Mechanical Scarification Influence on Gleditsia assamica Bor Water Uptake and Germination
(1) Research Center for Plant Conservation, Botanical Gardens, and Forestry, National Research and Innovation Agency
(2) Research Center for Plant Conservation, Botanical Gardens, and Forestry, National Research and Innovation Agency
Abstract
Physical dormancy is a typical kind of dormancy in Fabaceae species, including Gleditsia assamica. Physical dormancy is caused by the impermeability of the seed coat and can be alleviated, among others, by mechanical scarification. Previous studies on mechanical scarification effect on G. assamica seed focus only on its germination parameter without regard to its effect on seed water upatke. As germination is initiated with water uptake, current study aims to understand the treatment effect on both of seed water uptake and germination parameters. Tetrazolium dyeing and seed weight measurement trials were conducted to study the seed water uptake. Meanwhile, a germination test is conducted to investigate the treatment's influence on the seed germination parameters. This study shows that mechanical scarification can enhance G. assamica seed water uptake. The treatment was also significantly improve final germination percentage and germination speed index. This study result gives us a clearer understanding of the effect of mechanical scarification to alleviate G. assamica dormancy and germination, which will be advantageous to the species conservation and domestication efforts.
Keywords
Full Text:
PDFReferences
Ali, M. A. (2021). The effect of NaCl on germination parameters of wheat (Triticum aestivum L.). Haya Saudi J Life Sci, 6(2): 33–35.
Anghinoni, F. B. G., Braccini, A. L., Anghinoni, G., Jourdan, P., Braz, G. B. P, Albrecht, A. J. P., & Junior, R. S. O. (2019). Improving Small Weed Seeds Viability Assessment Using Tetrazolium Test. Journal of Agricultural Science, 11(15), 209–216.
Banerjee, S. K., Banerjee, M., & Srivastava, A. K. (2019). Distribution of ethno medicinal plants along some important roads: a case study of Northern Mizoram. American Journal of Plant Biology, 4(2), 16–23.
Baskin, J. M., & Baskin, C. C. (2004). A classification system for seed dormancy. Seed science research, 14(1), 1–16.
Bentsink, L., & Koornneef, M. (2008). Seed dormancy and germination. The Arabidopsis Book/American Society of Plant Biologists, 6, 1–18.
Burrows, G. E., Alden, R., & Robinson, W. A. (2019). Markedly different patterns of imbibition in seeds of 48 Acacia species. Seed Science Research, 29(4), 270–282.
Carruggio, F., Onofri, A., Impelluso, C., Giusso del Galdo, G., Scopece, G., & Cristaudo, A. (2020). Seed dormancy breaking and germination in Bituminaria basaltica and B. bituminosa (Fabaceae). Plants, 9(9), 1–21.
Cerino, M. C., Castro, D. C., Richard, G. A., de Luján Exner, E., & Pensiero, J. F. (2018). Functional dioecy in Gleditsia amorphoides (Fabaceae). Australian Journal of Botany, 66(1), 85–93.
Chaves, I. S., Silva, N. C. Q., & Ribeiro, D. M. (2017). Effect of the seed coat on dormancy and germination in Stylosanthes humilis HBK seeds1. Journal of Seed Science, 39(2), 114–122.
Costa, M. A., Shimizu, E. S. C., Leão, N. V. M., & Pinheiro, H. A. (2018). Seed quality evaluation by tetrazolium staining of Parkia multijuga Benth. Agricultural Sciences, 9(5), 577–586.
França-Neto, J. D. B., & Krzyzanowski, F. C. (2019). Tetrazolium: an important test for physiological seed quality evaluation. Journal of Seed Science, 41(3), 359–366.
Galíndez, G., Ceccato, D., Malagrina, G., Pidal, B., Chilo, G., Bach, H., Fortunato, R. and Ortega-Baes, P. (2016). Physical seed dormancy in native legume species of Argentina. Boletín de la Sociedad Argentina de Botánica, 51(1), 73–78.
Gao, J., Yang, X., & Yin, W. (2016). From traditional usage to pharmacological evidence: a systematic mini-review of Spina gleditsiae. Evidence-Based Complementary and Alternative Medicine, 1–6.
Harb, A. M. (2013). Reserve mobilization, total sugars and proteins in germinating seeds of durum wheat (Triticum durum Desf.) under water deficit after short period of imbibition. Jordan Journal of Biological Sciences, 6(1), 67–72.
Jaganathan, G. K. (2020). Do Fabaceae species with physical dormancy occur mostly in the temperate ecosystems? A rebuttal to using global biodiversity information facility (GBIF) analysis. Plant Science Today, 7(1), 109–111.
Kader, M. A. (2005). A comparison of seed germination calculation formulae and the associated interpretation of resulting data. Journal and Proceeding of the Royal Society of New South Wales, 138, 65–75.
Kildisheva, O. A., Dixon, K. W., Silveira, F. A., Chapman, T., Di Sacco, A., Mondoni, A., Turner, S. R., & Cross, A. T. (2020). Dormancy and germination: making every seed count in restoration. Restoration Ecology, 28, S256-S265.
Kimura, E., & Islam, M. A. (2012). Seed scarification methods and their use in forage legumes. Research Journal of Seed Science, 5(2), 38–50.
Lestari, D. A., & Firdiana, E. R. (2021). Morphological characterization and physical dormancy of Bauhinia winitii seed: living collection of Purwodadi Botanic Garden. Biosaintifika: Journal of Biology & Biology Education, 13(2), 195–200.
Mira, S., Schnadelbach, A., Correa, E. C., Pérez-García, F., & González-Benito, M. E. (2017). Variability of physical dormancy in relation to seed mechanical properties of three legume species. Seed Science and Technology, 45(3), 540–556.
Müller, F. L., Raitt, L. M., Cupido, C. F., Chimphango, S. B. M., Samuels, M. I., & Boatwright, J. S. (2017). Dormancy-breaking treatments in two potential forage crop legumes from the semi-arid rangelands of South Africa. South African Journal of Botany, 113, 133–136.
Nizam, I. (2011). Effects of salinity stress on water uptake, germination and early seedling growth of perennial ryegrass. African Journal of Biotechnology, 10(51), 10418–10424.
Nourmohammadi, K., Kartoolinejad, D., Naghdi, R., & Baskin, C. C. (2019). Effects of dormancy-breaking methods on germination of the water-impermeable seeds of Gleditsia caspica (Fabaceae) and seedling growth. Folia Oecologica, 46(2), 115-126.
de Oliveira, E. R. L, Neto, J. C. A., da Silva, C. B., Ferreira, V. M., Chaves, L. G., & Dasvenes, M. I. R. S. (2017). Overcoming dormancy and germination requirements for Acacia auriculiformis A. Cunn Ex. Benth seeds. Asian Academic Research Journal of Multidisciplinary, 4(12), 17–28.
Peneng, I.N. & Priyadi, A. (2013). Breaking seed physical dormancy of Gleditsia assamica (Fabaceae): promising introduced tree for reforestation. Proceedings of the 2nd Society for Indonesian Biodiversity International Conference, Volume 2, July 2013. ISSN 2252-617x
Prakash, V., Nainwal, A., Rawat, A. S., Chauhan, J. S., & BISHT, H. (2013). Enhancement of germination in Abrus precatorius seeds by specific pre-sowing treatment. International journal of conservation science, 4(2), 237–242.
Ranal, M. A. & Santana, D. G. D. (2006). How and why to measure the germination process?. Brazilian Journal of Botany, 29(1), 1–11.
Rodrigues-Junior, A. G., Santos, M. T., Hass, J., Paschoal, B. S., & De-Paula, O. C. (2020). What kind of seed dormancy occurs in the legume genus Cassia?. Scientific Reports, 10(1), 1–11.
Rosental, L., Nonogaki, H., & Fait, A. (2014). Activation and regulation of primary metabolism during seed germination. Seed science research, 24(1), 1–15.
Rusdy, M. (2017). A review on hardseedness and breaking dormancy in tropical forage legumes. Livest. Res. Rural. Dev, 29, 237.
Salazar, A. & Ramirez, C. (2019). Effects of mechanical and acid scarification on germination performance of Schizolobium parahyba (Fabaceae - Caesalpinioideae) seeds. Journal of Tropical Biology & Conservation (JTBC), 16, 213–227.
Silva, B. M. D. S., Silva, C. D. O., Môro, F. V., & Vieira, R. D. (2018). Seed anatomy and water uptake and their relation to seed dormancy of Ormosia paraensis Ducke. Journal of Seed Science, 40, 237–245.
Silva, L. J. D., Medeiros, A. D. D. and Oliveira, A. M. S. (2019). SeedCalc, a new automated R software tool for germination and seedling length data processing. Journal of Seed Science, 41, 250–257.
Smýkal, P., Vernoud, V., Blair, M. W., Soukup, A., & Thompson, R. D. (2014). The role of the testa during development and in establishment of dormancy of the legume seed. Frontiers in Plant Science, 5(351), 1–19.
Soltani, E., Baskin, J. M., Baskin, C. C., & Benakashani, F. (2020). A meta-analysis of the effects of treatments used to break dormancy in seeds of the megagenus Astragalus (Fabaceae). Seed Science Research, 30(3), 224–233.
Soppe, W. J., & Bentsink, L. (2020). Seed dormancy back on track; its definition and regulation by DOG1. The New phytologist, 228(3), 816–819.
Vishwanath, S. J., Kosma, D. K., Pulsifer, I. P., Scandola, S., Pascal, S., Joubès, J., Dittrich-Domergue, F., Lessire, R., Rowland, O., & Domergue, F. (2013). Suberin-associated fatty alcohols in Arabidopsis: distributions in roots and contributions to seed coat barrier properties. Plant Physiology, 163(3), 1118–1132.
Wang, H., Chen, L., Dai, S., Ma, Q., Wu, Y., Ma, Q., & Li, S. (2019). Seed coat anatomy of Cercis chinensis and its relationship to water uptake. Canadian Journal of Plant Science, 100(3), 276–283.
Wolny, E., Betekhtin, A., Rojek, M., Braszewska-Zalewska, A., Lusinska, J., & Hasterok, R. (2018). Germination and the early stages of seedling development in Brachypodium distachyon. International Journal of Molecular Sciences, 19(2916), 1–14.
World Conservation Monitoring Centre. 1998. Gleditsia assamica. The IUCN Red List of Threatened Species 1998: e.T33646A9800321. https://dx.doi.org/10.2305/IUCN.UK.1998.RLTS.T33646A9800321.en. Downloaded on 12 November 2021.
Wyse, S. V. & Dickie, J. B. (2018). Ecological correlates of seed dormancy differ among dormancy types: a case study in the legumes. New Phytologist, 217(2), 477–479.
Zhang, C. R., Dissanayake, A. A., & Nair, M. G. (2015). Functional food property of honey locust (Gleditsia triacanthos) flowers. Journal of Functional Foods, 18, 266–274.
Zhu, M., Dai, S., Ma, Q., & Li, S. (2021). Identification of the initial water-site and movement in Gleditsia sinensis seeds and its relation to seed coat structure. Plant Methods, 17(1), 1–13.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.