CO2 Sequestration Using Sodium Hydroxide and Its Utilization for Chlorella sorokiniana Biomass Production
(1) Department of Biochemistry, Faculty of Sciences and Mathematics, IPB University, Bogor, Indonesia
(2) Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
(3) Department of Biochemistry, Faculty of Sciences and Mathematics, IPB University, Bogor, Indonesia
(4) Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
Abstract
Keywords
Full Text:
PDFReferences
Ajjawi, I., Verruto, J., Aqui, M., Soriaga, L. B., Coppersmith, J., Kwok, K., … Moellering, E. R. (2017). Lipid production in Nannochloropsis gaditana is doubled by decreasing expression of a single transcriptional regulator. Nature Biotechnology, 35(7), 647–652. https://doi.org/10.1038/nbt.3865
Amin, M., Chetpattananondh, P., Khan, M., Mushtaq, F., & Sami, S. (2018). Extraction and Quantification of Chlorophyll from Microalgae Chlorella sp. IOP Conf. Series: Materials Science and Engineering, 414, 012025. https://doi.org/10.1088/1757-899X/414/1/012025
Cheng, J., Zhu, Y., Zhang, Z., & Yang, W. (2019). Modification and improvement of microalgae strains for strengthening CO2 fixation from coal- fired flue gas in power plants. Bioresource Technology, 291, 121850. https://doi.org/10.1016/j.biortech.2019.121850
Kassim, M. A., & Meng, T. K. (2017). Carbon dioxide (CO2) biofixation by microalgae and its potential for biorefinery and biofuel production. Science of the Total Environment Journal. https://doi.org/10.1016/j.scitotenv.2017.01.172
Katiyar, R., & Arora, A. (2020). Health promoting functional lipids from microalgae pool : A review. Algal Research, 46, 101800. https://doi.org/10.1016/j.algal.2020.101800
Kim, E. J., Kim, S., Choi, H.-G., & Han, S. J. (2020). Co production of biodiesel and bioethanol using psychrophilic microalga Chlamydomonas sp. KNM0029C isolated from Arctic sea ice. Biotechnology for Fuels, 13(20). https://doi.org/doi.org/10.1186/s13068-020-1660-z
Kong, F., Ren, H., Zhao, L., Nan, J., Ren, N., Liu, B., & Ma, J. (2020). Semi-continuous lipid production and sedimentation of Scenedesmus sp. by metal ions addition in the anaerobic fermentation effluent. Energy Conversion and Management, 203, 112216. https://doi.org/10.1016/j.enconman.2019.112216
Kwak, H. S., Kim, J. Y. H., Woo, H. M., Jin, E. S., Min, B. K., & Sim, S. J. (2016). Synergistic effect of multiple stress conditions for improving microalgal lipid production. Algal, 19, 215–224. https://doi.org/10.1016/j.algal.2016.09.003
Lakshmikandan, M., Murugesan, A., Wang, S., Abomohra, A. E.-F., Jovita, P. A., & Kiruthiga, S. (2019). Sustainable biomass production under CO2 conditions and effective wet microalgae lipid extraction for biodiesel production. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2019.119398
Li-beisson, Y., Thelen, J. J., Fedosejevs, E., & Harwood, J. L. (2019). The lipid biochemistry of eukaryotic algae. Progress in Lipid Research, 74, 31–68. https://doi.org/10.1016/j.plipres.2019.01.003
Ma, M., Yuan, D., Yue, H., Park, M., Gong, Y., & Hu, Q. (2017). Effective control of Poterioochromonas malhamensis in pilot-scale culture of Chlorella sorokiniana GT-1 by maintaining CO2 -mediated low culture pH. Algal Research. https://doi.org/10.1016/j.algal.2017.06.023
Molazadeh, M., Ahmadzadeh, H., Pourianfar, H. R., Lyon, S., & Rampelotto, H. (2018). The use of microalgae for coupling wastewater treatment with CO2 biofixation. Frontiers in Bioengineering and Biotechnology, 7, 42. https://doi.org/10.3389/fbioe.2019.00042
Montone, C. M., Capriotti, A. L., Cavaliere, C., Barbera, G. La, Piovesana, S., Chiozzi, R. Z., & Lagana, A. (2018). Peptidomic strategy for purification and identification of potential ACE- inhibitory and antioxidant peptides in Tetradesmus obliquus microalgae. Analytical and Bioanalytical Chemistry, 410, 3573–3586. https://doi.org/10.1007/s00216-018-0925-x
Mujtaba, G., Choi, W., Lee, C., & Lee, K. (2012). Lipid production by Chlorella vulgaris after a shift from nutrient-rich to nitrogen starvation conditions. Bioresource Technology, 123, 279–283. https://doi.org/10.1016/j.biortech.2012.07.057
Nayak, M., Rath, S. S., Manikkannan, T., Panda, P., Mishra, B. K., & Mohanty, R. C. (2013). Maximizing biomass productivity and CO2 biofixation of microalga, Scenedesmus sp. by using sodium hydroxide. J. Microbiol. Biotechnol., 23(9), 1260–1268. https://doi.org/10.4014/jmb.1302.02044
Neto, W. A. F., Mendes, C. R. B., & Abreu, P. C. (2018). Carotenoid production by the marine microalgae Nannochloropsis oculata in different low-cost culture media. Aquaculture Research, 1–9. https://doi.org/10.1111/are.13715
Nzayisenga, J. C., Farge, X., Groll, S. L., & Sellstedt, A. (2020). Effects of light intensity on growth and lipid production in microalgae grown in wastewater. Biotechnology for Biofuels, 13(4), 1–8. https://doi.org/10.1186/s13068-019-1646-x
Praharyawan, S., Rahman, D. Y., & Susilaningsih, D. (2016). Characterization of lipid productivity and fatty acid profile of three fast-growing microalgae isolated from Bengkulu for possible use in health application. The Journal of Tropical Life Science, 6(2), 79–85. https://doi.org/10.11594/jtls.06.02.03
Qiu, R., Gao, S., Lopez, P. A., & Ogden, K. L. (2017). Effects of pH on cell growth , lipid production and CO2 addition of microalgae Chlorella sorokiniana. Algal Research, 28, 192–199. https://doi.org/10.1016/j.algal.2017.11.004
Quilodran, B., Cortinez, G., Bravo, A., & Silva, D. (2020). Characterization and comparison of lipid and PUFA production by native thraustochytrid strains using complex carbon sources. Heliyon, 6. https://doi.org/10.1016/j.heliyon.2020.e05404
Ru, I. T. K., Sung, Y. Y., Jusoh, M., Abdul, M. E., & Nagappan, T. (2020). Chlorella vulgaris : a perspective on its potential for combining high biomass with high value bioproducts. Applied Phycology. https://doi.org/10.1080/26388081.2020.1715256
Sharma, K. K., Schuhmann, H., & Schenk, P. M. (2012). High lipid induction in microalgae for biodiesel production. Energies, 5, 1532–1553. https://doi.org/10.3390/en5051532
Sierra, L. S., Dixon, C. K., & Wilken, L. R. (2017). Enzymatic cell disruption of the microalgae Chlamydomonas reinhardtii for lipid and protein extraction. Algal Research, 25, 149–159. https://doi.org/10.1016/j.algal.2017.04.004
Song, C., Liu, Q., Qi, Y., Chen, G., Song, Y., Kansha, Y., & Kitamura, Y. (2019). Absorption-microalgae hybrid CO2 capture and biotransformation strategy — A review. International Journal of Greenhouse Gas Control, 88, 109–117. https://doi.org/10.1016/j.ijggc.2019.06.002
Tu, R., Jin, W., Han, S., Zhou, X., Wang, J., Wang, Q., … Feng, X. (2019). Enhancement of microalgal lipid production in municipal wastewater : Fixation of CO2 from the power plant tail gas. Biomass and Bioenergy, 131, 105400. https://doi.org/10.1016/j.biombioe.2019.105400
Wang, C., & Lan, C. Q. (2018). Effects of shear stress on microalgae – A review. Biotechnology Advances. https://doi.org/10.1016/j.biotechadv.2018.03.001
Yu, B. S., Sung, Y. J., Hong, M. E., & Sim, S. J. (2021). Improvement of photoautotrophic algal biomass production after interrupted CO2 supply by urea and KH2PO4 injection. Energies, 14, 778. https://doi.org/doi.org/10.3390/en14030778
Zhao, B., Zhang, Y., Xiong, K., Zhang, Z., Hao, X., & Liu, T. (2011). Effect of cultivation mode on microalgal growth and CO2 fixation. Chemical Engineering Research and Design, 89(9), 1758–1762. https://doi.org/10.1016/j.cherd.2011.02.018
Zhu, L. D., Li, Z. H., & Hiltunen, E. (2016). Strategies for lipid production improvement in microalgae as a biodiesel feedstock. BioMed Research International. https://doi.org/dx.doi.org/10.1155/2016/8792548
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 4.0 International License.