Electroencephalogram Detection for Insomnia Patients: A Preliminary Study

Inosensia Lionetta Pricillia(1), Ahmad Azhari(2),


(1) Department of Informatics, Universitas Ahmad Dahlan, Ring Road Selatan, Tamanan, Banguntapan, Bantul, Yogyakarta, 55166, Indonesia.
(2) Department of Informatics, Universitas Ahmad Dahlan, Ring Road Selatan, Tamanan, Banguntapan, Bantul, Yogyakarta, 55166, Indonesia.

Abstract

Measurement of insomnia is currently generally carried out by medical practitioners by looking at the patient's condition accompanied by symptoms that refer to insomnia. In contrast, minimal quantitative measurements were found. This study proposes an alternative measurement with the acquisition of brainwave activity through electroencephalogram (EEG) in identifying sleep disorders. Insomnia is a common sleep disorder that can make it difficult to fall asleep difficult to stay asleep, or cause waking up too early and not being able to go back to sleep. Insomnia not only weakens energy levels and moods, but also a person's health, performance, and quality of life. This sleep disorder appears due to several factors, such as anxiety, stress, depression, bipolar disorder, or trauma. Photic stimulation is given as an attempt to find a person's body's response to light. Late adolescents with insomnia symptoms with an age range of 17-25 years were included as respondents, had previously been given a simulation test related to the treatment of sleep disorders, and identified severe, moderate, and mild insomnia. Acquisition using Narosky Mindwave Mobile 2 with the electrode in forehead position, Fp1. This study compares several types of insomnia data acquisition from previous studies and obtains patterns of insomniacs based on photic stimulation.

Keywords

Electroencephalogram; Insomnia; Photic Stimulation; Sleep Disorder.

Full Text:

PDF

References

Akbar, Y. (2014). Pola Gelombang Otak Abnormal Pada Elektroencephalograph. May (2014), ITB Conference.

Azhari, A. (2015). Analisis Pengaruh Cognitive Task Berdasarkan Hasil Ekstraksi Ciri Gelom bang Otak Menggunakan Jarak Euclidean. Semi nar Nasional Teknologi Informasi Dan Multi media 2017, 3.1-1-3.1.6.

Azhari, A., Susanto, A., Pranolo, A., & Mao, Y. (2019). Neural Network Classification of Brain wave Alpha Signals in Cognitive Activities. Knowledge Engineering and Data Science, 2 (2), 47. https://doi.org/10.17977/um018v2i22 019p4757

Azmy, H., & Safri, N. M. (2013). EEG based BCI using visual imagery task for robot control. Jurnal Teknologi (Sciences and Engineering), 61(2 SUPPL), 7–11. https://doi.org/10.11113/jt. v61.1628

Har, A. (2018). Pengaruh Terapi Mendengarkan Murottal Al-Quran Terhadap Tingkat Insomnia Pada Mahasiswa Keperawatan UIN Syarif Hidayatullah Jakarta. In Skripsi.

Hu, J., & Min, J. (2018). Automated detection of driver fatigue based on EEG signals using gradient boosting decision tree model. Cognitive Neurodynamics, 12(4), 431–440. https://doi.org/10.1007/s11571-018-9485-1

Immadudin, Z., & Habibie, I. (2013). Teknik Biomedis : Teori dan Implementasi Seluruh isi buku dan sampul merupakan hak cipta Fakultas Ilmu Komputer Universitas Indonesia .

Indrawati, L. (2018). Pengaruh Relaksasi Otot Progresif terhadap Insomnia pada Lansia di PSTW Budhi Dharma Bekasi 2014. Jurnal Ilmu Kesehatan, 6 (2), 140. https://doi.org/10.32831 /jik.v6i2.168

Jo, J., Lee, S. J., Park, K. R., Kim, I. J., & Kim, J. (2014). Detecting driver drowsiness using fea ture-level fusion and user-specific classifi cation. Expert Systems with Applications, 41(4 Part 1), 1139–1152. https://doi.org/10.1016/j.es wa.2013.07.108

Karmila, R., Djamal, E. C., Nursantika, D., & Jen deral Achmad Yani Jl Terusan Jenderal Sudir man, U. (2016). Identifikasi Tingkat Konsentra si Dari Sinyal EEG Dengan Wavelet dan Adap tive Backpropagation. Seminar Nasional Aplika si Teknologi Informasi (SNATi), 0(0), 2016.

Kasteleijn-Nolst Trenité, D., Rubboli, G., Hirsch, E., Martins Da Silva, A., Seri, S., Wilkins, A., Par ra, J., Covanis, A., Elia, M., Capovilla, G., Step hani, U., & Harding, G. (2012). Methodology of photic stimulation revisited: Updated European algorithm for visual stimulation in the EEG laboratory. Epilepsia, 53(1), 16–24. https://do i.org/10.1111/j.15281167.2011.03319.x

Kaur, A. (2021). Wheelchair control for disabled patients using EMG/EOG based human ma chine interface: a review. Journal of Medical En gineering and Technology, 45(1), 61–74. htt ps://doi.org/10.1080/03091902.2020.1853838

Lusiawati, I. (2017). Pengembangan otak dan opti malisasi sumber daya manusia. Tedc, 11(2), 162–171.

Mardhiyah, U. A. (2021). Pengkondisian Gelom bang Otak Zona Alfa Melalui Apersepsi Pem belajaran. Jurnal Paradigma, 11(July), 99. https ://www.staimmgt.ac.id/wpcontent/uploads/2021/06/6.-Pengkondisian-Gelombang-Otak-Zona -Alfa.pdf

Murat, Z., Taib, T. Nasir, M., Lias, L., Sahrim, S., Kadir, S. A., Ros, R., Sulaiman, S., Norizam, N., Mustafa, M., Mahfuzah, M. (2010). The conformity between brainwave balancing index (BBI) using EEG and psychoanalysis test. International Journal of Simulation: Systems, Science and Technology. 11. 85-91.

Nurdin, M. A., Arsin, A. A., & Thaha, R. M. (2018). Kualitas Hidup Penderita Insomnia pada Mahasiswa Quality of Life oatf Pients with Insomnia to Students. Jurnal MKML, 14(2), 128–138.

Olam, Y. B., Setiaji, F. D., & Susilo, D. (2014). Implementasi Headset NeuroSky MindWave Mobile untuk Mengendalikan Robot Beroda secara Nirkabel. Techné Jurnal Ilmiah Elektroteknika, 13(2), 173 – 183.

Pamiela, G. A., & Azhari, A. (2021). Deep Learning on EEG Study Concentration in Pandemic. 16(2).

Rifqiawan, R. A. (2016). Smart Repetition dan Brainwave Technology dalam Pembuatan Audio Book Kosa Kata Bahasa Inggris. Dimas: Jurnal Pemikiran Agama Untuk Pember dayaan, 16(2), 275. https://doi.org/10.21580/ dms.2016.162.1093

Rizqiea, N., & Hartati, E. (2012). Pengalaman Mahasiswa Yang Mengalami Insomnia Selama Mengerjakan Tugas Akhir. Diponegoro Journal of Nursing, 1(1), 231–236.

Saminan, N. F. (2020). Frekuensi Gelombang Otak dalam Menangkap Ilmu Imajinasi dan Realita ( Berdasarkan Ontologi ). Jurnal Filsafat Indonesia, 3(2), 40–47. https://ejournal.undi ksha.ac.id/index.php/JFI/article/download/22299/15477

Sayekti, L. H. (2018). Analisis risiko depresi, tingkat sleep hygiene dan penyakit kronis dengan Kejadian Insomnia pada Lansia. Departemen Epidemiologi Fakultas Kesehatan Masyarakat Universitas Airlangga, 3 No 2 (April), 181–193.

Supradewi, R. (2016). Otak , Musik, dan Proses Belajar. Buletin Psikologi, 18(2), 58–68.

Susanti, L. (2015). Faktor-Faktor Yang Mempenga ruhi Kejadian Insomnia di Poliklinik Saraf RS Dr. M. Djamil Padang. Jurnal Kesehatan Anda las, 4(3), 951–956. https://doi.org/10.25077/jka .v4i3.391

Tzimourta, K. D., Tsilimbaris, A., Tzioukalia, K., Tzallas, A. T., Astrakas, L. G., & Giannakeas, N. (2018). EEG-Based Automatic Sleep Stage Classification. 7(4), 6.

Yulianto, E., Susanto, A., Widodo, T. S., & Wibowo, S. (2013). Spektrum Frekuensi Sinyal EEG Terhadap Pergerakan Motorik dan Imajinasi Pergerakan Motorik. Forum Teknik, 35, 21–32.

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.