibbosa vs. P. doweryensis at a 

similarity of 91.73 (Table Supplementary 1). 

Following the trnL-F, this orchid was separated 

into six main clades (Figure 4), where a very close 

related shown by P. venosa vs. P. amboinensis; P. 

parishii vs. P. gibbosa (similarity of 99.99) and a 

very distantly (85.82) by P. stuartiana vs. P. 

micholitzii (Table Supplementary 2). Furthermore, a 

combined sequence of both regions has 

separated Phalaenopsis into seven main clades 

(Figure 5), where P. venosa and P. amboinensis are a 

closest relationship with a coefficient similarity of 

99.84, whereas the fartest shown by P. celebensis and 

P. pulchra (90.12) (Table Supplementary 3). 

Based on the rbcL and trnL-F markers, as well as 

a combined one, most of the Phalaenopsis species are 

grouped into a relatively similar clade. For example, 

P. celebensis, P. amabilis, P. aphrodite, P. equestris, 

P. philippinensis, and P. stuartiana are included into 

a similar large member based on these three 

sequences (Table 3). However, there is an exception, 

specifically for P. lowii which grouping into the 

similar clades for rbcL and a combined sequence with 

P. braceana and P. wilsonii, and separate from these 

two species, but joined together with P. chibae, P. 

gibbosa and P. parishii (Table 3). 

 

 
Figure 3. Phylogenetic relationship of Phalaenopsis 

based on the rbcL sequence. Values on the internal 

nodes of phylogram indicate a bootstrap analysis with 

1,000 replicates 

 

 
Figure 4. Phylogenetic relationship of Phalaenopsis 

based on the trnL-F sequence. Values on the internal 

nodes of phylogram indicate a bootstrap analysis with 

1,000 replicates 
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Figure 5. Phylogenetic relationship of Phalaenopsis 

based on a combined sequence of the rbcL and trnL-

F. Values on the internal nodes of phylogram indicate 

a bootstrap analysis with 1,000 replicates 

 

Following the bootstrap analysis, the trnL-F has a 

higher resolution of phylogenetic tree (82.35%) than 

the rbcL (60.00%). Whereas the combined sequence 

produces a relatively high similar resolution to trnL-F 

(80.00%). According to Nelson (2008), bootstrapping 

is a numerical method in generating confidence 

intervals that use either resampled or simulated data 

to estimate the sampling distribution of the maximum 

likelihood parameter probabilities. Hence, the trnL-F 

and the combined sequence can be useful to identify 

or differentiate Phalaenopsis, particularly at the 

genus level. 

In general, this grouping usually corresponds to 

the morphological or other characteristics of each 

species have. For example, P. amabilis and P. 

aphrodite belong to the similar group based on all 

sequences (Table 3), presumably because they have 

almost the similar flower morphology (Tsai et al., 

2015). Tsai et al. (2015) even included the two into 

one subgenus, namely P. amabilis complex. 

At the end of the discussion, although such studies 

have been carried out comprehensively by several 

researchers, especially by Tsai et al. (2010) and Zhou 

(2015), we tried to combine the data from both, then 

deepen by determining the genetic diversity and 

mutations that occur therein, as well reconstructed its 

relationship with a simpler manner. Therefore, this 

information has good implications and is essential for 

species conservation and plant breeding programs in 

the future (Flint-Garcia, 2013). In other words, the 

results of our study have beneficial impacts, 

particularly for the development of new Phalaenopsis 

orchids with desirable traits.   

Table 3. Grouping of Phalaenopsis based on the 

rbcL, trnL-F, and combined sequences 

 

No Species 
Clade 

rbcL trnL-F Combined 

1 P. inscriptiosinensis    I V V 

2 P. sumatrana             I V V 

3 P. borneensis            I VI VI 

4 P. cornu-cervi           I VI VI 

5 P. micholitzii          I VI VI 

6 P. amboinensis  I VI VII 

7 P. venosa    I VI VII 

8 P. violacea              I VI VII 

9 P. pulchra  I VI VII 

10 P. celebensis  II I I 

11 P. amabilis           II I I 

12 P. aphrodite           II I I 

13 P. equestris             II I I 

14 P. philippinensis        II I I 

15 P. stuartiana           II I I 

16 P. lowii
*
 III II II 

17 P. braceana III III II 

18 P. wilsonii  III III II 

19 P. chibae  IV II III 

20 P. gibbosa  IV II III 

21 P. parishii IV II III 

22 P. doweryensis V IV IV 

23 P.fuscata V IV IV 

24 P. gigantea V IV IV 

Average of bootstrap 

value
**

 (%) 
60.00 82.35 80.00 

Note. *inconsistant in grouping;
 
** above the value of 50 

CONCLUSION 

Based on the rbcL, trnL-F, and their combined 

sequence, Phalaenopsis has a low genetic 

(nucleotide) diversity. However, this germplasm 

shows a complex relationship. In 

general, Phalaenopsis separated into different clades, 

i.e., five, six, and seven clades for each marker used, 

respectively. The bootstrap analysis revealed that 

the trnL-F and a combined sequence provide a high 

resolution of phylogenetic trees. In this case, P. 

amboinensis vs. P. venosa is the closest, and three 

other pairs (P. gibbosa vs. P. doweryensis; P. 

stuartiana vs. P. micholitzii; and P. celebensis vs. P. 

pulchra) are the farthest. Hence, both sequences can 

be applied to identify or differentiate Phalaenopsis, 

particularly at the genus level. The information is 

essential in supporting the conservation and breeding 

programs of Phalaenopsis, both locally and globally. 
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