Antifungal Potential of Cell-Free Supernatant Produced by Keratinolytic Fungi against Ganoderma boninense

Jendri Mamangkey(1), Muhammad Komarul Huda(2), Randi Aritonang(3),


(1) Department of Biology Education, Faculty of Education and Teacher Training, Universitas Kristen Indonesia
(2) Department of Biology Education, Faculty of Teacher Training and Education, Universitas Simalungun. Jl. Sisingamangaraja, Pematangsiantar 21139, North Sumatra, Indonesia
(3) Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, North Sumatra 20155

Abstract

Keratinolytic is a microorganism ability to degrade keratin substrates. Fungi are known to produce the enzyme keratinase. This research was carried out aiming to know the keratinolytic fungi potential in inhibiting Ganoderma boninense fungi. Five isolates of keratinolytic fungi coded A 31, A 18, A 12, K 18, and A 29 have antagonistic ability against G. boninense. A 12 and A 18 had the largest inhibitory diameter of 25.23 mm and 24 mm, respectively, after 7 days of incubation. The ability of A 12 and A 18 antagonisms was observed by testing the supernatant of keratinolytic fungi incubated in a feather meal broth medium. An 18 has the largest antagonism percentage of inhibition at 84.72% against G. boninense, followed by A12 (77.78%) and combination treatment of A 12 + A 18 (73.55%) after 7 days of incubation. Keratinolytic fungi can also grow on minimum salt chitin medium (MSCM) and produced a hydrolysis zone after 3 days of incubation. G. boninense hyphae abnormalities were observed by using a 100x magnification microscope. Moreover, hyphae lysis and dwarf, curved, rolled, and curly hyphae were also observed after giving treatment on A 12, A 18, and the combination treatment of both isolates. These results showed that both keratinolytic fungi isolates and the supernatant are powerful biocontrol agents against G. boninense. There is no previous research report on endophytic fungi inhibiting the growth of Ganoderma boninense. In the future, keratinolytic fungi can be applied in agriculture technology. 

Keywords

antifungal; keratinase; Ganoderma boninense

Full Text:

PDF

References

Aritonang, R., Mamangkey, J., Suryanto, D., Munir, E., & Hartanto, A. 2022. Potential of keratinolytic fungi isolated from chicken and goat farms soil, North Sumatra. Curr. Res. Environ. Appl. Mycol. 12(1), 15-2.

Bhange, K., Chaturvedi, V., & Bhatt, R. 2016. Ameliorating efects of chicken feathers in plant growth promotion activity by a keratinolytic strain of Bacillus subtilis PF1. Bioresour Bioprocess 3(1), 13-19.

Cavello, I.A., Crespo, J.M., García, S.S., Zapiola, J.M., Luna, M.F., & Cavalitto, S.F. 2015. Plant Growth Promotion Activity of Keratinolytic Fungi Growing on a Recalcitrant Waste Known as “Hair Waste”. Biotechnol. Res. Int. 952921.

Chen, S., Xu, J., Liu, Zhu Y., Nelson, D.R., Zhou, S., Li, C., Wang, L., Guo, X., Sun, Y., Luo, H., Li, Y., Song, J., Henrissat, B., Levasseur, A., Qian, J., Li, J., Luo, X., Shi, L., He, L., Xiang, L., Xu X., Niu Y., Li Q., Han MV., Yan H., Zhang J., Chen H., Lv A., Wang Z., Liu M., Schwartz, D.C., & Sun, C. 2012. Genome sequence of the model medicinal mushroom Ganoderma lucidum. Nat Commun 3(1), 913.

Daguerre, Y., Siegel, K., Edel-Hermann, V., & Steinberg, C. 2014. Fungal proteins and genes associated with biocontrol mechanisms of soil-borne pathogens: a review. Fungal Biol. Rev. 28(4), 97-125.

Dalee, A.D., Chehama, M., Sali, K., Hayeeyusoh, N., & Hayeewangoh, Z. 2018. Keratinase-producing fungi from local environmental samples of Far South Thailand and their efficiency in hydrolyzing keratinous wastes. IOP Conf. Series: Journal of Physics: Conf. Series 1097.

Dong, Y.Z., Chang, W., & Chen, P.T., 2017. Characterization and overexpression of a novel keratinase from Bacillus polyfermenticus B4 in recombinant Bacillus subtilis. Bioresour Bioprocess 4(47), 1-9.

Fang, Z., Yong, Y.C., Zhang, J., Du, G., & Chen, J. 2017. Keratinolytic protease: a green biocatalyst for leather industry. Appl Microbiol Biotechnol. 101, 7771-7779.

Fernando, L.D., Widanage, M.C.D., Penfield, J., Lipton, A.S., Washton, N., Latgé, J.P., Wang, P., Zhang, L., & Wang, T. 2021. Structural Polymorphism of Chitin and Chitosan in Fungal Cell Walls From Solid-State NMR and Principal Component Analysis. Front Mol Biosci. 8. 727053.

Ghaffar, I., Imtiaz, A., Hussain, A., Javid, A., Jabeen, F., Akmal, M., & Qazi, J.I. 2018. Microbial production and industrial applications of keratinases: an overview. Int Microbiol. 21, 163-174.

Gousterova, A., Nustorova, M., Paskaleva, D., Naydenov, M., Neshev, G., & Vasileva-Tonkova, E. 2012. Assessment of feather hydrolysate from thermophilic actinomycetes for soil amendment and biological control application. Int J Environ Res. 6(2), 467-474.

Jadhav, H.P. & Sayyed, R.Z. 2016. Hydrolytic enzymes of rhizospheric microbes in crop protection. MOJ Cell Sci Rep. 3(5):135-136.

Jeong, E.J., Rhee, M.S., Kim, G.P., Lim, K.H., Yi, D.H., Bang, B.H. 2012. Purification and characterization of a keratinase from a feather-degrading bacterium, Bacillus sp. SH-517. J Korean Soc Appl Biol Chem. 53, 43-49.

Kalaikumari, S.S., Vennila, T., Monika, V., Chandraraj, K., Gunasekaran, P., Rajendhran, J. 2019. Bioutilization of poultry feather for keratinase production and its application in leather industry. J. Clean. Prod. 208, 44-53.

Li, Z., Reimer, C., Picard, M., Mohanty, A.K., Misra, M. 2020. Characterization of chicken feather biocarbon for use in sustainable biocomposites. Front Mater. 7:1-12.

Mamangkey, J., Suryanto, D., Munir, E., & Mustopa, A.Z. 2019a. Isolation, molecular identification and verification of gene encoding bacterial keratinase from crocodile (crocodylus porosus) feces. IOP Conf. Ser. Earth Environ. Sci. 305, 012085.

Mamangkey, J., Suryanto, D., Munir, E., & Mustopa, A.Z. 2019b. Keratinolytic fungi isolated from Asam Kumbang Crocodile Breeding Farm, Medan, North Sumatra. IOP Conf. Ser. Earth Environ. Sci. 305, 012084.

Mamangkey, J., Suryanto, D., Munir, E., & Mustopa, A.Z. 2020a. Keratinase Activity of a Newly Keratinolytic Bacteria, Azotobacter chroococcum B4. J Pure Appl Microbiol. 14(2), 1203-1211.

Mamangkey, J., Suryanto, D., Munir, E., & Mustopa, A.Z. 2020b. Promoting keratinase activity from newly identified strain Stenotrophomonas maltophilia B6 through optimization and characterization. Malays Appl Biol. 49(1), 75-86.

Rajesh, K., Dhanasekaran, D., & Panneerselvam, A. 2014. Isolation and taxonomic characterization of medicinal mushroom Ganoderma spp. Acad. J. Microbiol. Res. 2 (2), 61-70.

Sharma, I., & Kango, N. 2021. Production and characterization of keratinase by Ochrobactrum intermedium for feather keratin utilization. Int. J. Biol. Macromol. 166, 1046-1056.

Soesanto, L., Pradiptha, C.N., & Mugiastuti, E. 2021. Raw Secondary Metabolites of Chitosan-enriched Pseudomonas fluorescens P60 to Control Corn Sheath Blight. Biosaintifika 13(1): 113-120.

Staroń, P., Kowalski, Z., Staroń, A., & Banach, M. 2017. Thermal treatment of waste from the meat industry in high scale rotary kiln. Int. J. Environ. Sci. Technol. 14, 1157-1168.

Vidmar, B., & Vodovnik, M. 2018. Microbial keratinases: enzymes with promising biotechnological applications. Food Technol Biotechnol. 56, 312-318.

Weise, T., Kai, M., & Piechulla, B. 2013. Bacterial ammonia causes significant plant growth inhibition. PLoS ONE 8, e63538.

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.